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Abstract: β-Carotene has been shown to increase the risk of developing lung cancer in smokers
and asbestos workers in two large scale trails, the Beta-Carotene and Retinol Efficacy Trial (CARET)
and the Alpha-Tocopherol Beta-carotene Cancer Prevention Trial (ATBC). Based on this observation,
it was proposed that genotoxic oxidative breakdown products may cause this effect. In support
of this assumption, increased levels of sister chromatid exchanges, micronuclei, and chromosomal
aberrations were found in primary hepatocyte cultures treated with a mixture of cleavage products
(CPs) and the major product apo-8′carotenal. However, because these findings cannot directly be
transferred to the lung due to the exceptional biotransformation capacity of the liver, potential
genotoxic and cytotoxic effects of β-carotene under oxidative stress and its CPs were investigated in
primary pneumocyte type II cells. The results indicate that increased concentrations of β-carotene in
the presence of the redox cycling quinone dimethoxynaphthoquinone (DMNQ) exhibit a cytotoxic
potential, as evidenced by an increase of apoptotic cells and loss of cell density at concentrations
> 10 µM. On the other hand, the analysis of micronucleated cells gave no clear picture due to the
cytotoxicity related reduction of mitotic cells. Last, although CPs induced significant levels of DNA
strand breaks even at concentrations ≥ 1 µM and 5 µM, respectively, β-carotene in the presence
of DMNQ did not cause DNA damage. Instead, β-carotene appeared to act as an antioxidant.
These findings are in contrast with what was demonstrated for primary hepatocytes and may reflect
different sensitivities to and different metabolism of β-carotene in the two cell types.

Keywords: β-carotene; β-carotene cleavage products; apo-8′carotenal; dimethoxy-naphthoquinone;
pneumocytes; Comet assay; micronuclei; apoptosis

1. Introduction

β-Carotene (BC) has been demonstrated to possess antioxidant activity in vitro by scavenging
peroxyl radicals (in particular lipid peroxyl radicals, nitrogen dioxide-, thiyl-, and sulfonyl-radicals)
by quenching singlet oxygen and by inhibiting lipid peroxidation [1–6]. Diseases associated with
increased oxidative stress could therefore be prevented by its uptake, and it has been shown that the
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increased uptake of carotenoids or fruits and vegetables as primary source of carotenoids reduces
the risk to develop cardiovascular diseases [7–9], age-dependent macula degeneration [10], cataract
formation [11,12], and different types of cancer [13] such as mouth, pharynx, larynx, esophagus,
stomach, colon, rectum, bladder, and cervix [14–17]. However, in two major chemoprevention
trials (the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study and the Beta-Carotene and
RETinol Efficacy Trial), the incidence of cancer and death from coronary artery disease was increased
after β-carotene supplementation in both cigarette smokers and asbestos workers [18–20]. It was
therefore suggested by Wang and Russell [21] that β-carotene metabolites are responsible for the
carcinogenic response, and Sommerburg et al. [22] were able to demonstrate that β-carotene is
degraded in the culture medium via oxidants released by activated polymorphonuclear leukocytes.
By applying hypochlorous acid to β-carotene as a model for neutrophil-derived degradation, they
further proved the formation of volatile short-chain cleavage products (CPs) such as β-cyclocitral,
β-ionone, 5,6-epoxy-β-ionone, dihydroactinidiolide, and 4-oxo-β-ionone, as well as long-chain CPs
such as apo-8′-carotenal and apo-12′-carotenal [22]. These CPs have been demonstrated to modify
respiratory burst, to induce apoptosis of human neutrophils [23], and to induce oxidative stress in vitro
by impairing mitochondrial respiration [24,25].

Based on this observation, both a cleavage product mixture generated by hypochlorite
bleaching of β-carotene and one of the major carotenals contained—apo-8′-carotenal—were tested
for their genotoxic potential in the primary hepatocyte assay, both in the presence and absence of
oxidative stress. These investigations demonstrated a dose-dependent genotoxic potential of the
CPs, which was further enhanced in the presence of oxidative stress by hypoxia/reoxygenation
or 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) application. This genotoxic potential was not
accompanied by cytotoxicity [26,27]. However, cytotoxicity appeared when hepatocytes were
not proliferatively stimulated and is characterized by significantly increased rates of necrosis and
apoptosis [28]. Yurtcu et al. [29] further showed significantly increased levels of DNA damage,
apoptosis, and necrosis in HepG2 cells after the application of the plasma peak β-carotene concentration
of 8 µM.

These findings indicate that β-carotene cleavage products are most likely responsible for the
increased lung cancer risk observed in chemoprevention trials. However, there is a lack of information
on the sensitivity of the putative target cells in the lung, namely alveolar type II cells. Alveolar type II
cells have a central role in the maintenance of normal lung function, reaction to injury, and response to
specific toxins. They express phase I and phase II biotransformation enzymes—particularly cytochrome
P450-dependent mono-oxygenases [30]—and thus are potential targets for many inhaled materials,
and at the same time represent the relevant cells for the evaluation of a mutagenic and carcinogenic
potential of specific agents [31]. Therefore, the goal of this investigation was the evaluation of the
cyto- and genotoxic potential of β-carotene and its cleavage products in primary rat pneumocytes.

2. Materials and Methods

2.1. Materials

Percoll was purchased from GE Healthcare, Vienna, Austria. RPMI 1640 liquid medium
with stable L-glutamine was obtained from PAA, Pasching, Austria. Fetal calf serum (FCS),
penicillin/streptomycin was purchased from Medpro, Vienna, Austria. DMNQ (CAS No. 6956-96-3,
99% purity) was purchased from ENZO Life sciences. THF (tetrahydrofuran, CAS No. 109-99-9,
≥99.9% purity) was from Sigma-Aldrich (http://www.sigmaaldrich.com/austria.html). β-Carotene
(CAS No. 7235-40-7, ≥97% purity) was purchased from Calbiochem, Darmstadt, Germany. Trypsin
was from SIGMA, Vienna, Austria. Plastic culture dishes were obtained from Greiner BioOne, Linz
Austria and Sarstedt, Vienna, Austria. The mouse monoclonal antibody MAb 3C9 (Anti-ATP-binding
cassette sub-family A member 3 antibody (3C9) recognizing P180 lamellar body protein was obtained
from Abcam (http://www.abcam.com).

http://www.sigmaaldrich.com/austria.html
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Low melting point agarose and normal melting point agarose (LMA and NMA) were obtained
from Gibco (Paisley, UK). Inorganic salts, dimethyl sulfoxide (DMSO, CAS No. 67-68-5, ≥99%
purity), ethidium bromide, Trizma base and trypan blue were purchased from Sigma-Aldrich
(Steinheim, Germany).

2.2. Preparation of β-Carotene Cleavage Products (CPs)

The generation of CPs was performed as described by Siems et al. [24] and Sommerburg et al. [22]
with slight modifications. For degradation, β-carotene was dissolved in methanol (CAS No. 67-56-1,
≥99.9% purity, Merck (http://www.merckmillipore.com) containing 2% (v/v) trichloromethane
(CAS No. 67-66-3, 99–99.4% purity, Merck Millipore, http://www.merckmillipore.com) to achieve
sufficient solubility of the carotenoid. Chemical destruction of β-carotene was done by bleaching
with hypochlorite by adding NaClO (CAS No. 7681-52-9, 6–14% active chlorine basis, FLUKA
http://www.analytics-shop.com/de/hersteller/fluka.html) in a 100-fold concentration relative to
the carotenoid. The samples reacted at room temperature and in daylight for 10 min. The applied
concentrations are given as µM of β-carotene used for degradation.

2.3. Animals

Female Fischer 344 rats weighing approximately 100 g were obtained from Harlan–Winkelman,
(www.harlan.com) Germany. The animals were kept in a temperature (20–24 ◦C)- and humidity
(55 ± 10%)-controlled room with a 12 h light–dark cycle. Food and water was provided ad libitum.

2.4. Methods

2.4.1. Isolation and Culture of Pneumocyte Type II Cells

Pneumocyte type II cells were isolated following the procedure of Richards et al. [32] with some
modifications reported by De Boeck et al. [31]. Procedures were performed in compliance with the
national animal experimentation law 2012, permissions No. BMWFW-66.012/0016-WF/II/3b/2014
and BMWFW-66.012/0037-WF/V/3b/2016. In short, after extended anesthesia and death of the
animal, the chest was opened and the trachea cannulated with an affiliated syringe allowing the
ventilation of the lung. A catheter was then inserted into the right ventricle of the heart and the lungs
washed with a 0.15 M NaCl solution. Thereafter the lung was perfused via the trachea with 0.25%
trypsin (freshly prepared) in digestion buffer (142 mM NaCl, 6.7 mM KCl, 10 mM Hepes, 1.29 mM
MgSO4, 89 mM CaCl2, and 1 mg/mL glucose adjusted to pH 7.4) for 20 min at 37 ◦C. The tissue
was chopped and shaken, and FCS was applied to stop the enzyme reaction. After filtration via two
polyamide nets (150 µM and 30 µM mash width), the cell suspension was separated on a discontinuous
Percoll gradient (light gradient 1.040, heavy gradient 1.089). Cells having sedimented between the
two gradients were collected and plated in a 90 mm Petri dish for 1 h at 37 ◦C to allow remaining
macrophages to attach to the plate. Pneumocytes were collected, vitality was determined by the trypan
blue exclusion technique, and cells were plated at a density of 2.5 × 105 cells per 35 mm petri dish.
Cells were used for experiments after five days in culture.

2.4.2. Characterisation of Pneumocyte Type II Cells

In order to determine whether primary pneumocytes retain their characteristic features during
primary culture, the expression of the marker protein lamellar body membrane protein was analyzed
immunocytochemically after up to five days of primary culture. Even after five days in primary culture
(Figure 1A), there is expression of the protein indicating that the phenotype of type II pneumocytes is
retained. After five days of primary culture, pneumocytes were treated with the carotenoids. At this
time, the cultures were almost confluent (Figure 1B) and characterized by proliferating cells.

http://www.merckmillipore.com
http://www.merckmillipore.com
http://www.analytics-shop.com/de/hersteller/fluka.html
www.harlan.com
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Figure 1. (A) Immunocytochemical detection of the lamellar body membrane protein in five day old 
cultures of pneumocyte type II cells—counterstaining with DAPI; (B) phase contrast micrograph of 
proliferating pneumocytes after five days in culture—arrows indicate metaphases. 

2.4.3. Treatment  

CPs were dissolved in DMSO, while β-carotene was dissolved in tetrahydrofuran (THF). Stock 
solutions of the desired compounds were diluted in RPMI medium to final concentrations of 0.1, 1, 
5, 10 µM apo-8′-carotenal and 0.1, 1, 10, 50 µM β-carotene. Solutions were prepared freshly prior to 
experiments. The concentration of the solvent was not exceeding 0.5% in the medium, a concentration 
which is not toxic to the cells as demonstrated by different authors [33–35]. The solvent controls 
themselves were 0.5% (THF) and 1% (DMSO) solutions. 

Cells were incubated with the medium containing increasing concentrations of CPs or β-
carotene for three hours under standard conditions in the incubator. For the experiments to evaluate 
the potential effects of oxidative stress on β-carotene the redox-cycling quinone DMNQ was 
additionally applied to the cells at a concentration of 40 µM which has been shown to cause 
significant cyto- and genotoxic effects in primary hepatocytes [27]. After three hours, the cells were 
washed twice with fresh medium to remove the applied substances, fresh medium was added and 
the cells returned to the incubator.  

2.4.4. Fixation, Staining and Cytogenetic Analysis 

The cells were fixed in the dishes with methanol:glacial acetic acid (3:1) for 15 min, briefly rinsed 
with distilled water, and air dried. The fixed cells were stained with the fluorescent dye DAPI (4′,6-
diamidino-2-phenylindol, 0.2 µg/mL McIlvaine citric acid-Na2HPO4 buffer, pH = 7) for 30 min, 
washed with McIlvaine buffer for 2 min, briefly rinsed with distilled water and mounted in glycerol. 
To determine the mitotic indices and the frequencies of micronucleated, apoptotic and necrotic cells 
1000 cells per dish were analysed under a fluorescence microscope (Leitz Aristoplan) as described 
previously [36,37]. Cell densities as a measure for detached dead cells were evaluated by counting 
the number of adherent cells/visual field.  

2.4.5. Comet Assay 

Cells were incubated with BC (0.10–10.0 µM) for 3 h (37 °C), and DMNQ (40 µM) was applied 
as oxidative agent in the experiments. 

The cells were detached from Petri dishes by trypsinization (10 min). Subsequently, the cells 
were washed twice with phosphate buffered saline (PBS) and placed on agarose coated slides (105 
per slides). Acute toxic effects were monitored with the trypan blue dye-exclusion technique [38], 
and only cultures in which the cell viability was ≥80% were analyzed for DNA migration. After lysis 
and electrophoresis (20 min, 300 mA, 25 V, at 4 °C, pH > 13), the gels were stained with ethidium 
bromide (20 µg/mL). 

The experiments were carried out according to the international guidelines for Comet assays 
published by Tice et al. [39] and Burlinson et al. [40]. For each experimental point, three cultures were 
made in parallel, and 50 cells were evaluated from each culture. The DNA damage was determined 
with a computer aided system (http://www.lucia.cz/en/front-page/lucia-comet-assay).  

Figure 1. (A) Immunocytochemical detection of the lamellar body membrane protein in five day old
cultures of pneumocyte type II cells—counterstaining with DAPI; (B) phase contrast micrograph of
proliferating pneumocytes after five days in culture—arrows indicate metaphases.

2.4.3. Treatment

CPs were dissolved in DMSO, while β-carotene was dissolved in tetrahydrofuran (THF). Stock
solutions of the desired compounds were diluted in RPMI medium to final concentrations of 0.1, 1,
5, 10 µM apo-8′-carotenal and 0.1, 1, 10, 50 µM β-carotene. Solutions were prepared freshly prior to
experiments. The concentration of the solvent was not exceeding 0.5% in the medium, a concentration
which is not toxic to the cells as demonstrated by different authors [33–35]. The solvent controls
themselves were 0.5% (THF) and 1% (DMSO) solutions.

Cells were incubated with the medium containing increasing concentrations of CPs or β-carotene
for three hours under standard conditions in the incubator. For the experiments to evaluate the
potential effects of oxidative stress on β-carotene the redox-cycling quinone DMNQ was additionally
applied to the cells at a concentration of 40 µM which has been shown to cause significant cyto- and
genotoxic effects in primary hepatocytes [27]. After three hours, the cells were washed twice with
fresh medium to remove the applied substances, fresh medium was added and the cells returned to
the incubator.

2.4.4. Fixation, Staining and Cytogenetic Analysis

The cells were fixed in the dishes with methanol:glacial acetic acid (3:1) for 15 min, briefly
rinsed with distilled water, and air dried. The fixed cells were stained with the fluorescent dye DAPI
(4′,6-diamidino-2-phenylindol, 0.2 µg/mL McIlvaine citric acid-Na2HPO4 buffer, pH = 7) for 30 min,
washed with McIlvaine buffer for 2 min, briefly rinsed with distilled water and mounted in glycerol.
To determine the mitotic indices and the frequencies of micronucleated, apoptotic and necrotic cells
1000 cells per dish were analysed under a fluorescence microscope (Leitz Aristoplan) as described
previously [36,37]. Cell densities as a measure for detached dead cells were evaluated by counting the
number of adherent cells/visual field.

2.4.5. Comet Assay

Cells were incubated with BC (0.10–10.0 µM) for 3 h (37 ◦C), and DMNQ (40 µM) was applied as
oxidative agent in the experiments.

The cells were detached from Petri dishes by trypsinization (10 min). Subsequently, the cells
were washed twice with phosphate buffered saline (PBS) and placed on agarose coated slides (105 per
slides). Acute toxic effects were monitored with the trypan blue dye-exclusion technique [38], and
only cultures in which the cell viability was ≥80% were analyzed for DNA migration. After lysis and
electrophoresis (20 min, 300 mA, 25 V, at 4 ◦C, pH > 13), the gels were stained with ethidium bromide
(20 µg/mL).

The experiments were carried out according to the international guidelines for Comet assays
published by Tice et al. [39] and Burlinson et al. [40]. For each experimental point, three cultures were
made in parallel, and 50 cells were evaluated from each culture. The DNA damage was determined
with a computer aided system (http://www.lucia.cz/en/front-page/lucia-comet-assay).

http://www.lucia.cz/en/front-page/lucia-comet-assay
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2.4.6. Statistical Analysis

Data normal distribution was examined using the Shapiro-Wilks test. The statistical significance of
pairwise comparisons was determined by applying Student’s double-sided independent samples t-test
and the paired samples t-test (dependent variables). For multiple comparisons of normally distributed
data ANOVA and the Welch test were applied using Levenes-test to check variance homogeneity
and Tukey (homogenous variances) or Tamhane T2 (variances not homogeneous) post-hoc testing.
The Kruskal–Wallis H Test and Mann-Whitney U tests were used for multiple comparisons of not
normally distributed data. Statistical analysis was performed by employing the IBM SPSS Statistics
software package (version 23).

In the single cell gel electrophoresis assays, the means and SD of % DNA in the comet tails of
the nuclei from the different treatment groups were calculated. Comparisons of groups were done
by one-way ANOVA followed by the Dunn’s multiple comparisons post-test. For all comparisons,
p values ≤ 0.05 were considered as significant. Statistical analyses were performed using Graphpad
Prism 4.0 (Graphpad Software, San Diego, CA, USA).

3. Results

3.1. Effects of CPs on Primary Pneumocytes

3.1.1. Cytotoxicity

Figure 2A shows the dose response of both apoptosis and necrosis induction by CPs (prepared
by NaClO degradation). Up to a concentration of 5 µM there is no significant increase of apoptotic
cells, although there is a trend to higher rates. At a concentration of 10 µM CPs, a significant increase
(p < 0.05) of apoptotic cells is observed. The increased levels of apoptotic cells at the highest CPs
concentration applied are accompanied by a trend to lower proliferation rates as indicated by the
mitotic indices (Figure 2B). Due to high variations between the experiments, necrotic cells were not
significantly elevated, even at a concentration of 10 µM CPs.

In these experiments, micronucleated cells were also evaluated. However, no significant changes
were found up to a concentration of 10 µM (data not shown).
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Figure 2. (A) Frequencies of apoptotic and necrotic cells and (B) frequencies of mitotic cells in primary 
pneumocyte cultures incubated with different concentrations of CPs; *: p < 0.05 compared to the 
DMSO control; N = 3. 

3.1.2. Genotoxicity 

Comet Assay 

In order to test whether the presence of fetal calf serum (FCS) in the culture medium might 
scavenge and thus detoxify part of the CPs, the experiments were carried out in the presence and 
absence of serum (Figure 3A,B). The results of the Comet assay clearly indicate that CPs induce a 
dose dependent increase of DNA damage in primary pneumocytes irrespective of the presence or 
absence of FCS. In cultures without FCS, there is a trend to slightly higher damages compared to 
serum supplemented cultures. Nevertheless CPs induced significant increases of DNA damage in 
serum supplemented cultures (Figure 3B) at concentrations ≥ 1 µM, while significant increases in 
serum-free cultures (Figure 3A) were observed at concentrations ≥ 5 µM. When regression analyses 
were applied to the data, it turned out that a linear model fits the data best. The slope of the regression 
curve was in fact steeper in the absence of FCS indicating that serum components may at least partly 
contribute to detoxification by binding of CPs. However, the statistical comparison of both treatments 
revealed no significant differences. 
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Figure 2. (A) Frequencies of apoptotic and necrotic cells and (B) frequencies of mitotic cells in primary
pneumocyte cultures incubated with different concentrations of CPs; *: p < 0.05 compared to the DMSO
control; N = 3.

3.1.2. Genotoxicity

Comet Assay

In order to test whether the presence of fetal calf serum (FCS) in the culture medium might
scavenge and thus detoxify part of the CPs, the experiments were carried out in the presence and
absence of serum (Figure 3A,B). The results of the Comet assay clearly indicate that CPs induce a
dose dependent increase of DNA damage in primary pneumocytes irrespective of the presence or
absence of FCS. In cultures without FCS, there is a trend to slightly higher damages compared to serum
supplemented cultures. Nevertheless CPs induced significant increases of DNA damage in serum
supplemented cultures (Figure 3B) at concentrations ≥ 1 µM, while significant increases in serum-free
cultures (Figure 3A) were observed at concentrations ≥ 5 µM. When regression analyses were applied
to the data, it turned out that a linear model fits the data best. The slope of the regression curve was in
fact steeper in the absence of FCS indicating that serum components may at least partly contribute to
detoxification by binding of CPs. However, the statistical comparison of both treatments revealed no
significant differences.
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Figure 3. Effects of CPs on DNA-damage in primary cultures of rat pneumocytes; (A) treatment in the 
absence of FCS; (B) treatment in the presence of FCS; *: p < 0.05; **: p < 0.005 compared to the DMSO 
control (ANOVA, Tuckey post-hoc testing); N = 3. 
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control (ANOVA, Tuckey post-hoc testing); N = 3.

3.2. Effects of β-Carotene in the Presence of Oxidative Stress

3.2.1. Cytotoxicity

Table 1 lists the effects of the relevant controls (THF, DMNQ, and 50 µM β-carotene) on the levels
of mitotic, apoptotic, and necrotic cells. Not included are the results of the negative control (cell culture
medium) because it is not relevant for the statistical comparison. The results of the negative control
were: mitotic index: 2.6 ± 0.68; apoptotic cells: 0.42 ± 0.21; necrotic cells: 0.12 ± 0.10. In order to test
for statistical differences between all controls (including the negative control), ANOVA was applied
and revealed no statistical significance.

When primary pneumocytes were treated with increasing concentrations of BC dissolved in
THF, neither the percentage of apoptosis or necrosis nor the mitotic indices showed any statistically
significant changes even at the highest concentration of 50 µM (Table 1).

In case of co-exposure with the redox cycling quinone DMNQ, a different behavior was
experienced. Up to 10 µM, there was no significant difference to the controls (data not shown).
The percentage of apoptotic and necrotic cells became significant at a concentration of 50 µM BC.
At this concentration, a significant decrease of mitotic cells also occurred. This effect was accompanied
by a significant increase of total cell death (apoptotic and necrotic cells; Figure 4A) and a significant
reduction of the cell density (Figure 4B) indicating loss of cells due to increasing toxicity.

Table 1. Effects of β-carotene in the presence of DMNQ on mitotics, necrotic, and apoptotic cells in
primary rat pneumocyte type II cells.

Treatment Mitotic Cells (%) + Apoptotic Cells (%) ++ Necrotic Cells (%) +

Control THF 2.95 ± 0.43 * 0.31 ± 0.24 (p = 0.077) 1 0.13 ± 0.15 **
Control DMNQ 2.49 ± 1.16 ** 0.38 ± 0.19 (p = 0.084) 1 0.02 ± 0.04 **

Control 50 µM BC 2.51 ± 0.89 * 0.27 ± 0.27 (p = 0.074) 1 0.06 ± 0.09 **
50 µM BC + DMNQ 0.56 ± 0.12 3.91 ± 2.37 0.66 ± 0.19

Values are the mean ± SD of at least 4 independent experiments. + p < 0.05; ++ p < 0.005 for the observed differences
between the percentages of mitotic cells (ANOVA, Welch test) or apoptotic and necrotic cells (Kruskal-Wallis H Test).
* p < 0.05, ** p < 0.005 compared to the combined treatment (BC + DMNQ); Mann-Whitney U test (mitotic, necrotic
cells). 1 Tamhane T2 post-hoc testing.
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3.2.2. Genotoxicity

BC dissolved in THF did not induce the formation of micronucleated pneumocytes. Instead,
it caused a significant reduction (p < 0.05) at the highest concentration tested (50 µM). Since this
reduction was not accompanied by a lower percentage of mitotic cells, this effect can eventually be
attributed to the antigenotoxic potential of BC as described by different authors [41–44].

On the other hand, when β-carotene was applied in the presence of oxidative stress induced
by DMNQ, a level of micronucleated cells (2.18 ± 1.07) comparable to the control (2.13 ± 0.48) was
observed at a concentration of 50 µM. At the same concentration, a highly significant (p < 0.01) decrease
of the proliferation rate as evidenced by the mitotic index (0.62 ± 0.37) was observed.

DMNQ is a compound that is considered to cause DNA single strand breaks via the formation of
OH-radicals [45]. In fact, treatment with DMNQ led to a significant increase of DNA strand breaks,
as evidenced by the Comet assay (Figure 5). This damage was expected to increase in the presence
of β-carotene due to its cleavage and the release of genotoxic CPs. The results of the Comet assay,
however, contradicted this assumption, since increasing β-carotene concentrations reduced DNA
damage, and this reduction became almost significant (p = 0.073) at a β-carotene concentration of
10 µM, most likely indicating an antioxidant action of β-carotene.
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pneumocyte cultures. Per experimental point, three cultures were made in parallel, and from each
culture 50 cells were evaluated. Bars indicate means ± SD of three independent experiments; *: p < 0.05
compared to the respective control; **: p < 0.01 compared to the control.
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4. Discussion

4.1. β-Carotene Cleavage Products

Primary pneumocytes react sensitively towards a mixture of CPs prepared by hypochlorite
bleaching of β-carotene leading to significant increases of DNA damage already at concentrations as
low as 1 µM even in the presence of serum in the growth medium as evidenced by the Comet assay
(Figure 3).

The results of the Comet assay are representative for acute DNA damage, which may be repaired.
Therefore, the formation of micronucleated cells as a measure of loss of genetic information due to
chromosome breaks or disturbances of the mitotic spindle was further investigated. However, up
to a concentration of 10 µM CPs, no significant increase of micronucleated cells was observed. This
observation may indicate a lack of micronucleus formation. Still it has to be taken into consideration
that the formation or appearance of micronucleated cells depends exclusively on cell division.
A reduced proliferation rate will therefore influence the rate of detectable cells containing micronuclei.
Such “hidden” damage can be estimated by standardizing the mitotic indices to 1%. In our example,
the control level of micronucleated cells was 2.45% at a mitotic index of 1.53%.

Standardized to a mitotic index of 1% the percentage of micronucleated cells would be 1.6%.
At a CPs concentration of 10 µM, the mitotic index was 0.76% and the percentage of micronucleated
cells 2.36%. The standardized level would therefore be 3.1%, indicating an approximate doubling of
micronucleated cells.

This indirect evidence for an increased formation of micronucleated cells is supported by the
significantly increased percentage of apoptotic cells at a concentration of 10 µM CPs. Since apoptosis
can be considered to be a mechanism for the safe removal of damaged cells, these results can also be
interpreted in terms of cellular damage. While highly damaged cells will undergo apoptosis or even
die due to a more acute mechanism of cell death as indicated by the elevated levels of necrotic cells,
less damaged cells will have the capacity to proceed in the cell cycle and thus it can be expected that
the numbers of micronucleated cells are lower.

4.2. β-Carotene under Oxidative Stress

Treatment with DMNQ in the presence of β-carotene did not cause genotoxicity as measured by
the Comet assay. Instead, a β-carotene concentration-dependent decrease was observed (Figure 5).
The results of the pneumocyte cytotoxicity and micronucleus assay partly confirm the findings obtained
in the Comet assay because, up to a β-carotene concentration of 10 µM, no significant changes of
necrotic and apoptotic cells as well as mitotic indices and micronucleated cells were observed, although
the level of apoptotic cells is elevated at a concentration of 10 µM. However, when a β-carotene
concentration of 50 µM was applied, significant changes were observed: a significant increase of
apoptotic and necrotic cells, a highly significant reduction of the mitotic index, and a significant
reduction of the cell density, indicating cell loss due to increased toxicity, while the percentage of
micronucleated cells did not differ from control level.

As discussed above, this result may again depend on the reduced rate of cell proliferation masking
a given genotoxic effect. Together with the significantly reduced cell density observed at a β-carotene
concentration of 50 µM these results point to cytotoxicity as the major mechanism by which high
concentrations of β-carotene under oxidative stress affect pneumocytes. Summarizing the following
scenario can be envisaged:

β-Carotene is delivered to the lung via chylomicrons [46,47] and there taken up by
macrophages [48]. Both the tar and gas phase of cigarette smoke contain free radicals and non-radical
oxidants [49], and it is estimated that one puff contains approximately 1014 radicals [50]. While tar
radicals are not highly reactive, gas phase radicals are generally more reactive [51]. Cigarette smoke,
on the other hand, is chemotactic to neutrophils and macrophages and activates them [52–54], allowing
gas phase radicals to interact with endogenous oxidants released from activated macrophages during
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oxidative burst [55]. As a consequence, particle-induced NO can react with the superoxide radical to
form peroxynitrite [56], the homolysis of which generates the highly reactive OH-radical mediating
tissue damage [57] via the initiation of lipid peroxidation. Similar to activated polymorphonuclear
leukocytes [22], activated macrophages will cause the oxidative degradation of β-carotene and thus the
formation of aldehydic and other breakdown products with different biological activities aggravating
the impact of the oxidative burst. In fact, it has been demonstrated that β-carotene at a concentration
that can be achieved in human plasma after chronic oral supplementation (5 µM) [58], and its
metabolites were able to increase ~OH formation from H2O2 in the Fenton reaction and the addition of
vitamin A and retinoic acid to lung epithelial cells co-cultured with activated neutrophils resulted in
a significant increase of the level of oxidized purines [59], while the increase of oxidized purins was
not significant after β-carotene treatment. These findings are in contrast to our findings with primary
pneumocytes, as there was no indication of genotoxicity up to 10 µM. The question therefore arises
as to whether DMNQ is an adequate model for oxidative stress in the lung. In this context, it has to
be emphasized that DMNQ is an inducer of glutathione (GSH) [60], which is an essential element of
the antioxidant defense [61,62]. GSH is the predominant scavenger of reactive oxygen species (ROS),
particularly in the liver [62] and lung [63]. Under oxidative stress, the normal physiological ratio
of ~100–1000 GSH:1 GSSG can be shifted toward the oxidized form, eventually even reaching an
equimolar ratio [61,64]. GSSG is then exported out of the cells and metabolized [65]. Thus, relative
levels of GSH and GSSG provide an efficient diagnostic option in judging the redox state of cells and
hallmark oxidative stress, as demonstrated for several respiratory diseases and aging [62,66]. The lipid
peroxidation product 4-hydroxynonenal is known to form adducts with GSH [67], and the immediate
decrease of glutathione reported after smoking [54,68] can be attributed to this and other aldehydic
lipid peroxidation products. While smoking significantly reduces cellular free glutathione (GSH)
in experimental animals, especially in the lung, even after smoking periods as low as 30 days with
exposures three times a day [69] DMNQ may eventually protect from oxidative damage. Therefore,
the lack of an effect comparable to that found with primary hepatocytes [26] may relate to increased
GSH levels in pneumocytes, and it can be assumed that co-cultivation of pneumocytes with alveolar
macrophages or neutrophils, and subsequent activation will more realistically reflect the in vivo
situation of smokers consuming β-carotene supplements.

5. Conclusions

In contrast to hepatocytes, pneumocytes are less sensitive toward CPs and BC in the presence
of oxidative stress. Since pneumocytes are the putative target of β-carotene action, the obtained
results could support the assumption that it is not causatively involved in adverse health effects
because significant effects are obtained at concentrations that cannot be achieved even after chronic
oral supplementation (i.e., 5 µM). Nevertheless, there is the possibility that DMNQ—as discussed—is
an inappropriate inducer of oxidative stress in this particular cell type, and conclusive evidence may
only be obtained by mimicking the situation in the lung during smoking.
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