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Abstract

Exercise training elicits profound metabolic adaptations in skeletal muscle cells. A key mole-

cule in coordinating these adaptations is AMP-activated protein kinase (AMPK), whose

activity increases in response to cellular energy demand. AMPK activity dynamics are pri-

marily controlled by the adenine nucleotides ADP and AMP, but how each contributes to its

control in skeletal muscle during exercise is unclear. We developed and validated a mathe-

matical model of AMPK signaling dynamics, and then applied global parameter sensitivity

analyses with data-informed constraints to predict that AMPK activity dynamics are deter-

mined principally by ADP and not AMP. We then used the model to predict the effects of two

additional direct-binding activators of AMPK, ZMP and Compound 991, further validating

the model and demonstrating its applicability to understanding AMPK pharmacology. The

relative effects of direct-binding activators can be understood in terms of four properties,

namely their concentrations, binding affinities for AMPK, abilities to enhance AMPK phos-

phorylation, and the magnitudes of their allosteric activation of AMPK. Despite AMP’s favor-

able values in three of these four properties, ADP is the dominant controller of AMPK

activity dynamics in skeletal muscle during exercise by virtue of its higher concentration

compared to that of AMP.

Author summary

During exercise, the enzyme “AMP-activated protein kinase” (AMPK) detects the dis-

rupted cellular energy state by binding to the adenine nucleotides ATP, ADP, and AMP,

which are the major chemical energy carriers of the cell. How the adenine nucleotides

interact to control AMPK signaling dynamics is incompletely understood. In this study,

we used mathematical modeling to investigate the control of AMPK signaling by the ade-

nine nucleotides in skeletal muscle during exercise. We simulated the model many times

with randomly generated parameter sets sampled from experimentally determined ranges

of plausible values. Ultimately the parameters affect four key properties of an AMPK acti-

vator, namely its concentration, the tightness with which it binds to AMPK, its ability to

activate AMPK by promoting its phosphorylation, and its ability to activate AMPK
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through allostery. We found that ADP is the dominant controller of AMPK activity,

instead of AMP, due to its high concentration relative to that of AMP. We also modeled

AMPK activity in response to drugs that activate it, which further demonstrated the valid-

ity and applicability of the model. Overall, our research enhances understanding of

AMPK action during exercise and could inform the development of drugs that target

AMPK.

Introduction

Exercise training induces profound fitness-promoting adaptations in skeletal muscle cells [1].

How the “stress” of exercise is sensed by cells and translated into adaptations is unclear. It is

known that a protein signaling network exists within skeletal muscle cells, the components of

which are directly activated by the diverse biochemical and biophysical stressors of exercise

[2]. The proteins within the network transmit signals in the form of altered rates of biochemi-

cal reactions such as phosphorylation. The information is transmitted to effectors such as tran-

scription factors in the nucleus, whose altered activities increase the expression of fitness-

promoting genes. What remains to be determined is how different durations and intensities of

exercise are encoded by the network and translated into specific adaptations.

AMP-activated protein kinase (AMPK) is a prototypical exercise-responsive signaling pro-

tein. AMPK exists as a complex composed of three subunits, α, β, and γ, each of which has two

or three isoforms (namely α1 and α2, β1 and β2, and γ1, γ2, and γ3). Any combination of the

α, β, and γ isoforms are possible but in human skeletal muscle the predominant complexes are

α1β2γ1 (15%), α2β2γ1 (65%), α2β2γ3 (20%) [3]. In mice, some muscles also express β1-con-

taining complexes [3]. Mice featuring muscle-specific deletions of both AMPK β-subunits

exhibit reduced mitochondria and exercise tolerance, thus demonstrating the importance of

AMPK in facilitating muscle adaptations to physical activity [4]. In humans, AMPK signaling

increases in response to diverse types of exercise [5,6]. AMPK substrates include transcription

factors such as cAMP-response element binding protein (CREB) and coactivators such as per-

oxisomal proliferator-activated receptor-γ co-activator-1α (PGC-1α) [7]. The phosphorylation

of these transcriptional regulators by AMPK stimulates their abilities to enhance the expres-

sion of metabolic proteins such as hexokinase II [8] and mitochondrial proteins [9]. Skeletal-

muscle AMPK function is important for promoting whole-body metabolic health and has

motivated the development of “exercise-mimetic” drug cocktails, a core component of which

are small-molecule AMPK activators [10,11]. It is therefore important to better understand

AMPK activation in skeletal muscle in response to exercise and pharmacological activators.

AMPK activity is dynamically controlled by phosphorylation and allostery, both of which

are prompted by changes to the bioavailable (“free”) concentrations of the adenine nucleotides

(AXPs), i.e., adenosine tri-, di-, and monophosphate (ATP, ADP, and AMP, respectively) [12].

AMPK is phosphorylated at a threonine residue (Thr172) within the activation loop of the α-

subunit [13]. Several kinases and phosphatases control the phosphorylation state of this site in
vivo. The principal kinases include liver kinase B1 (LKB1) and calmodulin-dependent protein

kinase kinase β (CAMKKβ) [14], and the main phosphatases include phosphoprotein phos-

phatases 1 and 2A (PP1, PP2A), and metal-dependent protein phosphatase 2C (PP2C) [15–

17]. ADP and AMP inhibit phospho-AMPK Thr172 dephosphorylation [18,19] and promote

AMPK Thr172 phosphorylation by LKB1 and CaMKKβ by enhancing AMPK’s ability to serve

as a substrate for these upstream kinases [14,20–22]. ATP inhibits AMPK phosphorylation by

competing with ADP and AMP for binding to AMPK and by stabilizing it in a conformation
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that favors its dephosphorylation [17]. AMP allosterically activates AMPK catalytic activity by

1.5- to 13-fold, depending on the estimate, by binding to cystathionine-β-synthase (CBS)

domains within the γ subunit [14,19,22]. How these factors interact to control overall AMPK

activity is poorly understood.

Two principal hypotheses have been proposed to explain AXP-mediated control of AMPK

activity in vivo. One hypothesis posits that AMP (or its ratio with ATP) is the primary controller

of AMPK [23,24]. Three lines of argument support this hypothesis. First, AMP is proposed to act

as a more sensitive controller of AMPK activity than ADP for a given amount of ATP breakdown

because the adenylate kinase reaction involves ATP and AMP interconverting into two ADP,

such that the AMP:ATP ratio would vary as the square of the ADP:ATP ratio [25]. Second, AMP

enhances the phosphorylation of AMPK by LKB1 and by CaMKKβ by up to four fold [14,21,22],

whereas ADP enhances this phosphorylation by only ~1.5-fold [14,20]. Third, only AMP alloste-

rically activates AMPK [14,19,22], the degree to which depends on the γ-subunit isoform within

the AMPK complex, with γ2-containing complexes being strongly activated and γ3-containing

complexes exhibiting little to no activation [14,26]. Overall, AMP is more potent on a per-molar

basis than ADP in activating AMPK [22,24], which ultimately reflects a higher per-molecule acti-
vation potency, i.e., the degree of activation per AMPK molecule upon the binding of activator.

An alternative hypothesis is that ADP is the primary controller of AMPK activity, which is

based on two main arguments. First, the concentration of free ADP is orders of magnitude

higher than that of free AMP (50–200 μM versus 0.5–5 μM) [17,18,20,27,28]. The disparity in

the intracellular concentrations of ADP and AMP is a manifestation of the adenylate kinase

reaction operating near equilibrium and is further promoted by the AMP deaminase reaction,

in which AMP is degraded into inosine monophosphate (IMP) and ammonia [20,29]. This

reaction is particularly discernible during maximal-intensity sprint exercise, because intramus-

cular IMP levels increase from undetectable levels at rest to ~20 μmol�g dry mass-1 after exer-

cise [30]. Second, ADP and AMP both bind to the AMPK γ-subunit nucleotide-binding site 3

with roughly similar affinities [18]. Data from human exercise studies show that the concentra-

tion of ADP exceeds its dissociation constant (KD) of binding to site 3 on the γ domain,

whereas the concentration of AMP does not, thus implying that ADP outcompetes AMP for

binding to that site [27]. In accordance, ADP levels and AMPK activities increase in parallel as

a function of exercise intensity [27]. Together, the comparable affinities of binding and the

higher ADP concentration may enable it to serve as the primary controller of AMPK despite

its lesser per-molecule activation potency compared to AMP.

Despite the rich in vitro and in vivo data available regarding AMPK activity control, these

hypotheses await definitive support or refutation because of the complex and quantitative

nature of AMPK control. Complexities include the dynamic variation of AXP concentration

with exercise intensity, the effects of the comparable yet quantitatively different binding affini-

ties of the AXPs towards the γ isoforms [31,32], and the different per-molecule activation poten-

cies of the AXPs towards AMPK. These factors are challenging to parse experimentally.

Accordingly, a more complete understanding of AMPK activation in vivo requires the study of

these mechanisms using methods that account for these complexities. Enhanced understanding

of AMPK activation would inform both exercise training biology and AMPK pharmacology.

Mathematical modeling is a powerful tool for investigating the dynamics of complex bio-

chemical networks. To date, physicochemical models featuring AMPK have studied its control

by insulin and mTORC1 [33], as well as AMPK’s roles in controlling the balance of protein

translation and autophagy [34], in maintaining circadian metabolic function of the liver [35],

and in cancers such as glioblastoma [36]. However, none of these studies focused on AXP-

mediated control mechanisms of AMPK, none of the models featured ADP-mediated control

of AMPK, and none featured skeletal muscle as the tissue of interest. Given that ATP turnover
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can increase 100-fold over rest in muscle during intense exercise [37], a dedicated model of

AMPK control in skeletal muscle is warranted.

In this study, we used mathematical modeling to investigate the control of AMPK activity

dynamics by AXPs in skeletal muscle in response to exercise. Our model combines a published

model of AXP dynamics in contracting skeletal muscle with a new model of AMPK signaling

that integrates all known AXP-mediated control mechanisms. We used the model to test the

hypothesis that ADP is the dominant controller of AMPK activity in skeletal muscle during exer-

cise. Specifically, we performed global parameter sensitivity analyses guided by a framework in

which AMPK activation was expressed in terms of the activator concentration, binding affinity,

phosphorylation enhancement, and allosteric activation. The model generalized to direct-binding

AMPK activators, thus extending the its applicability to understanding AMPK pharmacology.

Methods

Model description

A schematic diagram of the model topology is presented in Fig 1. The model is briefly

described here, with comprehensive details and justification provided in the Supplementary

Fig 1. AMPK model reaction diagram. Biochemical reactions are denoted by arrows and are labeled with a reaction number (r1, r2, etc.). Reversible reactions

are indicated by double-sided arrows. Orange arrows depict nucleotide-binding reactions, and black arrows depict enzyme-catalyzed synthesis and

degradation reactions. Species colored cyan represent unphosphorylated AMPK and species colored red represent phospho-AMPK. To simulate exercise, we

changed the rate of the ATPase reaction (r1), which serves as the input to the model. The three modules of the model are distinguished by shading with the

bioenergetic module shaded light blue, the AMPK regulatory module medium blue, and the activator module darker blue. The activator module is used to

simulate the effects of two activators, ZMP and Compound 991 (C991). When simulating C991, only reactions r22 and r23, which represent reversible binding

of C991 to AMPK and phospho-AMPK, are simulated in the activator module. When simulating the effects of ZMP, the module features r22 and r23 as well as

r24 and r25, which represents the interconversion of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), the precursor molecule, to ZMP (r24) and

ZMP degradation (r25). Activator-specific parameter values are used for r22 and r23.

https://doi.org/10.1371/journal.pcbi.1008079.g001
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Methods (S1 Text, “Model construction: System Definition” and “Model construction: Topol-

ogy” subsections). The system is defined as a muscle fiber with average contractile, metabolic,

and fatigability properties contracting within a primary agonist muscle during cycling exercise.

In the spectrum from slow to fast-twitch fibers, the fiber would most closely resemble a type-

IIa fiber [38]. The model is expressed as a system of ordinary differential equations that

describe the rates of change of the represented molecular species. The model consists of three

modules: 1) bioenergetic, 2) AMPK regulatory, and 3) pharmacological activator (PA). The

bioenergetic module simulates AXP dynamics in response to exercise and is based on pub-

lished models [39,40]. The inputs to the model were the parameters describing the rates of

ATP hydrolysis under different conditions (krest, kstim, kpost; Table D in S1 Text). These param-

eters were set to values that led the predicted phosphocreatine concentrations to match mea-

sured values. The outputs of the model were the predicted phospho-AMPK (p-AMPK) levels

and the activities of the various AMPK species. The activity of each molecular species was cal-

culated as the product of its concentration and corresponding kcat parameter. Model species

and initial conditions, reaction rate equations, ordinary differential equations, and parameter

values are presented in Tables A, B, C, and D in S1 Text, respectively. Allosteric activation

potencies, simulation-specific parameter values, and activator properties are presented in

Tables E, F, and G in S1 Text, respectively.

Model calibration

The model parameter values (Tables D, E, F, and G in S1 Text) were calibrated by using esti-

mates from published literature, biochemical calculations, and manual adjustment to fit the

model to data from exercising humans. The calibration is described in detail in the Supple-

mentary Methods (S1 Text, “Model Calibration” subsection).

Model validation

To externally validate the model, the predictions of the calibrated model were compared

against two independent datasets: one collected from a continuous exercise protocol [41] and

the other from a sprint-interval exercise protocol [6]. To simulate exercise intensity, we modi-

fied the krest and kstim values until the modeled PCr levels matched the experimentally observed

values at rest and during exercise. The values for all other model parameters and initial condi-

tions were those of the calibrated model.

Global parameter sensitivity analyses

We performed global sensitivity analyses to systematically explore the parameter determinants

of AXP dominance in controlling AMPK activity. Specifically, we employed Multi-Parametric

Sensitivity Analysis (MPSA) [42] as follows. First, we generated 50,000 parameter sets by

selecting values from logarithmically scaled ranges according to the Latin hypercube sampling

method [43]. Latin hypercube designs efficiently ensure even sampling of all parameters across

their sampling ranges [43]. Accordingly, parameter sensitivities are assessed in the context of

the full range of values for the other parameters, such that interaction effects between parame-

ters, if they exist, should be detectable.

We performed three MPSA, denoted “unconstrained”, “α1β2γ1 KD”, and “α2β2γ3 KD”. For

each, the sampling ranges for kinetic parameters associated with the bioenergetic module were

centered around their published estimates [39,40] (S1 Spreadsheet, “Parameter Inputs” work-

sheet). Those for the AMPK regulatory module were set in the unconstrained MPSA based on

the limits of biophysical plausibility [44]. In the other two MPSA, the sampling ranges were
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±10% around the measured KD values for two AMPK isoforms, α1β2γ1 and α2β2γ3 (S1

Spreadsheet, “Binding kinetics” worksheet).

The resulting models were then simulated, and the outputs used to compute classification

metrics for analysis. Models were retained for analysis if their simulated phospho-AMPK time

courses exhibited acceptable qualitative trends based on the criteria stated in the Supplemen-

tary Methods (S1 Text, “Multi-parametric sensitivity analysis: Criteria for acceptable models”

subsection). For each acceptable model, the degrees to which ADP and AMP each contributed

to the control of AMPK activity were assessed by numerically computing the time integrals of

ADP-bound phospho-AMPK (ADP-p-AMPK) and AMP-bound phospho-AMPK (AMP-p-

AMPK), followed by computing the fraction of ADP-mediated control as follows:

fraction ADP control ¼
½ADP� p� AMPK �AUC

½ADP� p� AMPK �AUC þ ½AMP� p� AMPK �AUC
ð1Þ

Models were classified as “AMP-dominant” or “ADP-dominant” if this fraction was< 0.5

or> 0.5, respectively. The dependencies of AXP dominance on individual kinetic parameters

were assessed by computing Kolmogorov-Smirnov statistics. In addition, relationships

between the parameter values and the fraction ADP control were assessed by computing Spear-

man correlation coefficients. Parameter effects were visualized by plotting boxplots of the

parameter values from AMP- and ADP-dominant models. To visually accentuate any differ-

ences, the values from parameter sets leading to fraction ADP control> 0.8 (“ADP-dominant”)

or< 0.2 (“AMP-dominant”) were used for constructing the boxplots.

AXP dominance is expected to be a function of interactions between multiple parameters

rather than single isolated parameters. Because the number of model parameters was prohibi-

tively large to tractably apply standard statistical approaches, we derived a framework from

which we specified an analysis plan (see Supplementary Methods in S1 Text, “Multi-paramet-

ric sensitivity analysis: Framework for analyzing AMPK activation” subsection). Equation G

(S1 Text) compactly expresses the five factors that determine total AMPK activity, namely the

concentration of activator, the binding affinity of the activator for AMPK, the concentration of

phospho-AMPK and its activity, and the allosteric activation of AMPK provided by the activa-

tor. Equation I (S1 Text) then provides the basis for comparing the potencies of two activators

in terms of intuitive groupings of model parameters that determine the listed factors. For

AXP-(p)-AMPK binding parameters, boxplots were constructed for individual forward and

reverse binding rate constants (kf and kr), the KD values, and the ratios of KD values. For activa-

tor concentrations, the maximum-predicted AMP and ADP concentrations were plotted, as

was the ratio between these values. The parameter values representing allosteric activation of

AMPK by AMP were analyzed in isolation because ADP does not allosterically activate

AMPK. The phosphorylation enhancement was assessed by examining individual Vmax and

KM values for the AMPK kinase and phosphatase, followed by Vmax/KM values, which provides

an index for the overall parameter effects in the Michaelis-Menten equation, and then by com-

pound ratios of Vmax/KM values for the kinases and phosphatases.

Software and numerical algorithms

CellDesigner 4.4.2 [45] was used to create the model reaction diagram (Fig 1). MATLAB ver-

sion r2019a (9.6.0.1099231) was used to perform all analyses and calculations. Latin Hypercube

sampling was done using the ‘lhsdesign’ function in MATLAB, the areas under the curve

(AUC) were calculated using the ‘cumtrapz’ function, and the model was numerically inte-

grated using the ’ode23s’ algorithm using default tolerances. We also solved the model using

alternative solvers and confirmed that our choice of solver did not affect the model results.
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Code to run the model and reproduce Figures 2 and 3 is included as supplementary files (S1

Code).

Results

Bioenergetic module simulation of AXP dynamics

The AMPK model predicts AMPK dynamics resulting from AXP dynamics during exercise.

The experimental data for AMPK signaling against which our model was compared came

from the vastus lateralis of humans during cycling exercise. Hence, we first verified whether

the bioenergetic module, which was based on a model of metabolism in contracting forearm

skeletal muscle [39], could adequately simulate AXP dynamics in this different mode of exer-

cise [5]. The concentrations of PCr, inorganic phosphate (Pi), and the AXPs were predicted to

achieve steady states at ~10 min following the onset of exercise (Fig 2). The PCr concentration

decreased from 23 mM to 17 mM and the Pi concentration increased from 2.6 mM to 8.7 mM

(Fig 2A). ATP concentration was essentially preserved at its resting levels of 7.5 mM, which

matched the data well (Fig 2B). ADP and AMP increased by 1.8-fold (49 μM to 89 μM) and

3.4-fold (0.43 μM to 1.4 μM), respectively, which also matched well their experimentally

observed values (Fig 2B). These results demonstrate that the bioenergetic module satisfactorily

explained AXP dynamics in vastus lateralis during cycling exercise.

Model calibration results and predicted AMPK dynamics during

continuous submaximal exercise

Next, we calibrated the model to AMPK signaling data and evaluated the predicted AMPK

activity dynamics. Initial simulations revealed that the model with the pre-calibration

parameter values caused the phospho-AMPK levels to rise and fall unrealistically fast.

Guided by the local parameter sensitivity analysis, we found that this discrepancy could be

reduced by lowering the kinase and phosphatase parameters from their pre-calibration val-

ues (40–47, Table D in S1 Text). The kinetic parameters pertaining to AXP-AMPK binding

were also adjusted (Table D in S1 Text). KeqADK was decreased to better reflect human tissue

in which the intracellular Mg2+ differs from the reported data (Table D in S1 Text). Collec-

tively, these changes slowed the rate of AMPK phosphorylation and dephosphorylation and

increased free AMP levels, such that the model predictions better matched experimental

measurements.

The calibrated model predicted the following features of AMPK dynamics in skeletal mus-

cle during exercise. First, the concentration of phospho-AMPK increased from 34% to 45% of

the total amount of AMPK (Fig 2C). The total kinase activity of phospho-AMPK increased

~30% during exercise, 93% and 4% of which was attributable to the ADP- and AMP-bound

forms of phospho-AMPK, respectively (Fig 2D). On average, the experimental data showed

that AMPK activity increased ~40% after 30-minutes of exercise [5]. To better match the

model output to the data, we tried increasing the Vmax values for AMPK phosphorylation

(parameters 40–43, Table D in S1 Text). While this strategy led to better fits of the activity

data, it also caused the rise in phospho-AMPK levels to be excessively rapid, such that the

resulting fit is a compromise.

Model validation and AMPK dynamics during sprint-interval exercise

Next, we validated the calibrated model against the data of Nielsen et al. [41] and Gibala et al.

[6]. The Nielsen study featured sedentary and trained humans continuously exercising for 20

min at an intensity of 80% of _VO2max, before and after which PCr concentrations, relative
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phospho-AMPK levels, and AMPK activities were measured in muscle biopsies. The model

reproduced the relative constancy of ATP concentrations during exercise (Fig 3B and 3F),

Fig 2. Model calibration results. The model was initially calibrated to data collected from a 30-min submaximal-intensity cycling exercise protocol

[5]. For all panels, the measured data are presented as means ± standard error, if available, and the hatched vertical lines indicate the exercise

initiation and cessation times. A) Time courses of phosphocreatine (PCr) and inorganic phosphate (Pi) concentrations. The filled circles represent

measured PCr concentrations. B) Semi-logarithmic plot showing the time courses of AXP concentrations in response to exercise. The open points,

light gray points, and dark gray points represent the measured ATP, ADP, and AMP concentrations, respectively. C) Time courses of the total and

phospho-AMPK (p-AMPK) levels. D) Time courses of the simulated kinase activities of each AXP-bound phospho-AMPK (AXP-p-AMPK) complex.

Filled circles represent the measured mean relative change in total AMPK activity between rest and exercise.

https://doi.org/10.1371/journal.pcbi.1008079.g002

PLOS COMPUTATIONAL BIOLOGY Model of AMPK signaling in skeletal muscle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008079 July 30, 2020 8 / 23

https://doi.org/10.1371/journal.pcbi.1008079.g002
https://doi.org/10.1371/journal.pcbi.1008079


and transient increases of AMP concentrations (Fig 3B and 3F), phospho-AMPK levels (Fig

3C and 3G), and AMPK activities (Fig 3D and 3H) for the sedentary and trained partici-

pants. The quantitative agreement between the model predictions and measured values was

satisfactory, except for the change in phospho-AMPK levels during exercise in the sedentary

group, which the model underpredicted by approximately 50% (Fig 3C). The model pre-

dicted that 89% of the total AMPK activity was attributable to ADP-bound phospho-

AMPK.

The Gibala study featured measurements of PCr concentrations and relative phospho-

AMPK levels in response to four 30-s sprint intervals interspersed with 4 min of passive recov-

ery. We set the kstim parameter (Table F in S1 Text) to simulate the drop in PCr levels to

approximately 12 mM after the first interval (Fig 3A). Thereafter, we increased kstim by ~4%

for each subsequent interval to model the progressive depletion of PCr across the four intervals

to ~7 mM (Fig 3I). The model predicted virtually constant ATP concentrations throughout

the exercise protocol, whereas the measured concentrations noticeably decreased (Fig 3J).

Both ADP and AMP levels showed transient increases in response to each interval, with ADP

levels increasing from 44 μM to 422 μM and AMP from 0.27 μM to 26 μM by the fourth inter-

val (Fig 3J). The model predicted that the fold-increase in AMP concentration (96-fold) varied

approximately as the square of the fold-increase in ADP concentration (9.59-fold). With

respect to signaling, the model successfully reproduced the observed ~30% increase in phos-

pho-AMPK levels in response to the four intervals (Fig 3K). The model predicted that AMPK

activity increased from 6.0 mM/s to 8.6 mM/s, of which 92% was attributable to the ADP-

bound form and 4% to the AMP-bound form (Fig 3L). Collectively, these results suggest that

the model satisfactorily captures the behaviors of AMPK signaling in response to diverse exer-

cise protocols.

Fig 3. Model validation. The model predictions were compared to data collected from continuous cycling exercise performed by sedentary (panels A-D) or trained

human participants (panels E-H) [41] and sprint-interval cycling exercise [6] (panels I-L). The hatched vertical lines indicate the times at which exercise was initiated

and ceased. Data points and error bars represent the means ± standard error. A, E, I) Time courses of phosphocreatine (PCr) concentration. The filled circles represent

the measured concentration. B, F, J) Semi-logarithmic plot showing the time courses of adenine nucleotide concentrations in response to exercise. The open and grey-

filled circles represent the measured ATP and AMP concentrations, respectively. C, G, K) Time courses of total and phospho-AMPK (p-AMPK) levels in response to

exercise. The open circles represent measured p-AMPK levels. D, H, L) Time courses of the simulated kinase activities for each AXP-p-AMPK complex. The open

circles represent the mean relative change in total AMPK activities between rest and exercise.

https://doi.org/10.1371/journal.pcbi.1008079.g003
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Global parameter sensitivity analysis

The above results demonstrate that the model is capable of reproducing AMPK phosphoryla-

tion and activity kinetics during exercise and that AMPK activity is mainly determined by

ADP-bound complexes. However, the data on which the model is based are insufficient to

constrain the uncertainties of the model’s numerous parameter values, such that AMP-domi-

nant control could be possible if different parameter values were used. Second, the result pro-

vides little insight as to why ADP is predicted to be the dominant controller and how the

different mechanisms contribute to overall control.

To address these issues, we performed MPSA. In the unconstrained MPSA, 216 of 50,000

simulations exhibited acceptable phospho-AMPK kinetics, while the α1β2γ1 KD and α2β2γ3

KD MPSAs respectively resulted in 2,799 and 2,685 acceptable simulations (Supplementary

spreadsheet “MPSA” worksheet). Of the acceptable runs in the unconstrained MPSA, 77 simu-

lations exhibited ADP-dominant control of AMPK activity and 139 exhibited AMP domi-

nance (Supplementary Spreadsheet “MPSA” worksheet). The α1β2γ1 KD MPSA resulted in

2,717 and 82 simulations featuring ADP- and AMP-dominant control, respectively, while the

α2β2γ3 KD MPSA resulted in 2,281 and 404 simulations featuring ADP- and AMP-dominant

control, respectively (Supplementary Spreadsheet “MPSA” worksheet). These results con-

firmed that AXP-dominance depends on the parameter values.

We next determined the parameters that were most important for determining AXP domi-

nance in each of the three MPSA. We focused on parameter groupings that emerged from

Equation I (S1 Text), specifically the relative KD values of the AXP-(p)-AMPK reactions, the

enzyme kinetic parameters of the AMPK kinase and phosphatase (Vmax and KM), which deter-

mine [p-AMPK], and the activator concentrations and allosteric activation potencies. In the

unconstrained MPSA, AXP dominance was determined mainly by the rate constants for the

binding of ADP and AMP to phospho-AMPK, i.e., k10f, k10r, k11f, and k11r, as indicated by

their higher K-S statistics and lower P-values by comparison to the other parameters (Supple-

mentary Spreadsheet “MPSA” worksheet). Of these, k11r, the dissociation rate constant for

AMP-p-AMPK, had the highest correlation coefficient with the fraction of ADP control (0.38,

Supplementary Spreadsheet “MPSA” worksheet). The effects of these individual parameters

propagated into the corresponding KD values for the two reactions (S1A Fig, top right panel)

as well as to ratios of KD values involving the KD for the AMP-p-AMPK binding reaction (S1A

Fig, bottom panel; note the upward shifts in the boxplots for all KD ratios featuring “AMPp”).

Conversely, K-S statistics, correlations, and boxplots for the Vmax and KM parameters for the

AMPK kinase and phosphatase were similar between AMP- and ADP-dominant models (Sup-

plementary Spreadsheet “MPSA” worksheet and S1B Fig). ADP and AMP concentrations and

AMP-mediated allostery were also similarly distributed for both AMP- and ADP-dominant

models (S1C Fig). Overall, the unconstrained MPSA demonstrated that AMP-dominant con-

trol of AMPK activity is possible and resulted mainly from parameters determining AXP-p-

AMPK binding affinities.

In the α1β2γ1 KD MPSA, the model was sensitive to the dissociation rate constants for

ADP-p-AMPK (k10r) and AMP-p-AMPK (k11r), as indicated by the K-S statistics and Spear-

man correlations (Supplementary Spreadsheet “MPSA” worksheet). However, the shifts in the

quantiles for the KD and KD ratios that incorporated these parameters were relatively minor

and not visually different compared to those that did not incorporate the k10r and k11r param-

eters (S2A Fig). In contrast, sensitivities were evident for the Vmax and KM parameters for the

AMPK kinase and phosphatase. The K-S statistics and Spearman correlations for the Vmax and

KM of the ADP-AMPK kinase (VmaxKinaseADP and KM16, respectively) were the highest

amongst the enzyme kinetic parameters (Supplementary Spreadsheet “MPSA” worksheet).
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These results were corroborated by the boxplots, which additionally showed that the sensitivi-

ties propagated into the corresponding Vmax/KM ratio for the ADP-AMPK kinase, the quantile

values of which were higher in ADP-dominant models compared to AMP-dominant models

(S2B Fig). The sensitivities also propagated into the higher-order ratios incorporating this

Vmax/KM ratio (S2B Fig, bottom panel).

The parameter to which the model was most sensitive in the α1β2γ1 KD MPSA was KeqADK,

which is part of the adenylate kinase reaction rate equation (reaction 5, Table B in S1 Text).

This parameter strongly associated with the concentration of AMP (S2C Fig), which is one of

the determinants in Equation I (S1 Text). The K-S statistic and Spearman correlation coeffi-

cient for KeqADK were 0.56 and 0.46, respectively, both of which were the highest observed in

the α1β2γ1 KD MPSA (Supplementary Spreadsheet “MPSA” worksheet). The boxplots

revealed that AMP-dominant models were associated with lower medians for KeqADK, higher

medians for maximum AMP concentration (~7 μM vs. 2 μM), lower medians for ADP/AMP

concentration ratios, and higher AMP allostery (~8 vs. 5-fold) (S2C Fig). Collectively, these

results show that AMP-dominant control can occur when changes to parameters other than

those determining AXP-(p)-AMPK binding affinities are made.

Similar results were observed from the α2β2γ3 KD MPSA, except that the model was not

sensitive to the binding rate constants because their sampling ranges were tightly constrained

(S3A Fig). The K-S statistics and Spearman correlations were highest for the Vmax and KM of

the ADP-AMPK kinase (VmaxKinaseADP, KM16) and KeqADK (Supplementary Spreadsheet

“MPSA” worksheet). These results were corroborated by the boxplots, which showed a promi-

nent upward shift in the Vmax/KM of the ADP-AMPK kinase for the ADP-dominant models

(S3B Fig, top right panel). The K-S statistics and Spearman correlation coefficients for the

Vmax and KM of the AMP-AMPK kinase (VmaxKinaseAMP and KM18, respectively) were slightly

elevated (Supplementary Spreadsheet “MPSA” worksheet), and the boxplots showed a down-

ward shift in the Vmax/KM ratio for the ADP-p-AMPK phosphatase (S3B Fig, top right panel).

Boxplots revealed lower medians for KeqADK, higher medians for maximum AMP concentra-

tion (~4.5 μM vs. 2 μM), lower medians for ADP/AMP concentration ratios, and similar AMP

allostery (1.4- to 1.5-fold) for the AMP-dominant models (S3C Fig). Collectively, the α2β2γ3

KD MPSA revealed that AMP-dominant models are possible given the uncertainties in the

parameter values, especially given the more pronounced differences in KD values for AMPK

binding to AMP and ADP.

AMP-dominant models from the α2β2γ3 KD MPSA are implausible

The results from the α2β2γ3 KD MPSA indicated that AMP-dominant control of AMPK activ-

ity is possible given plausible sampling ranges for the parameter values. However, careful

inspection of the Vmax/KM ratio plots revealed that these values for the ADP-AMPK kinase

were shifted to lower values than those for ATP-AMPK in the AMP-dominant models from

both the α1β2γ1 KD and α2β2γ3 KD MPSAs (top right panels for S1B Fig, S2B Fig, S3B Fig).

This result contradicts data indicating that ADP enhances the rate of AMPK phosphorylation

by its kinases compared to ATP [14,18,22], such that these models are implausible. We pro-

ceeded to ask how many AMP-dominant models from the α2β2γ3 KD MPSA featured unreal-

istic parameter values or otherwise dubious predictions that would invalidate these models,

which could lead to a more definitive conclusion regarding AXP-mediated AMPK activity

control.

For each acceptable model in the α2β2γ3 KD MPSA, we evaluated the plausibility of the

maximum AMP concentration, the relative values of Vmax/KM ratios for the ADP-AMPK and

ATP-AMPK kinases and phosphatases, and the relative Vmax values for the same molecular
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species. Of the 2,685 acceptable models, 1,295 featured <0.8 fraction ADP control, thus indi-

cating substantial contribution of AMP to AMPK activity control. Of these 1,295 models, 365

featured plausible free AMP concentrations, i.e., less than 2.92 μM, which is the highest mea-

sured value in studies of AMPK signaling in humans in response to moderate-intensity exer-

cise [5,41,46–48] (see S1C Fig, S2C Fig, and S3C Fig, middle panels). However, 201 of these

simulations featured Vmax/KM values for ADP- or AMP-AMPK kinase that were lower than

those for ATP-AMPK kinase (Fig 4A and 4B) and were deemed implausible. Of the 164

remaining models, 65 featured ADP- or AMP-AMPK kinase Vmax values that were lower than

those of the ATP-AMPK kinase Vmax (Fig 4A and 4C). Similarly, the Vmax/KM values for the

ADP- or AMP-p-AMPK phosphatase were higher than those of the ATP-p-AMPK phospha-

tase in 35 of the 99 remaining models (Fig 4A and 4D). Of the 64 remaining models, 16 fea-

tured higher Vmax values for the ADP- or AMP-p-AMPK phosphatase compared to the

Fig 4. Evaluation of model plausibilities from the α2β2γ3 KD MPSA against data-informed constraints. A) Workflow of the progressive

elimination of implausible models. After partitioning out the simulations into ADP-dominant (left boxes,>80% ADP-frac) or ADP non-dominant

cases (right boxes,<80% ADP-frac), we then imposed data-informed constraints on the parameter values and ratios. The labels located in between the

workflow boxes represent criteria for identifying models as implausible. B-E) The panels from left to right show the progressive elimination of

implausible models from the simulations in the α2β2γ3 KD MPSA in which ADP-p-AMPK contributed less than 0.8 of the time integral of AMPK

activity. The panels from left to right correspond to the models featured in the blue-shaded boxes from top to bottom in panel A. Points and curves

colored green or blue indicate simulations with fractions of ADP control that tend to either ADP- or AMP-dominant control, respectively. The upper
panels display the log10 values of the quantities shown in the top label of each plot for the labelled AMPK complexes below each plot. The green and

blue points indicate values from models exhibiting ADP- and AMP-dominant control, respectively. The grey lines indicate implausible relative

parameter values between ATP-p-AMPK and ADP-p-AMPK, whereas the black-hatched lines indicate implausible relative parameter values between

ATP-p-AMPK and AMP-p-AMPK. which were subsequently eliminated. The lower panels represent the corresponding time courses of p-AMPK. The

“Median Integral Ratio” and “Minimum Integral Ratio” correspond to the median and minimum values for the fractions of ADP control for the

ensemble of models. B) First pass, simulations in which the Vmax/KM values of the kinase for ADP-AMPK and AMP-AMPK were lower than

ATP-AMPK. C) Second pass, simulations in which the Vmax values of the kinase for ADP-AMPK and AMP-AMPK were lower than those for

ATP-AMPK. D) Third pass, simulations in which the Vmax/KM of the phosphatase for ADP-p-AMPK and AMP-p-AMPK were higher than ATP-p-

AMPK. E) Fourth pass, removing simulations in which the Vmax of the phosphatase for ADP-p-AMPK and AMP-p-AMPK were higher than ATP-p-

AMPK.

https://doi.org/10.1371/journal.pcbi.1008079.g004
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ATP-p-AMPK phosphatase (Fig 4A and 4E). This process of elimination thus left 48 models

from the starting 1,295 acceptable models from the α2β2γ3 KD MPSA. The same process was

executed on the 1,390 simulations that featured >0.8 fraction ADP control, of which 279 had

appropriate kinetics in the final subset (Fig 4A).

To evaluate the plausibility of the 48 remaining models, we compared the values of the

Vmax/KM ratios for the ADP-(p)-AMPK and AMP-(p)-AMPK kinases and phosphatases.

Experimental data indicates that these parameters are likely different and in manners that

favor AMP control; however, they are unlikely to be substantially different based on their mea-

sured dose response curves [14,22], which we conservatively defined for the analysis as

100-fold. In 29 of the 48 models, we observed that at least one of the Vmax or KM parameters

was 100-fold different in the direction favoring the creation of AMP-p-AMPK or the removal

of ADP-p-AMPK (Supplementary Spreadsheet “48 models” worksheet). In the remaining 19

models, the highest share of AMP-p-AMPK as a contributor to total AMPK activity was 32%,

compared to 68% contributed by ADP-p-AMPK.

Finally, we examined the model-predicted time courses of AMP-p-AMPK, ADP-p-AMPK,

and total phospho-AMPK from the 48 models to look for patterns that might explain the

increased degree of AMP control in these cases. For the AMP-dominant models, the total

phospho-AMPK was low by comparison to ADP-dominant models (Fig 4, lower panels, com-

pare blue and green curves). Plots of ADP-p-AMPK time courses revealed very low values (S4

Fig). AMP dominance therefore only seemed possible in models predicting unrealistically low

ADP-p-AMPK and total phospho-AMPK concentrations. Overall, the results indicated that

the AMP-dominant or shared control models in the α2β2γ3 KD MPSA were implausible.

The model generalizes to exogenous direct-binding AMPK activators

Based on the insights gleaned from the above analyses, we wondered whether the model would

generalize to additional exogenous direct-binding AMPK activators. If the four determinants

of activation potency are adequately represented in the model, then substituting activator-spe-

cific parameter values should enable the model to reproduce experimentally measured AMPK

activities. Successful prediction of the measured AMPK activation would further validate our

model and extend its applicability to understanding AMPK pharmacology.

We first confirmed that the model was able to reproduce observed intramuscular ZMP con-

centrations over time in response to 5-aminoimidazole-4-carboxamide ribonucleoside

(AICAR) perfusion (Fig 5A) [49]. All parameter values relating to ZMP-mediated AMPK acti-

vation were obtained from reports of independent measurements and were not otherwise cali-

brated to the data. The model predicted that ZMP elicited similar levels of phospho-AMPK

but higher AMPK activities than those elicited by moderate exercise (Fig 5B and 5C). The

model-predicted phospho-AMPK activities corresponded well to experimental measurements

(Fig 5C).

Similar to ZMP, we substituted parameter values from independent in vitro experiments to

simulate the effects of C991. In response to bolus addition of C991, the model predicted

increasing levels of phospho-AMPK and AMPK activity as the dose of C991 increased from

10−4 mM to 10−2 mM. Each simulation agreed well with the experimental data (Fig 5B and 5C)

[50]. The 10−2 mM dose of C991 elicited lower phospho-AMPK levels but higher AMPK activ-

ity, when compared to AICAR and moderate exercise (Fig 5B and 5C). Together, these results

suggest that the model generalizes to direct-binding AMPK activators.

Next, we summarized how the properties of the different AMPK activators integrate to pro-

duce emergent AMPK activation by simulating the dose response curves of each activator. The

model qualitatively reproduced the sigmoidal shape expected for these relationships (Fig 5D).
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The model also predicted that C991 elicits the highest AMPK activities of the four when

applied at its experimentally applied concentrations, followed in order by ZMP, ADP, and

AMP (Fig 5D, filled portions of the curves). While AMP has the potential to be the most potent

activator of AMPK based on three of four determinants (Equation I in S1 Text), its low con-

centration in vivo causes it to rank last amongst the activators.

Discussion

In this study, we developed and analyzed a mathematical model of AMPK signaling in human

skeletal muscle to systematically investigate AXP-mediated control of AMPK activity dynam-

ics during exercise. The model incorporates the known mechanisms of AXP-mediated AMPK

activation in a single unified framework, thus allowing for their study in context of one

another. We applied global parameter sensitivity analysis guided by a simple theoretical frame-

work and data-informed constraints to predict that AMPK activity dynamics in skeletal muscle

during exercise are determined principally by ADP and not AMP. Furthermore, we showed

that our model can predict the effects of other direct-binding AMPK activators, thus demon-

strating its usefulness for understanding AMPK pharmacology.

Our conclusion is based on the following interpretations of our results. First, we showed

that the calibrated model predicted that ADP-p-AMPK contributed over 90% to the total

Fig 5. AMPK pharmacological activator analysis. Time courses and dose response of simulated AICAR perfusion, simulated Compound 991 incubation,

and moderate intensity exercise (63% _V_O2peak). A) Time courses of concentrations of activators. To simulate perfusion of AICAR, we assumed that its

concentration remained unchanged throughout the simulation. The concentration of ZMP was fitted to published data. B) Time courses of phospho-

AMPK (p-AMPK) concentrations for each simulation. C) Total AMPK activities for each simulation. The “×” and the “+” markers denote measured

AMPK activities in response to Compound 991 and ZMP, respectively. D) Dose response of AMPK activities in response to treatment with Compound

991, ZMP, ADP, and AMP. The model was simulated independent of the bioenergetic module by removing reactions 1–5 and setting the AXP = 0 except if

added exogenously, in which case its total concentration was held constant by setting generation and degradation reaction rates to zero. The reactions were

simulated for 240 minutes and the steady-state values plotted. The filled portions under each curve indicate the ranges of activator concentrations that are

either measured (AMP, ADP) or experimentally applied (ZMP, Compound 991).

https://doi.org/10.1371/journal.pcbi.1008079.g005
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AMPK activity during continuous and sprint-interval exercise. While striking, we could not

straightforwardly conclude ADP-dominant control because many of the model’s parameter

values are uncertain. To analyze the model in the context of these uncertainties, we employed

global parameter sensitivity analyses in which the predictions from ensembles of models fea-

turing parameter values sampled from plausible ranges were analyzed. The MPSA revealed

that AMP-dominant control is possible for many parameter sets. However, introducing data-

informed constraints on free AMP concentrations, the relative enhancement of AMPK phos-

phorylation when bound to ADP compared to ATP, and the relative protection of phospho-

AMPK from dephosphorylation when bound to ADP compared to AMP, led to the elimina-

tion of all models featuring AMP-dominant control. Of the remaining plausible models, the

highest contribution of AMP to AMPK activity control was 32%, compared to 68% for ADP.

Collectively, these results imply that ADP is the dominant controller of AMPK activity dynam-

ics in exercise.

Our study contributes significant new understanding to a longstanding debate regarding

how AMPK activity is controlled by the adenine nucleotides. AMP has long been considered

the principal controller of AMPK activity, which is reflected in the name of the enzyme [51].

However, subsequent structural studies showed that ADP could also control AMPK activity,

and some proposed that ADP is the predominant controller of AMPK activity in vivo [18,27].

Evidence in support of AMP as the “true” physiological regulator then followed [22,24], and

the debate remained unresolved to date. The crux of the debate is whether the stronger per-

molecule activation potency of AMP outweighs the two-orders-of-magnitude higher concen-

tration of ADP in cells. Resolving the debate will require accurate estimates of these quantities

and accounting for them in a unified framework. Our study presents a new mathematical

model of AMPK signaling that explicitly includes these factors and accounts for the full range

of corresponding estimates available in the literature. Quantitative models and arguments

have been proposed in prior work [27,52] but these were based on steady-state considerations,

whereas our model considers dynamics. Existing dynamic models of AMPK signaling [33–36]

only considered AMP as the activating nucleotide and were applied to cell types other than

skeletal muscle. In addition, unlike these previous studies, ours was the first to consider esti-

mates from the AMPK isoforms and ones from studies featuring results supporting AMP-

dominant control, in particular the 13-fold allosteric activation of the α1β2γ1 isoform by AMP

reported by Gowans et al. [22]. In this way, our model integrated all pertinent knowledge to

evaluate AXP-mediated control of AMPK activity in a systematic, comprehensive, and fair

manner. The model can be easily updated as new estimates become available.

Our model can be applied to study AMPK activity dynamics during exercise. Studying sig-

naling dynamics in exercising humans or animals is currently difficult because it relies on bio-

chemical analyses of biopsied muscle. Since only a few biopsies can be ethically sampled from

any one individual, these approaches cannot be used to measure the full dynamic profile of

AMPK activity in response to a bout of exercise. Mathematical models provide interpolated

estimates between the data points, thus inferring the dynamics. The promise of the AMPK

model for the proposed application is evident from the simulations of both continuous and

sprint-interval exercise (Figs 2 & 3). The latter shows the accumulation of AMPK activity with

each interval despite lengthy (4 min) rest periods, which provides clues regarding how sprint-

interval exercise can be so potent for inducing fitness-promoting adaptations in skeletal mus-

cle despite the minimal time spent exercising [53].

Our model also provides a general framework for evaluating small-molecule activators of

AMPK, which are being studied as therapeutics for muscle and metabolic dysfunction and as

part of exercise-mimetic cocktails [10,54]. Typically, AMPK activators have been identified on

the basis of binding affinity and enhanced substrate phosphorylation [54,55]. Early AMPK
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activators featured properties based on AMP given its greater per-molecule potency of activa-

tion relative to other activators such as ADP [56–58]. However, these criteria are insufficient for

predicting therapeutic suitability because they do not consider factors such as the molecule’s

ability to protect AMPK from dephosphorylation, its pharmacokinetics, or the duration of its

action once in the cell [54]. Indeed, our results imply that designing a molecule that faithfully

mimics AMP’s properties would not work well because its concentration would be too low.

Indeed, AICAR, the precursor of the AMP mimic ZMP, is applied in experiments at millimolar

concentrations, which after uptake and processing leads to intracellular ZMP concentrations

that exceed those of AMP by at least two orders of magnitude (Fig 5). We recommend that drug

developers assess candidate AMPK activators based on all the factors expressed in Equation G

(S1 Text), rather than just a subset as is current practice. More broadly, integrated approaches

to drug design are being advanced in the emerging field of quantitative systems pharmacology

[59], and our model could find use as the pharmacodynamic portion of future physiologically

based pharmacokinetic-pharmacodynamic models of small molecules targeting AMPK.

Our study features four noteworthy limitations. First, AMP is likely still crucial to the func-

tion of AMPK in vivo, owing to AMP’s tight and relatively permanent binding to the γ-subunit

nucleotide-binding site 4 of AMPK, the function of which remains to be discovered [12]. Our

conclusion regarding ADP-dominant control is restricted to the dynamic variation of AMPK
activity during exercise. Second, the model incorporates the simplifying assumptions that the

cell is a well-stirred tank reactor and does not account for possible stochastic effects, spatial

concentration gradients, or restrictions on localization. Accounting for stochastic and spatial

effects is unlikely to affect our conclusions because the concentrations of AMPK signaling

components are sufficiently high to be deterministically modeled and because AMP and ADP

must exist in the same cellular compartments due to their participation in the same biochemi-

cal reactions, e.g., the adenylate kinase reaction. Spatially restricted AMP concentration gradi-

ents of sufficient magnitude to outcompete ADP as the main controller of AMPK are unlikely

to exist.

Third, we assumed that the parameter values of the model were constant within each simu-

lation, despite the knowledge that exercise imposes generalized biophysical and biochemical

effects on cells, such as changes in water content [60], temperature [61], and pH [62], which

could cause the parameter values to be nonconstant. For these factors to affect our conclusions,

the changes to the parameter values would have to disproportionately affect ADP or AMP rela-

tive to one another. We contend that such changes are unlikely to be sufficiently substantial to

render AMP as the dominant controller of AMPK, given the results of our extensive parameter

sensitivity analyses. Furthermore, any such changes would not necessarily favor AMP. For

example, changes to intracellular pH differentially affects the thermodynamics of the bioener-

getic reactions involving AMP and ADP. The equilibria of the adenylate kinase and creatine

kinase reactions are sensitive to pH [63], but KeqADK varies only up to ~20% depending on the

Mg2+ concentration between pH 6.4 to 7.4 [63]. The creatine kinase reaction is more sensitive

to pH, varying up to ~100-fold for the same pH range [63]. This pH sensitivity is explicitly

encoded in the model, with KeqCK expressed as 1.77 × 10(9-pH) (Table D; [39]). Because this

reaction operates close to equilibrium in vivo [64], decreased intracellular pH is thought to

contribute to decreased free ADP concentration [63,65]. The effect of lowered pH on AMP

concentration can be inferred by the equilibrium expression for the adenylate kinase reaction:

AMP½ � ¼
½ADP�2KeqADK

½ATP�
ð2Þ
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Specifically, reduced pH reduces both ADP concentration and KeqCK as explained above,

with the equation implying that the fold-change decrease in ADP would translate to AMP

decreasing by the square of this fold change. Collectively, these effects would reduce AMP con-

centration proportionally more than that of ADP, which would favor ADP-dominant control

of AMPK activity. Accordingly, the dynamic pH changes observed in working skeletal muscle

are unlikely to affect our conclusions.

Finally, our results depend on accurate measurements of AMP and ADP concentrations

available to participate in biochemical reactions in cells, which are subject to uncertainties.

Notably, disparate estimates exist for the concentrations of free and total AXP. At rest, most

estimates suggest that the free AMP:ATP ratio is ~100-fold less than the free ADP:ATP ratio

[18,66] whereas estimates of the total AMP:ATP ratio is ~10-fold less than the total ADP:ATP

ratio [25,67]. Furthermore, the free concentrations of ADP and AMP are not directly mea-

sured but are based on calculations that depend on the assumption that the creatine-kinase

and adenylate-kinase reactions operate close to equilibrium, whereas total AXP are directly

measured biochemically using high-performance liquid chromatography techniques. In prin-

ciple, estimates from the latter should be given more weight. However, these issues are unlikely

to affect our conclusions for two reasons. First, the apparent discrepancies in the measure-

ments of free and total AXP suggest the existence of pools of AXP tightly bound to cellular

structures. These bound AXP would remain unavailable to AMPK, in which case only the free

concentrations are relevant to its control. Second, HPLC-based measurements of AXP during

and after exercise frequently find no change in the levels of AMP between rest and exercise

[41,62,67–69], which if true, obviates total AMP as a possible controller of AMPK dynamics

during exercise.

In summary, we have developed and analyzed a mathematical model of AMPK signaling in

skeletal muscle during exercise. Our analyses demonstrate that ADP rather than AMP domi-

nates the control of AMPK activity dynamics. More generally, activators of AMPK must fea-

ture a sufficient combination of per-molecule activation potency, binding affinity, and

concentration to be effective in vivo. Our model provides a tool for systematically investigating

these factors for any direct-binding AMPK modulator.
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ii) Boxplots summarize the dissociation constants (KD) for each AXP-(p)-AMPK reaction, cal-

culated as kr/kf from each simulation. iii) Boxplots summarize the ratios of all possible pairs of

KD values. B. Effects of parameters determining the enhancement of AMPK phosphorylation

on AMP- versus ADP-dominant control of AMPK activity in the Unconstrained MPSA. i)
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Boxplots summarize the Michaelis constants (KM) and maximum enzyme velocities (Vmax) for

the AMPK kinase and phosphatase. ii) Boxplots summarize the catalytic efficiencies of the

AMPK kinase and phosphatase, which was calculated as Vmax/KM for each simulation. iii) Box-

plots summarize the compound ratios of kinase and phosphatase catalytic efficiencies. C.

Effects of KeqADK, AMP and ADP concentrations, and allostery on AMP- versus ADP-domi-

nant control of AMPK activity in the Unconstrained MPSA. Panels from left to right: i) Box-

plots summarize the KeqADK values. ii) and iii) Boxplots summarize the maximum predicted

concentrations of ADP (ii) and AMP (iii) during simulated exercise. The dashed-grey horizon-

tal lines represent the reported maximum levels of ADP or AMP in moderate-intensity exer-

cise studies. iv) Boxplots summarize the ratios of the maximum concentrations of ADP and

AMP during simulated exercise. v) Boxplots summarize the magnitudes of allosteric activation

of the AMP-p-AMPK complex.

(PDF)

S2 Fig. Visualization of α1β2γ1 KD MPSA results. A. Effects of AXP-(p)-AMPK binding

constants on AMP- versus ADP-dominant control of AMPK activity. i) Boxplots summarize

the individual parameter values representing the forward (kf) and reverse (kr) rate constants.

ii) Boxplots summarize the dissociation constants (KD) for each AXP-(p)-AMPK reaction, cal-

culated as kr/kf from each simulation. iii) Boxplots summarize the ratios of all possible pairs of

KD values. B. Effects of parameters determining the enhancement of AMPK phosphorylation

on AMP- versus ADP-dominant control of AMPK activity in the α1β2γ1 KD MPSA. i) Box-

plots summarize the Michaelis constants (KM) and maximum enzyme velocities (Vmax) for the

AMPK kinase and phosphatase. ii) Boxplots summarize the catalytic efficiencies of the AMPK

kinase and phosphatase, which was calculated as Vmax/KM for each simulation. Bottom panel:
Boxplots summarize the compound ratios of kinase and phosphatase catalytic efficiencies. C.

Effects of KeqADK, AMP and ADP concentrations, and allostery on AMP- versus ADP-domi-

nant control of AMPK activity in the α1β2γ1 KD MPSA. Panels from left to right: i) Boxplots

summarize the KeqADK values. ii) and iii) Boxplots summarize the maximum predicted concen-

trations of ADP (ii) and AMP (iii) during simulated exercise. The dashed-grey horizontal lines

represent the reported maximum levels of ADP or AMP in moderate-intensity exercise stud-

ies. iv) Boxplots summarize the ratios of the maximum concentrations of ADP and AMP dur-

ing simulated exercise. v) Boxplots summarize the magnitudes of allosteric activation of the

AMP-p-AMPK complex.

(PDF)

S3 Fig. Visualization of α2β2γ3 KD MPSA. A. Effects of AXP-(p)-AMPK binding constants

on AMP- versus ADP-dominant control of AMPK activity. i) Boxplots summarize the individ-

ual parameter values representing the forward (kf) and reverse (kr) rate constants. ii) Boxplots

summarize the dissociation constants (KD) for each AXP-(p)-AMPK reaction, calculated as kr/
kf from each simulation. iii) Boxplots summarize the ratios of all possible pairs of KD values. B.

Effects of parameters determining the enhancement of AMPK phosphorylation on AMP- ver-

sus ADP-dominant control of AMPK activity in the α2β2γ3 KD MPSA. i) Boxplots summarize

the Michaelis constants (KM) and maximum enzyme velocities (Vmax) for the AMPK kinase

and phosphatase. ii) Boxplots summarize the catalytic efficiencies of the AMPK kinase and

phosphatase, which was calculated as Vmax/KM for each simulation. iii) Boxplots summarize

the compound ratios of kinase and phosphatase catalytic efficiencies. C. Effects of KeqADK,

AMP and ADP concentrations, and allostery on AMP- versus ADP-dominant control of

AMPK activity in the α2β2γ3 MPSA. Panels from left to right: i) Boxplots summarize the

KeqADK values. ii) and iii) Boxplots summarize the maximum predicted concentrations of ADP

(ii) and AMP (iii) during simulated exercise. The dashed-grey horizontal lines represent the
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reported maximum levels of ADP or AMP in moderate-intensity exercise studies. iv) Boxplots

summarize the ratios of the maximum concentrations of ADP and AMP during simulated

exercise. v) Boxplots summarize the magnitudes of allosteric activation of the AMP-p-AMPK

complex.

(PDF)

S4 Fig. Phospho-AMPK in the 48 Non-ADP-dominant models. Model-predicted time

courses of AMP-p-AMPK and ADP-p-AMPK in the 48 models remaining after the elimina-

tion process (see Fig 4 of the main text). The blue, green, and black lines represent the levels of

AMP-p-AMPK, ADP-p-AMPK and total AMPK, respectively. The inset numbers represent

the corresponding fraction of ADP control.

(PDF)
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