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Abstract: The Korean National Environmental Health Survey (KoNEHS) program provides useful
information on chemical exposure, serves as the basis for environmental health policies, and suggests
appropriate measures to protect public health. Initiated on a three-year cycle in 2009, it reports
the concentrations of major environmental chemicals among the representative Korean population.
KoNEHS Cycle 3 introduced children and adolescents into the analysis, where the blood and urine
samples of 6167 participants were measured for major metals, phthalates, phenolics, and other organic
compounds. Lead, mercury, cadmium, metabolites of DEHP and DnBP, and 3-phenoxybenzoic acid
levels of the Korean adult population tended to decrease compared to previous survey cycles but
remained higher than those observed in the US or Canada. Both bisphenol A (BPA) and trans,trans-
muconic acid concentrations have increased over time. Heavy metal concentrations (blood lead, and
cadmium) in children and adolescents were approximately half that of adults, while some organic
substances (e.g., phthalates and BPA) were high. BPA showed higher levels than in the US or Canada,
whereas BPF and BPS showed lower detection rates in this cycle; however, as these are increasingly
used as a substitute for BPA, further research is necessary. As environmental chemicals may affect
childhood health and development, additional analyses should assess exposure sources and routes
through continuous observations.

Keywords: children and adolescents; environmental chemicals; KoNEHS; national biomonitoring;
temporal trend

1. Introduction

Human biomonitoring is an important tool for assessing internal exposure to envi-
ronmental chemicals. Its history extends back to the 1890s, when exposure levels among
occupational workers were measured in the workplace [1]. Since then, different studies
have reported exposure to numerous substances through various pathways, outlining
the utility of biomonitoring in environmental health management [2–5]. Indeed, several
countries, including the United States, Canada, and Germany, have implemented national
biomonitoring programs (NBPs) to inform the development of environmental health poli-
cies [4,6,7]. NBPs can generate exposure profiles of major environmental chemicals among
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representative populations, providing valuable information for prioritizing chemicals and
policies [3,6,8–10].

The Korean National Environmental Health Survey (KoNEHS) has been conducted
in three-year cycles since its implementation in 2009. Three cycles have thus been con-
ducted up to 2017, providing baseline information on major chemical exposure profiles.
Cycles 1 and 2 were focused on the adult population (n = 12,789), measuring a total of 16
and 21 chemicals, respectively, including metals, bisphenol A (BPA), and metabolites of
phthalates [11,12].

KoNEHS Cycle 3 (2015–2017) extended the population coverage to include children
and adolescents. Many studies have reported that environmental chemicals are related
to delayed growth and development in children and adolescents, who are particularly
vulnerable to environmental pollution and related chronic diseases [11,13–16]. Accord-
ingly, this importance was reflected in designing the KoNEHS Cycle 3, building upon
the results of the Korean Environmental Exposure and Health Survey in Children and
Adolescents (KorEHS-C) from 2012 to 2014 [17–19]. A total of 26 environmental chemicals
were measured, including substances that became social issues such as parabens [20,21]
and bisphenol substitutes [22–24].

This study provides the updated exposure profiles for major environmental chemicals
among the representative Korean population, thus helping to prioritize chemicals of concern
that warrant further environmental health management efforts.

2. Materials and Methods
2.1. Survey Design and Procedures

To ensure representativeness of the adult population, the results of the 2010 Population
and Housing Census (Statistics Korea) were used, and a stratified multi-stage sampling pro-
cess was conducted. Through a household visit in the sampled survey district, participation
was asked, and the survey was conducted with those who consented.

These sampling and field survey methods were the same as in Cycles 1 and 2 [11,12],
the details of which can be found in Table 1.

Considering the participant accessibility and ease of sample collection, children and
adolescents were extracted in units of kindergartens, childcare facilities, and educational
institutions. Using households as sampling units enabled comprehensive sampling across
a range of populations; however, children and adolescents who did not attend childcare
or educational institutions may be omitted. However, the proportion of that those who
attending such institutions was higher than >90%, which would be representative of the
same age groups in Koreans [25].

Sampling institutions and sample sizes by age were selected based on the status
of daycare centers and educational institutions published by the Ministry of Education
and the Ministry of Health and Welfare The country was divided into five regions to be
used as variables: Seoul, Gyeonggi/Incheon/Gangwon, Chungcheong, Honam/Jeju, and
Yeongnam. In total, 127 schools and 56 kindergartens/childcare facilities were selected
across all regions following the sampling process for the KorEHS-C [25].

This survey was approved by the Institutional Review Board of the National Institute
of Environmental Research (NIER), Korea (NIER-2015-BR-006-01) and carried out only for
those providing prior consent.
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Table 1. Survey sample design details of the KoNEHS Cycle 3 (2015–2017).

Method

Survey design Cross-sectional survey

Target population Over 3 years (2015–2017) living in the Korea
Age ≥ 3, male/female

Sampling unit

Housing Census (2010)
List of nationwide kindergartens and daycares (2014)

List of elementary, middle, and high schools nationwide
Apartment and general enumeration district households

Target error ±5% of the average value for each item

Sample size

A minimum sample of ≥5500 participants
Infants ≥ 3 years; ~500 (56 institutions)

Elementary, middle, and high school students; ~1500 (127 schools)
Adults ≥ 19 years; ~3500 (233 survey districts)

Sampling frame
· stratifications
· characteristics

· classification indicators
(dwelling and participant)

[Preschoolers]
Multi-stage stratified cluster sampling

Sampling of collection sites (5 areas), Regions (city or town)
stratifications

1st sampling unit: Institutes (kindergarten and daycares)
: Age, sex group strata, random sampling

2nd sampling unit: Individual
[School age children]

Multi-stage stratified cluster sampling
Sampling of collection sites (5 areas), Regions (city or town), and

school stratifications
1st sampling unit: Institutes (schools)

: Age, sex group strata, random sampling
2nd sampling unit: Individual (class and students)

[Adults]
Multi-stage stratified cluster sampling
17 regions (city or town) stratifications

1st sampling unit: Sampling district
2nd sampling unit: Household

Sample allocation methods

For region (city or town) stratifications:
Square root proportional distribution method

For detailed stratifications:
Proportional allocation method

Apply relative standard error after analysis

2.2. Biological Sample Collection

Through a field survey, 18 mL of blood and 60 mL of spot urine were collected from
6167 participants. We sent a message to each subjects notifying them of relevant information
2 days before the survey began. On the day of a field survey, we guided them to the location
by mobile phone and finally requested their participation. For adults, samples were taken
at the survey site. For preschoolers and children, urine samples were directly collected in a
specimen cup at their homes on the day of survey. For adolescents, urine samples were
similarly collected upon visiting a pre-negotiated hospital near the investigation.

In adults, 26 substances in their blood and urine were analyzed (Table 2), whereas
in the cases of preschoolers and children, blood sample collections were difficult due to
safety considerations, so 25 substances in urine (excepting lead) were analyzed. Mercury is
a substance that is analyzed in both whole blood and urine, and the results of mercury in
the urine of preschool children and children can be confirmed in Table 3.
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Table 2. Target chemicals of urinary analyses measured in KoNEHS Cycle 3 (2015–2017).

Category Chemicals Analytical Technique

Metals (3)

Lead a
GF-AAS,

(Analyst 800, PerkinElmer,
Waltham, MA, USA)

Mercury (total) a
DMA b

(DMA-80, Milestone, Shelton,
CT, USA)

Cadmium
GF-AAS,

(240Z, Agilent, Santa Clara,
CA, USA)

Phthalates metabolites (8)

Mono-(2-ethyl-5-oxohexyl)
phthalate (MEOHP)

UPLC-MS/MS
(LCMS-8060, Shimadzu,

Kyoto, Japan)

Mono-(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP)

Mono-(2-ethyl-5-carboxypentyl)
phthalate (MECPP)

Mono-n-butyl phthalate (MnBP)
Monobenzyl phthalate (MBzP)

Mono(3-carboxypropyl) phthalate
(MCPP) *

Mono-(carboxynonyl) phthalate
(MCNP) *

Mono-(carboxyoctyl) phthalate
(MCOP) *

Environmental phenols (7)

Bisphenol A

UPLC-MS/MS
(LCMS-8060, Shimadzu,

Kyoto, Japan)

Bisphenol F *
Bisphenol S *

Triclosan
Ethyl paraben *

Methyl paraben *
Propyl paraben *

Pyrethroid pesticides
metabolite (1)

3-phenoxybenzoic acid
GC-MS

(Clarus 600T, Perkin Elmer,
Waltham, MA, USA)

Tobacco smoke
metabolite (1) Cotinine

GC-MS
(Clarus 680-SQ 8T,

PerkinElmer, Waltham, MA,
USA)

PAHs metabolites (4)

1-Hydroxypyrene (1-OH-Pyr)
GC-MS

(7890A/5975C, Agilent, Santa
Clara, CA, USA)

2-Hydroxynaphthalene (2-NAP)
1-Hydroxyphenanthrene

(1-OH-Phe)
2-Hydroxyfluorene (2-OH-Flu)

VOC metabolites (2)
trans,trans-muconic acid HPLC-MS/MS

N-Acetyl-S-(benzyl)-L-cysteine * (Agilent 6410B/1200, Agilent,
Santa Clara, CA, USA)

a Specimens: Whole blood; b Direct mercury analyzer; * Substances added to Cycle 3.
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Table 3. Distribution of concentrations of environmental chemicals for the KoNEHS Cycle 3
(2015–2017). Units for all chemicals are in µg·L−1, except for lead, which is expressed as µg·dL−1.

Age N %<LOD AM GM (95% CI a) P25 P50 P75 P95

Whole Blood

Metals

Lead (ug·dL−1) 12–18 912 2.74 0.883 0.802 (0.754, 0.853) 0.611 0.834 1.10 1.52
≥19 3747 0.1 1.79 1.60 (1.56, 1.65) 1.20 1.60 2.20 3.36

Mercury (total) 12–18 912 0 1.56 1.37 (1.30, 1.43) 1.00 1.35 1.84 3.02
≥19 3745 0 3.50 2.75 (2.63, 2.88) 1.75 2.71 4.15 8.81

Spot Urine

Metals

Mercury (total) 3–5 571 2.10 0.565 0.422 (0.371, 0.479) 0.257 0.396 0.693 1.30
6–11 887 1.24 0.581 0.394 (0.370, 0.418) 0.267 0.373 0.562 1.09

12–18 906 3.31 0.577 0.413 (0.374, 0.457) 0.246 0.421 0.680 1.39
≥19 3780 6.1 0.518 0.355 (0.335, 0.376) 0.196 0.339 0.616 1.42

Cadmium 3–5 571 18.7 0.160 0.108 (0.086, 0.136) 0.057 0.091 0.206 0.430
6–11 887 1.92 0.298 0.232 (0.212, 0.255) 0.146 0.231 0.354 0.735

12–18 906 1.99 0.377 0.289 (0.264, 0.316) 0.182 0.297 0.445 0.951
≥19 3781 6.8 0.615 0.359 (0.326, 0.395) 0.185 0.422 0.811 1.75

Phthalates metabolites

MEHHP 3–5 571 0 45.9 34.6 (31.3, 38.2) 21.3 36.2 58.7 96.8
6–11 885 0 37.5 28.8 (26.5, 31.2) 18.7 29.6 47.2 85.3

12–18 901 0.11 19.9 13.6 (12.0, 15.5) 8.39 14.8 24.6 53.6
≥19 3781 0.4 23.1 13.2 (12.0, 14.4) 6.89 13.7 25.9 62.6

MEOHP 3–5 571 0 34.3 25.5 (23.0, 28.3) 15.2 26.2 40.9 83.6
6–11 885 0 25.7 19.2 (17.6, 20.9) 11.8 19.5 31.6 65.3

12–18 901 0.22 14.1 9.24 (8.02, 10.7) 5.10 10.3 17.1 38.5
≥19 3781 0.5 18.1 9.88 (8.89, 11.0) 5.03 10.7 20.8 50.9

MECPP 3–5 571 0 65.9 45.3 (38.4, 53.5) 25.6 46.7 80.9 173
6–11 885 0 59.0 44.5 (40.9, 48.5) 27.2 44.0 72.6 144

12–18 901 0 36.8 28.4 (25.3, 31.8) 18.0 28.5 45.7 89.7
≥19 3781 0 40.3 23.2 (20.8, 25.7) 11.4 21.7 44.0 131

MnBP 3–5 571 0.53 79.8 47.2 (40.8, 54.6) 32.2 52.9 79.1 157
6–11 885 0 55.9 43.2 (40.6, 46.1) 28.3 45.1 68.8 126

12–18 897 0.11 60.6 36.9 (29.6, 46.0) 18.6 36.5 76.8 168
≥19 3779 1.1 45.6 22.3 (19.2, 25.8) 12.5 25.3 52.0 125

MBzP 3–5 571 3.68 8.06 3.12 (2.65, 3.69) 1.62 3.21 6.83 22.0
6–11 885 5.99 6.85 2.80 (2.34, 3.35) 1.35 3.17 7.02 24.2

12–18 901 3.77 6.91 2.78 (2.36, 3.27) 1.19 2.97 6.90 25.3
≥19 3781 2.0 4.40 1.99 (1.80, 2.20) 0.932 2.05 4.30 14.6

MCNP 3–5 571 4.90 0.670 0.491 (0.425, 0.568) 0.316 0.464 0.685 1.83
6–11 885 2.26 0.661 0.533 (0.505, 0.562) 0.408 0.526 0.674 1.45

12–18 901 3.11 0.535 0.452 (0.423, 0.483) 0.331 0.499 0.594 1.02
≥19 3781 10.5 0.613 0.441 (0.395, 0.493) 0.228 0.502 0.774 1.47

MCOP 3–5 571 0 2.27 1.62 (1.43, 1.83) 0.894 1.55 2.66 6.76
6–11 885 0.11 3.38 2.24 (2.07, 2.42) 1.28 2.13 3.79 8.31

12–18 901 1.89 2.41 1.71 (1.55, 1.88) 1.07 1.73 2.94 6.83
≥19 3781 0.6 1.74 1.07 (0.968, 1.19) 0.569 1.06 1.95 4.59

MCPP 3–5 571 0.18 2.28 1.80 (1.63, 1.99) 1.25 1.70 2.57 5.30
6–11 885 0.45 1.97 1.56 (1.49, 1.64) 1.07 1.45 2.08 4.43

12–18 901 0.22 1.75 1.48 (1.35, 1.62) 1.03 1.38 2.09 3.89
≥19 3781 0.6 1.63 1.13 (1.02, 1.25) 0.672 0.997 2.02 3.84
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Table 3. Cont.

Age N %<LOD AM GM (95% CI a) P25 P50 P75 P95

Environmental phenols

Bisphenol A 3–5 571 1.23 4.33 2.41 (2.05, 2.83) 1.43 2.60 4.39 10.6
6–11 887 3.95 3.22 1.70 (1.49, 1.95) 0.849 1.98 3.59 10.1

12–18 904 3.10 2.65 1.39 (1.20, 1.61) 0.755 1.45 2.84 9.13
≥19 3780 2.1 2.51 1.18 (1.06, 1.32) 0.517 1.32 2.76 7.78

Bisphenol F 3–5 571 69.9 * * * <LOD <LOD 0.093 0.761
6–11 884 65.3 * * * <LOD <LOD 0.132 1.20

12–18 900 56.0 * * * <LOD <LOD 0.153 1.48
≥19 3777 59.3 * * * <LOD <LOD 0.141 1.23

Bisphenol S 3–5 571 47.5 * * * <LOD 0.020 0.046 0.186
6–11 884 46.0 * * * <LOD 0.023 0.065 0.523

12–18 900 38.2 0.293 0.053 (0.041, 0.068) <LOD 0.036 0.120 1.08
≥19 3776 45.7 * * * <LOD 0.022 0.057 0.288

Triclosan 3–5 571 21.9 1.57 0.513 (0.435, 0.606) 0.208 0.400 1.02 4.79
6–11 887 32.6 3.52 0.452 (0.404, 0.507) <LOD 0.316 0.828 6.05

12–18 904 35.3 3.96 0.420 (0.369, 0.479) <LOD 0.315 0.714 4.75
≥19 3780 50.9 * * * <LOD <LOD 0.538 5.39

Methyl Paraben 3–5 571 0 646 46.3 (37.1, 57.8) 8.81 25.8 150 3445
6–11 884 0 188 28.9 (24.6, 33.9) 7.16 18.8 91.3 913

12–18 900 0 107 26.1 (21.9, 31.2) 7.17 18.2 91.5 510
≥19 3779 0 128 35.2 (32.0, 38.6) 9.26 34.6 126 506

Ethyl Paraben 3–5 571 1.05 106 14.2 (10.5, 19.1) 2.66 17.2 66.2 526
6–11 884 1.13 122 11.4 (8.56, 15.3) 1.96 10.6 69.0 504

12–18 900 0.44 85.6 19.1 (14.0, 26.2) 4.88 19.0 71.6 350
≥19 3779 1.0 158 30.9 (27.1, 35.2) 7.82 36.2 139 676

Propyl Paraben 3–5 571 0.70 153 4.36 (3.29, 5.80) 0.664 2.48 18.0 699
6–11 884 5.43 30.7 1.83 (1.52, 2.21) 0.346 1.37 7.15 104

12–18 900 2.11 38.7 3.19 (2.55, 3.98) 0.796 2.11 10.8 212
≥19 3778 3.9 51.0 3.07 (2.73, 3.46) 0.464 2.12 16.9 224

Pyrethroid pesticides metabolites

3-PBA 3–5 570 0.35 2.24 1.08 (0.870, 1.33) 0.536 0.970 1.86 9.34
6–11 887 0.68 2.40 1.36 (1.21, 1.52) 0.749 1.29 2.39 7.44

12–18 904 1.66 2.03 1.02 (0.842, 1.24) 0.565 1.12 2.18 5.93
≥19 3772 0.9 1.82 0.965 (0.887, 1.05) 0.499 1.03 2.05 6.09

Environmental tobacco smoke metabolites

Cotinine 3–5 571 20.5 1.69 1.05 (0.913, 1.20) 0.450 1.19 2.29 4.80
6–11 887 18.9 2.12 1.20 (1.05, 1.38) 0.521 1.48 2.82 5.84

12–18 904 7.19 36.1 3.04 (2.50, 3.70) 1.40 2.79 4.72 85.2
≥19 3784 6.7 240 5.59 (4.80, 6.50) 0.799 1.80 12.7 1530

19 years and older None 3181 84.0 39.6 1.87 (1.65, 2.12) 0.698 1.30 3.10 75.6
Smoker 603 16.0 1071 524 (393, 700) 429 1008 1504 2575
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Table 3. Cont.

Age N %<LOD AM GM (95% CI a) P25 P50 P75 P95

PAHs metabolites

1-OH-Pyr 3–5 554 47.5 * * * <LOD 0.080 0.353 1.02
6–11 864 34.4 0.319 0.108 (0.091, 0.127) <LOD 0.208 0.442 1.02

12–18 867 31.5 0.613 0.163 (0.115, 0.230) <LOD 0.338 0.804 2.21
≥19 3754 28.4 0.364 0.130 (0.118, 0.143) <LOD 0.201 0.434 1.28

2-NAP 3–5 554 1.26 6.30 3.37 (2.89, 3.92) 1.64 3.31 7.16 21.3
6–11 864 3.82 5.63 2.67 (2.37, 3.01) 1.45 2.71 5.16 19.8

12–18 866 2.77 6.29 3.05 (2.63, 3.53) 1.69 3.15 6.40 20.2
≥19 3754 1.3 5.59 2.63 (2.48, 2.79) 1.23 2.42 6.16 21.0

1-OH-Phe 3–5 554 38.3 0.156 0.080 (0.069, 0.093) <LOD 0.054 0.194 0.499
6–11 864 41.8 * * * <LOD 0.168 0.360 0.933

12–18 866 38.2 0.265 0.127 (0.107, 0.151) <LOD 0.158 0.367 0.822
≥19 3751 32.5 0.269 0.117 (0.109, 0.126) <LOD 0.135 0.303 0.779

2-OH-Flu 3–5 549 19.7 2.18 0.495 (0.327, 0.750) 0.133 0.589 1.98 10.7
6–11 864 20.0 0.380 0.209 (0.178, 0.246) 0.085 0.279 0.513 1.08

12–18 867 15.9 0.485 0.263 (0.225, 0.307) 0.145 0.317 0.647 1.40
≥19 3754 14.1 0.697 0.321 (0.295, 0.349) 0.159 0.379 0.780 2.58

VOCs metabolites

t,t-MA 3–5 571 0 133 82.2 (71.9, 94.1) 41.7 73.2 148 470
6–11 887 0.56 161 91.2 (81.9, 101) 45.9 86.1 177 457

12–18 904 0.66 147 80.4 (68.1, 95.0) 42.6 82.9 156 441
≥19 3777 0.4 162 86.2 (80.7, 92.0) 41.4 88.5 185 498

BMA 3–5 571 0 26.9 10.6 (9.31, 12.2) 5.58 9.27 17.6 120
6–11 883 0 13.1 7.39 (6.69, 8.16) 4.08 6.90 11.6 36.7

12–18 899 0.33 9.09 5.66 (5.00, 6.40) 3.29 6.04 9.71 27.1
≥19 3777 0.4 11.8 4.63 (4.28, 5.02) 2.42 4.74 8.95 27.9

a 95% confidence interval of the GM; GM, geometric mean; * 40% of samples were below the LOD, so the percentile
distribution was reported, but GM was not calculated; LOD, limit of detection; AM, arithmetic mean.

2.3. Questionnaire

Questionnaire items were continuous with Cycles 1 and 2, focusing on demographic
and socioeconomic characteristics, living environments, recent diet, and lifestyle to identify
exposure factors and routes of environmental chemicals.

A single household member representing preschoolers and elementary school stu-
dents completed both the household and individual questionnaire surveys. Completed
questionnaires were submitted to kindergartens, childcare facilities, and schools to be
collected later. For middle and high school students, one household member representing
a student completed the common household questionnaire, and individual questions were
conducted face-to-face by a trained interviewer. For adults, survey questionnaires were
completed solely through face-to-face interviews.

2.4. Environmental Chemical Analysis and Quality Assurance/Control

The biological samples collected in the field survey were transported under cold condi-
tions (2–6 ◦C), with temperatures checked using a temperature logger (TR52-S temperature
data logger, ThermoFisher). The samples were aliquoted from the center within 24 h,
and kept frozen at −20 ◦C until analysis. All processes were performed according to the
“Biological sample management guidelines of the KoNEHS Cycle 3 [26]”.

Of the 26 target chemicals selected (Table 2), nine were added compared to the
KoNEHS Cycle 2, including endocrine disrupting chemicals and substances expected to
increase exposure due to increased usage: mono(3-carboxypropyl) phthalate (MCPP), mono-
(carboxynonyl) phthalate (MCNP), mono-(carboxyoctyl) phthalate (MCOP), bisphenol F,
bisphenol S, methyl-paraben, ethyl-paraben, propyl-paraben, and N-Acetyl-S-(benzyl)-L-
cysteine.
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The target chemicals were analyzed according to the “Analysis manual of the KoNEHS
Cycle 3” [27,28], and the equipment used for each chemical analysis are listed in Table 2.
The analytical laboratories participated in external quality control programs (e.g., G-EQUAS
in Germany, and proficiency testing by NIER) twice a year, and periodic quality assur-
ance/quality control (e.g., linearity and slope of the calibration curve, detection limit,
accuracy, and precision) measurements were performed. Table S1 summarizes the analyti-
cal methods and limits of detection (LOD) for target chemicals.

2.5. Statistical Analyses

Measured values were log-transformed and analyzed using the survey means proce-
dure, after accounting for stratification variables and survey sample weight. Measurements
below the LOD were assigned a value equal to LOD/

√
2 for the calculation of geometric

means [6,29]. When non-detects were ≥40%, the arithmetic and geometric means were
not calculated. Statistical significance was confirmed with a P value of less than 0.05. SAS
software (9.4; SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses.

3. Results
3.1. Participant Characteristics

The study population consisted of preschoolers (3–5 years, N = 571), children
(6–11 years, N = 887), adolescents (12–18 years, N = 922), and adults (≥19 years; N = 3787),
for a total of participants of 6167 (2815 males and 3352 females). Within the adults, the
proportion of older subjects > 50 years was high, especially higher number of females
present among participants >50 years as well. Many more female adult contacts than young
people or elderly male for academic or work reasons were made when visiting households
for recruitment. Furthermore, the voluntary participation rate was higher for women than
men.

Children and adolescents were recruited through educational institutions; the gender
ratios of the final participants were maintained by adjusting for age and gender when
recruiting.

3.2. Metals

The geometric mean (GM) concentration of blood lead in adolescents (0.802 µg·dL−1)
were approximately half those of adults (1.60 µg·dL−1; Table 3), as were those of blood mer-
cury (1.37 µg·L−1 and 2.75 µg·L−1, respectively; Table 3). The GM concentrations of urinary
mercury in preschoolers, children, adolescents, and adults were 0.422 µg·L−1, 0.394 µg·L−1,
0.413 µg·L−1, and 0.355 µg·L−1, respectively (Table 3); whereas those of urinary cadmium
were 0.108 µg·L−1, 0.232 µg·L−1, 0.289 µg·L−1 and 0.359 µg·L−1, respectively (Table 3).

3.3. Phthalates Metabolites, BPA, and Triclosan (TCS)

The GM concentration in preschoolers, children, and adolescents were mono(2-ethyl-5-
hydroxyhexyl) phthalate (MEHHP): 34.6 µg·L−1, 28.8 µg·L−1, and 13.6 µg·L−1; Mono
(2-ethyl-5-oxohexyl) phthalate (MEOHP): 25.5 µg·L−1, 19.2 µg·L−1, and 9.24 µg·L−1;
and Mono(2-ethyl-5-hydroxyhexyl) phthalate (MECPP): 45.3 µg·L−1, 44.5 µg·L−1, and
28.4 µg·L−1, respectively. Accordingly, phthalate metabolite concentrations in preschoolers
were approximately 2–3 times higher than those of adults: MEHHP, 13.2 µg·L−1; MEOHP,
9.88 µg·L−1; MECPP, 23.2 µg·L−1. For MCNP, MCOP, and MCPP added in Cycle 3, the GM
concentrations were similar in preschoolers, children, adolescents, and adults: MCNP: 0.491
µg·L−1, 0.533 µg·L−1, 0.452 µg·L−1, and 0.441 µg·L−1; MCOP: 1.62 µg·L−1, 2.24 µg·L−1,
1.71 µg·L−1, and 1.07 µg·L−1; and MCPP: 1.80 µg·L−1, 1.56 µg·L−1, 1.48 µg·L−1, and
1.13 µg·L−1, respectively (Table 3).

The GM concentrations of urinary BPA decreased with age: 2.41 µg·L−1, 1.70 µg·L−1,
1.39 µg·L−1, and 1.18 µg·L−1 in preschoolers, children, adolescents, and adults, respectively
(Table 3). The GM concentrations of urinary TCS in preschoolers, children, and adolescents
were 0.513 µg·L−1, 0.452 µg·L−1, and 0.420 µg·L−1, respectively (Table 3).
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3.4. Parabens

The GM concentrations of methyl- and propyl parabens were relatively high in
preschoolers (46.3 µg·L−1 and 4.36 µg·L−1, respectively). Notably, the 95th percentile
of urinary methyl paraben in preschoolers was 3445 µg·L−1, ≤10 times higher than those
of other age groups. The preschooler concentrations of propyl paraben showed a similar
pattern, with a 95th percentile of 699 µg·L−1, ≤6 times greater than other age group pop-
ulations. The GM concentrations of urinary ethyl paraben in preschoolers, children, and
adolescents were 14.2 µg·L−1, 11.4 µg·L−1, 19.1 µg·L−1, respectively (Table 3).

3.5. 3-PBA and Cotinine

Children maintained slightly higher GM concentrations of urinary 3-phenoxybenzoic
acid (3-PBA): 1.08 µg·L−1, 1.36 µg·L−1, 1.02 µg·L−1, and 0.965 µg·L−1 (Table 3) for preschool-
ers, children, adolescents, and adults, respectively.

The GM concentrations of urinary cotinine in adolescents were significantly higher
than for preschoolers and children: 1.05 µg·L−1, 1.20 µg·L−1, 3.04 µg·L−1, and 5.59 µg·L−1

for preschoolers, children, adolescents, and adults, respectively (Table 3). For adults,
the cotinine concentrations of smokers (524 µg·L−1) was significantly higher than that of
non-smokers (1.87 µg·L−1).

3.6. Polycyclic Aromatic Hydrocarbon (PAH) and Volatile Organic Compound (VOC) Metabolites

The GM concentration of urinary 1-hydroxypyrene (1-OH-Pyr) in children, adolescents,
and adults was 0.108 µg·L−1, 0.163 µg·L−1, and 0.130 µg·L−1 (Table 3). The concentrations
of urinary 2-hydroxynaphthalene (2-NAP) in preschoolers, children, adolescents, and adults
were 3.37 µg·L−1, 2.67 µg·L−1, 3.05 µg·L−1, and 2.63 µg·L−1, respectively, notably higher
for preschoolers (Table 3). The GM concentrations of urinary 1-hydroxyphenanthrene
(1-OH-Phe) in preschoolers, adolescents, and adults were 0.080 µg·L−1, 0.127 µg·L−1 and
0.117 µg·L−1, respectively; whereas those of urinary 2-hydroxyfluorene (2-OH-Flu) were no-
tably higher for preschoolers compared to children, adolescents, and adults: 0.495 µg·L−1,
0.209 µg·L−1, 0.263 µg·L−1, and 0.321 µg·L−1, respectively.

The GM concentrations of urinary trans,trans-muconic acid (t,t-MA) in preschool-
ers, children, adolescents, and adults were 82.2 µg·L−1, 91.2 µg·L−1, 80.4 µg·L−1, and
86.2 µg·L−1, respectively; whereas those of urinary N-Acetyl-S-(benzyl)-L-cysteine (BMA)
were 10.6 µg·L−1, 7.39 µg·L−1, 5.66 µg·L−1, and 4.63 µg·L−1, respectively.

4. Discussion
4.1. Comparisons with Other National Biomonitoring Programs

Comparisons were made between the results of KoNEHS Cycle 3 (2015–2017), the
United States National Health and Nutrition Examination Survey (NHANES, 2015–2016),
and the Canadian Health Measures Survey (CHMS, 2016–2017; Table S2).

In preschoolers, BPA (2.41 µg·L−1) and paraben (methyl paraben: 46.3 µg·L−1 and
propyl paraben: 4.36 µg·L−1) GM concentrations were 3–4 times higher than in Canada
(BPA: 0.94 µg·L−1, methyl paraben: 9.9 µg·L−1 and propyl paraben: 1.2 µg·L−1). In
children, paraben (methyl paraben: 28.9 µg·L−1 and propyl paraben: 1.83 µg·L−1) GM
concentrations were 2–3 times higher than in Canada (methyl paraben: 7.5 µg·L−1 and
propyl paraben: 0.96 µg·L−1). Methyl paraben GM concentrations were similar to that
of children in the US (methyl paraben: 28.9 µg·L−1), but two times lower in adolescents
(KoNEHS: 26.1 µg·L−1 and US: 40.5 µg·L−1) and adults (KoNEHS: 35.2 µg·L−1 and US:
52.2 µg·L−1).

In children and adolescents, cadmium (0.232 µg·L−1 and 0.289 µg·L−1) concentrations
were four times higher than in the US (0.057 µg·L−1 and 0.055 µg·L−1), where levels were
highest in the Asian ethnic group compared to others [30]. For adolescents, mercury
(1.37 µg·L−1) GM concentrations were four times higher than in the US (0.395 µg·L−1).

The DEHP metabolite and MnBP, 3-PBA GM concentrations were 2–3 times higher in
all age than in the US and Canada. The concentrations are presented in detailed in Table
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S2. In particular, 3-PBA (GM 95% CI: 1.21–1.52) in Korea was higher than those of other
Asian countries, including China (GM 95% CI: 0.08–0.97) and Japan (GM 95% CI: 0.33–
1.16) [31]. In adults, GM concentrations of heavy metals (Pb: 1.60 µg·dL−1, Hg: 2.75 µg·L−1

and Cd: 0.359 µg·L−1) were 2–3 times higher than in the US (Pb: 0.920 µg·dL−1, Hg:
0.810 µg·L−1 and Cd: 0.174 µg·L−1) and Canada (Hg: 0.72 µg·L−1 and Cd: 0.22 µg·L−1).
Moreover, DEHP metabolites, and MnBP (MEHHP: 13.2 µg·L−1, MEOHP: 9.88 µg·L−1,
MECPP: 23.2 µg·L−1 and MnBP: 22.3 µg·L−1) were 2–3 times higher than in the US
(MEHHP: 5.29 µg·L−1, MEOHP: 3.29 µg·L−1, MECPP: 8.12 µg·L−1 and MnBP: 9.18 µg·L−1)
and Canada (MEHHP: 4.7 µg·L−1, MEOHP: 3.1 µg·L−1, MECPP: 5.5 µg·L−1 and MnBP:
11 µg·L−1).

4.2. Metals

Blood lead concentrations in adults were approximately twice those observed in
adolescents, similar to the findings of other research [4,32]. Both drinking and smoking
were associated with higher lead concentrations [33–35]. Further, it was found here that
lead concentrations were higher in adults who had smoked or consumed alcohol more
than three times a week (p < 0.001). A previous study showed that it has been shown
that alcohol consumption in adults accounted for the largest proportion of changes in
lead concentrations, followed by smoking [36]. Additionally, infants born to woman who
smoke and drink were found to be at greater risk for lead toxicity [37]. Blood lead levels
tended to decrease in all countries over time, with a notable larger decline in Korea. Korea
implemented a phasing out policy on leaded gasoline from January 1, 1993, making the
supply of unleaded gasoline compulsory since then. The rapid decrease in atmospheric
lead concentrations, and subsequent gradual decrease in blood lead concentrations was
judged to be the primary driver of the observed patterns in Korea [38].

In adolescents, blood mercury concentrations were half those of adults. Overall
mercury levels were positively associated with fish, egg, meat, and vegetable intake,
similar to findings that fish are a potential cause of total mercury exposure among Swedish
adolescents [39]. Other studies have shown that even despite low fish consumption, they
remained correlated to adolescent blood mercury concentrations [40]. Among the adults of
Cycle 3, those living in the coastal regions (GM 3.34 µg·L−1) showed higher blood mercury
levels than those in urban (GM 2.76 µg·L−1) or rural areas (GM 2.64 µg·L−1; data not
shown). We confirmed similar results in previous studies. It has been demonstrated that
very high blood mercury levels detected in Yeongnam region of Korea were attributable to
a local culture of consuming shark meat [41]. Analyzing the mercury concentrations, based
on the dietary food intake records of 553 adults revealed that fish and shellfish contributed
most to the mercury concentration, accounting for 77.8% of the total intake. The results
showed that high exposure levels of blood mercury in Korean adults were related to the
frequency of fish and shellfish intake [42]. Similar results were reported in the US NHANES
data [30,43].

The concentration of urinary cadmium increased with age, similar to the findings
from other studies [44,45]. The primary exposure source of cadmium among the general
population is food, which is related to diet [46–48], with the consumption of rice (and other
cereals), a notable staple of the East Asian diet, suggested as the major cause of urinary
cadmium [49,50]. Rice consumption of the Korean general population is higher than other
Asian countries, possibly further contributing to their high cadmium exposure levels. In
the present study, grain (non-adults, p = 0.004) and soybean (non-adults, p < 0.001; adults,
p < 0.001) intake increased with age, with a further positive correlation revealed between
GM cadmium concentrations and soybean intake (non-adults, p < 0.001; adults, p < 0.001).
Monitoring cadmium exposure in the Iranian population indicated that cadmium contami-
nation occurred in food groups, such as rice, cereals, legumes, and vegetables. Specifically,
75% of the consumed rice samples showed cadmium concentrations higher than the maxi-
mum cadmium limit (0.06 mg·kg−1) allowed by the Institute of Standards and Industrial
Research of Iran (ISIRI) [51]. In addition, canned fish (mean: 0.032 µg·g−1) and tuna (mean:



Int. J. Environ. Res. Public Health 2022, 19, 626 11 of 18

0.022 µg·g−1) samples showed high cadmium concentrations (ISIRI: 0.05 mg·kg−1) [52,53].
Therefore, a more detailed analysis of food types, consumption frequency, and consumption
patterns is required.

4.3. Phthalates Metabolites, BPA, and TCS

The concentrations of phthalate, BPA, and TCS in this analysis were higher in preschool-
ers and children. Children’s ratio of body area to body weight is higher than that of adults,
so any correlated exposure to harmful substances through the skin is higher [54,55].

Several studies have similarly shown that the younger the age, the higher the concen-
tration of phthalates in one’s body [56]. Estimating phthalate concentrations in 129 Danish
children and adolescents (6–21 years) showed that phthalates were detectable in almost
all samples, that youngest children were generally more exposed to phthalates than older
children and adolescents [57]. The results of a Portuguese study showed that a healthy diet
consisting of fresh, unprocessed or less packaged foods can significantly reduce phthalate
intake in children [58]. It was also found that phthalate intakes may be lower in children
on a healthy diet (p < 0.05) than on a common diet. Several findings have confirmed that
childhood phthalate exposure is associated with obesity [59–61], which indicates the need
for continued management of phthalate exposure in growing children. Although phthalates
can cause endocrine disorders, they are widely used in cosmetics, toys, detergents, and
household flooring; thus, the mouthing behavior of infants and toddlers could potentially
increase their exposure from toys and other products made with plasticized polymers [55].
The younger the children, the greater the frequency of consuming boiled water from plastic
containers (p < 0.001), and the correlated MEHHP and MEOHP GM concentrations were
significantly high (p = 0.005, p = 0.019, respectively).

Higher BPA levels in younger ages have also been observed in several other
studies [62–64]. BPA is commonly used in various products for everyday use, includ-
ing water-pipes, electronic equipment, paper, or toys [65]. A Greek child cohort study
showed that BPA was associated with exposure to plastics and personal care products. In
addition, the risk of neurotoxic activity makes BPA more likely to affect children’s health
more readily [66]. For children, the amount of percutaneous chemical absorption is three
times that of adults, with particular exposure risks to harmful substances adsorbed on
flooring, or other indoor products [67,68]. Food is the most important source of BPA expo-
sure in the general population [7]. Particularly, canned foods have been shown to maintain
significantly higher rates of BPA exposure, as it is released from lacquer coatings on the
tins [69,70]. Although exposure sources, such as canned beverages and canned foods, were
analyzed here, no significant correlations with BPA concentrations were observed, whereas
liquids and other consumer products in polycarbonate containers have previously been
shown to increase urinary BPA [71].

When investigating the association between TCS and the use of personal care products,
the former was detected in >70% of children, with notable higher concentrations in the
group using hand soap, increasing with the frequency of hand washing. Additionally, the
use of toothpaste by children was also positively related to TCS, further explaining its high
correlation with personal care products [72]. In the present study, higher frequency use
of antibacterial products (p = 0.021) lead to higher concentrations of TCS in non-adults,
whereas adult concentrations were significantly correlated to frequency of body wash use
(p = 0.041).

4.4. Parabens

In the case of methyl and propyl paraben (commonly used together), concentrations in
preschoolers were relatively higher. Parabens are often used as preservatives in medicines,
such as pills and liquid antipyretics [73], both of which are commonly consumed by
preschoolers [74–77]. Generally higher urinary methyl and propyl paraben concentrations
among adult females can be explained by the more frequent use of personal care products
among females, as both are commonly used as preservatives in such items [78]. A previous
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study of paraben concentrations in the urine of the Belgian population also showed that
paraben exposure patterns differ significantly between children and adults, and between
men and women [79]. The levels of methyl (33.5 µg·L−1, p < 0.001) and propyl (3.3 µg·L−1,
p < 0.001) parabens were higher in women, highlighting their association with cosmetic
and personal care product use. For both methyl and propyl paraben, males were higher in
infancy, whereas females were far higher in adolescence and adulthood. Methyl paraben
is one of the most frequently used preservatives in cosmetic products such as lipsticks,
perfumes, and personal care products [80], thus potentially explaining the higher levels
found in girls [81]. Ethyl paraben showed the highest concentrations in adults, where
urinary levels were positively associated with the consumption of fast and canned foods.
Use of liquid soaps, including shower gel and shampoo, was also associated with ethyl
paraben levels [77]. An analysis of ethyl paraben intake by food type according to the result
of the Korea National Health and Nutrition Examination Survey, found it was primarily
consumed through sauces and mixed soy sauce [82]. Therefore, further detailed analyses
are needed on food types, ingredients, and current consumption patterns.

4.5. 3-PBA and Cotinine

The GM concentrations of urinary 3-PBA in children was slightly higher than that of
other age groups. Further, children < 9 years had greater 3-PBA concentrations when living
in rural residential apartments compared to similar urban locations, indicating the effects
of landscaping pesticides on nearby playgrounds and public areas [83]. Various studies
have found that sprays and fumigant-type insecticides were also important contributors to
3-PBA exposure of the Korean population [7,84,85]. In adults, 3-PBA concentration were
higher when more time was spent at home (p = 0.0006) than outdoors, and coffee intake was
also found to have an effect (p = 0.007) [86]. Further research is needed regarding exposure
from consuming beverages and foods, as well as the amount of time spent indoors and
outdoors.

Adolescent males showed significantly higher cotinine concentrations than females.
As age increased, the number of male adolescents who started smoking increased while the
number of female adolescents decreased [87]. According to the KoNEHS Cycle 3 survey
results, the smoking rate was 3.1% for adolescents (63% male, 31% female, 6% do not know),
and 15.9% for adults (90% male, 10% female). As the frequency of secondhand smoke
increased, so too did cotinine concentrations [88], indicating the potential indirect effects
of smoking on children and adolescents. It was confirmed that cotinine concentrations in
non-adults were higher if there was a smoker in the family (p < 0.001), or when more time
was spent exposed to secondhand smoke (p < 0.001). Adults also showed higher cotinine
concentrations with family smokers present (p < 0.001), and secondhand smoke exposure
(p = 0.001).

4.6. PAH and VOC Metabolites

The GM concentrations of urinary 2-NAP and 2-OH-Flu in preschoolers were sig-
nificantly higher than the other age ranges. When food was cooked using gas, 2-NAP
concentrations were significantly higher in non-adults (p = 0.005), whereas increased
frequencies of charcoal grilling was correlated with higher 1-OH-Phe concentrations in
non-adults (p = 0.032). PAHs metabolites were detected in over 78% of urine samples
from 522 children, aged 5–12 years of Valencia, Spain, and 2-NAP was detection rate in
100%. In addition to the consumption of legumes and packaged foods, the education level,
demographic characteristics, socioeconomic characteristics were previously identified as
the most relevant factors influencing PAHs exposure levels in children [89]. Children were
more susceptible to PAHs exposure than adults [90], and higher concentrations of PAH
metabolites were found when household cooking was conducted with heating fuels and
gases [91]. The concentrations of 1-OH-Pyr, 2-NAP, 1-OH-Phe, and 2-OH-Flu in adults were
all significantly higher when petroleum was used as the household heating fuel (p = 0.001,
p < 0.001, p < 0.001, and p = 0.001, respectively). Elsewhere, studies have indicated that diet,
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smoking, and air pollution were major determinants of internal PAHs exposure [91–93]. In
addition to one’s smoking status, the consumption of certain foods (such as vegetables, oils
and fats, smoked fish and coffee) has been shown to be a major factor influencing PAHs
exposure [94]. Further research is needed on the exposure to different types of heating
fuels, food intake and cooking methods.

The t,t-MA concentrations were higher in men than women, across all ages (Table S3),
and exposure levels were significantly higher in smokers than non-smokers [95,96]. The
higher smoking rate among men is thought to drive these patterns. Additionally, food
consumption containing sorbic acid may be another potential source t,t-MA. Sorbic acid is
used as a preservative, and ~0.05–0.5% is metabolized to t,t-MA after ingestion [97].

The GM concentrations of urinary BMA in preschoolers were 10.6 µg·L−1, significantly
higher than either children or adolescents (7.39 µg·L−1, and 5.66 µg·L−1, respectively).
According to the results of the National Health and Nutrition Survey in the US, the BMA
concentrations in children were higher than in adults. This can be explained either by higher
childhood levels of exposure to chemicals, such as ethylbenzene-styrene and toluene, or
slower excretion rates than that of adults [98]. A previous study of urban childcare facilities
found the detected VOC metabolites was correlated to the use of chlorine bleach and
scented candles; thus, higher concentrations could be related to the exposure of children
spending greater amounts of time in childcare facilities compared to home [99].

5. Conclusions

The KoNEHS is the largest biomonitoring survey capable of identifying environmental
chemical exposure levels across a nationally representative population. The most current ex-
posure profiles for major environmental chemicals among the Korean population, KoNEHS
Cycle 3 (2015–2017), is summarized here.

In Korean children and adolescents, concentrations of mercury and cadmium were
higher than in other countries. Although these levels are not of great concern when com-
pared with Human Biomonitoring Commission recommendations, continuous observations
are required to ensure they are not deleteriously affecting children’s growth, development,
or health.

BPA and paraben levels were also high; further studies are needed due to the increased
use of bisphenol substitutes (bisphenol F, S) and parabens, and there were different trends
according to gender and age. In addition, the levels of phthalate biomarkers measured
in the KoNEHS were higher in children and adolescents than in adults. Accordingly, the
results indicated the need for exposure reduction measures throughout basic lifestyle and
daily life, while continuously monitoring children’s exposure in particular. Among Korean
adults, lead, mercury, cadmium, metabolites of DEHP and DnBP, and 3-PBA levels were
higher than those reported in the US or Canada; however, their concentrations have been
decreasing with time. Urinary BPA and t,t-MA concentrations showed an increasing trend,
both warranting further studies on their exposure pathways.

For children and adolescents, the Cycle 3 survey represented the first national biomon-
itoring results. Although it was not possible to explain the exact mechanism of substances
with a large concentration difference compared to foreign standards, it is believed that
the effect will be due to differences in dietary habits and the resulting basic body shape
and living environment. Additional research is needed on the effects of exposure to envi-
ronmental chemical substances. Moving forward, if data are secured through continuous
surveys, it will be possible to identify various exposure factors by comparing data over
time and analyzing connections within the survey results. Furthermore, The Ministry of
Environment of Korea has established a “concentration standard in the human body” and
is conducting a detailed investigation by reviewing whether these are exceeded through the
results of the KoNEHS. Findings from these efforts will be used to develop environmental
health policies, and appropriate mitigation measures for protecting the health of the people.
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specified.
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