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Abstract
COVID-19 is a new communicable disease with a widespread outbreak that affects all populations worldwide triggering a 
rush of scientific interest in coronavirus research globally. In silico molecular docking experiment was utilized to determine 
interactions of available compounds with SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) complex. Chimera 
and AutoDock Vina were used for protein–ligand interaction structural analysis. Ligands were chosen based on the known 
characteristics and indications of the drugs as ACE inhibitors (captopril, enalapril, quinapril, moexipril, benazepril, rami-
pril, perindopril, zofenopril, fosinopril), as ACE2 blockers (losartan, olmesartan), as blood thinning agent (clopidogrel), as 
cholesterol-lowering prescriptions (simvastatin, atorvastatin), repurposed medications (dexamethasone, hydroxychloroquine, 
chloroquine), and as investigational drug (remdesivir). Experimental ACE/ACE2 inhibitors are also included: Sigma ACEI, 
N-(2-aminoethyl)-1-aziridine-ethanamine (NAAE), nicotianamine (NAM), and MLN-4760 (ACE2 inhibitor). The best docked 
conformations were all located in the ACE2 protein, 50% docked at the interface with lower scores and only clopidogrel and 
hydroxychloroquine docked at the spike protein. Captopril, moexipril, benazepril, fosinopril, losartan, remdesivir, Sigma 
ACEI, NAA, and NAM interacted and docked at the interface of ACE2 and SARS-CoV-2 spike protein complex. This may 
have significant implication in enhancing our understanding of the mechanism to hinder viral entry into the host organism 
during infection.
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Introduction

The current outbreak of COVID-19 (Coronavirus Infec-
tious Disease 2019) caused by the novel coronavirus SARS-
CoV-2 (severe acute respiratory syndrome coronavirus 2) 
has posed an urgent need to address a devastating global 
pandemic. Preventive vaccines have been developed with 
surprising speed and are now available to the public to cur-
tail the spread of COVID-19 providing a sense of normalcy 
to the general public (Teijaro and Farber 2021; Forni and 
Farber 2021; Hodgson 2021). However, the emergence of 
variants to the virus coupled with the global pervasiveness 
of viral infections is a cause for concern and could limit vac-
cine efficiency. The lack of effective antiviral medications 
against the coronavirus compel the identification of drug 

treatment options as a critical factor to diminish the effects 
of the COVID-19 pandemic and potential future outbreaks.

The pathogen SARS-CoV-2 causes acute respiratory 
infection with common symptoms of fever, dry cough, sore 
throat, fatigue, headache, hemoptysis, vomiting, and diar-
rhea (Sheeren et al. 2020; Wy et al. 2020; El-Aziz and Stock-
and 2020). Severe conditions include shortness of breath, 
moist rales in the lungs, weakened breath sounds or tactile 
speech tremor leading to complications such as bacterial 
infections, pneumonia, respiratory distress, and acute heart 
injury that could be fatal (Poolanda et al. 2020; Peng et al. 
2020). As of July 27, 2021 a year after WHO (World Health 
Organization) declared COVID-19 as a global pandemic, 
the number of positive cases in the US is 34,589,719 with 
611,251 fatalities (https://​coron​avirus.​jhu.​edu.​map.​html). 
The extremely contagious nature and the rapid spread of 
COVID-19 prompted scientists, researchers and medical 
doctors to frantically and endlessly work to find a cure to 
slow down or mitigate proliferation of the infection.
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Coronaviruses are grouped into four classes: alpha (α), 
beta (β), gamma (γ) and delta (δ), based on serological pat-
tern. SARS-CoV-2 is a beta coronavirus believed to have its 
origin from bats and is capable of infecting both animals and 
humans (Zhou et al. 2020). The cross-species barrier jumps 
from their natural animal hosts allowed the CoVs to exhibit 
as virulent zoonotic pathogens in humans. SARS-CoV-2 
has a structural spike (S) protein (outer spiky glycoprotein), 
membrane (M) protein (a transmembrane glycoprotein), 
envelope (E) protein (small integral protein), and a nucle-
ocapsid (N) protein (which is within the phospholipid bilayer 
holding the viral genome). The viral genome is relatively 
large containing approximately 26–32 kb pairs (Schoeman 
and Fielding 2019). The novel coronavirus is an enveloped 
positive-sense single-stranded RNA virus that shares 82 and 
89% nucleotide identity with the human SARS-CoV-1 and 
the bat SARS-like CoVZXC21, respectively (Chan et al. 
2019). The previous SARS-CoV-1 is also caused by zoonotic 
coronaviruses that started as an outbreak in China in 2002 
ending in 2003 affecting 37 countries. Human-to-human 
transmission through airborne droplets or direct contact is 
the possible cause of the virus outbreak in 2019 (Li et al. 
2020a; Kaul 2020).

Currently, vaccinations are in full speed globally. How-
ever, no current antiviral medication has been demonstrated 
against COVID-19. Health-care providers utilize oxygen 
therapy, endotracheal intubation and mechanical ventilation 
to treat symptoms for severe infection that can lead to multi-
ple organ failure. Additional treatments include research and 
repurposed drugs to alleviate the effects of this infectious 
disease (Fan et al. 2020; Sanders et al. 2020; Kakodkar et al. 
2020; Martinez 2020; Kumar et al. 2020; WHO Solidarity 
Trial Consortium 2021). The elderly and populations with 
underlying illness are at high risk and fatalities are still on 
the rise due to development of variants that can cause more 
lethal effects than the original strain. Viruses are here to stay, 
and will become a part of our lives. Thus, the urgent need 
to vigorously develop antiviral therapeutics specifically for 
COVID-19 cannot be overstated to save humanity and get 
back to a state of normalcy.

Studies have shown that the novel coronavirus and 
related coronaviruses interact directly via their spike S 
proteins with angiotensin-converting enzyme-2 (ACE2), 
a host cell exopeptidase and metallocarboxypeptidase that 
catalyzes the conversion of angiotensin I to the nonapep-
tide angiotensin (1–9) and the conversion of angiotensin II 
to angiotensin (1–7) initiating spike protein-mediated viral 
entry (Hoffmann et al. 2020; Li et al. 2003). Studies indi-
cated that SARS-CoV-2, as with the previous SARS-CoV-1, 
utilizes the ACE2 receptor to enter host organisms (Chen 
et al. 2020). Approximately 85% of alveolar epithelial type 
II cells are ACE2-expressing cells which explain the high 
concentration of COVID-19 viral infection in pneumocytes 

as demonstrated by immunostaining study (Zhang et al. 
2020a). ACE2 (about 120 kDa) contains 4 parts: an N-ter-
minal signal peptide, a C-terminal intracellular domain, a 
transmembrane domain, and a catalytic extracellular domain 
having a single metalloproteinase active site with a consen-
sus HEXXH zinc-binding domain in which two histidine 
residues chelate a catalytic zinc ion (Warner et al. 2004). 
ACE2 is an essential component of the neuroendocrine 
renin-angiotensin-aldosterone system (RAAS) which func-
tion to maintain cardiovascular homeostasis, blood pressure 
regulation, electrolyte balance and proper organ function. 
ACE2-expressing cells also possess high levels of multiple 
genes closely related to viral assembly and viral replication 
(Li et al. 2020b). ACE2 is then a viable therapeutic target to 
block SARS-CoV-2 viral intrusion into host cells (Sivara-
man et al. 2021; Yan et al. 2020a; Li et al. 2020c).

Potent non-peptide human ACE2 inhibitors includ-
ing N-(2-aminoethyl)-1-aziridine-ethanamine (NAAE) 
(Huentelmann et al. 2004; Tong 2009), the phytochemical 
nicotianamine (NAM) (Takahashi et al. 2015), MLN-4760 
(McKee et al. 2020), and small peptide angiotensin-con-
verting enzyme inhibitor (Sigma ACEI) can block SARS-
CoV S protein-induced cell-cell fusion by shifting spike-
binding residues. Peptides effectively cleaved by ACE2 
possess the amino acid proline at the penultimate position 
or a phenylalanine at the C-terminus. Thus, the ACE inhibi-
tors (ACEI) captopril (Smith and Vane 2003; Erdös 2006), 
enalapril (Borek et al. 1987), quinapril (Kaplan et al. 1990; 
Cetnarowski-Cropp 1991), moexipril (Pines and Fisman 
2003), benazepril (Li and Wanchun 1997), ramipril (Mills 
1992), zofenopril (Borghi et al. 2004, 2017) and fosinopril 
(Murdoch and Fosinopril 1992; Duchin et al. 1991), and 
ACE2 blockers (ACE2B) (Danser et  al. 2020) losartan 
(Johnston 1995; Ishiyama et al. 2004) and olmesartan (Wang 
et al. 2012) are composed of proline with phenyl moieties 
in their structures. Included are chloroquine and hydroxy-
chloroquine (HQ), antimalarial and broad-spectrum anti-
viral drugs now being considered for COVID-19 (Tsitoura 
et al. 2020; Wang et al. 2020a). As weak bases and zinc 
ionophores (Gautret et al. 2020; Xue et al. 2014), chloro-
quine and HQ can change endosomal pH affecting fusion 
of viral proteins inhibiting viral entry and disrupting acidic 
hydrolases, which affect post-translational modification 
of synthesized proteins, and subsequently reduces ACE2 
glycosylation obstructing spike protein binding into ACE2 
receptors (Schrezenmeier and Dörner 2020; Vincent et al. 
2005). Chloroquine and hydroxychloroquine can be consid-
ered fusion or ACE2 inhibitors. Statins, namely, simvastatin 
(Zocor) and atorvastatin (Lipitor), also known as HMG-CoA 
(β-hydroxy-β-methylglutaryl Coenzyme A) reductase inhibi-
tors and cholesterol-lowering medications, have been shown 
to reduce mortality rates of COVID-19 patients (Dashti-
Khavidaki and Hossein 2020; Lee et al. 2020; Wu et al. 
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2021). Clopidogrel is a blood-thinning remedy to prevent 
blood clots, and is now part of a randomized clinical trial 
that also includes atorvastatin to understand the role of car-
dioprotective medications in the management of COVID-19 
disease (Library of Medicine (US) 2020).

In the in silico molecular modeling study presented here, 
22 ligands were docked into a SARS-CoV-2 spike glycopro-
tein complexed with ACE2 transmembrane protein to deter-
mine their binding energies and the location of the high-
est score or binding affinity. These 22 ligands were chosen 
based on their current use for cardiovascular diseases and 
on a previous review study on candidate drugs that can be 
repurposed against SARS-CoV-2 (McKee et al. 2020).

Methods

3D structure of receptors and ligands

The 3D crystal structure of ACE2 receptor and SARS-CoV-2 
spike S glycoprotein was obtained from the Protein Data 
Bank (PDB). PDB files [PDB ID:6LZG (Wang et al. 2020b) 
and PDB ID:6m0j (Lan et al. 2020)] were fetched into Chi-
mera (Pettersen et al. 2004), and energy minimization of 
the proteins was performed. PDB ID:6LZG (https://​www.​
rcsb.​org/​struc​ture/​6LZG) and PDB ID:6m0j (https://​www.​
rcsb.​org/​struc​ture/​6M0J), which were deposited in Febru-
ary 2020, are both crystal structures of the original strain 
of the novel SARS-CoV-2 spike receptor-binding domain 
complexed with its receptor ACE2. Available toxicity data 
for the compounds or ligands utilized in this study are listed 
in Table S1 (Supporting Information). Except for NAAE 
and NAM, all compounds are commercially-available with 
certain restrictions especially for remdesivir. Ligands were 
built in ChemDraw and the corresponding SMILES code 
was used to generate a 3D structure stored as a pdb file. 
PDB files of both the proteins and the ligands were utilized 
in the docking experiment to determine the differences in 
the binding affinity.

Modeling of interaction of ligands with ACE2–
SARS‑CoV‑2 spike protein complex

Molecular modeling was performed using open access soft-
ware Chimera. The automated built-in engine AutoDock 
Vina contained a Surface/Binding Analysis Tool to screen 
for the composed docking library of the ligand to the recep-
tor using a gradient optimization method to rank confor-
mations with the highest score. Typical search volume size 
is about 62 × 73 × 114, the number of binding modes was 
set to 6, and the maximum energy difference is 3 kcal/mol. 
Scores with the lowest value (more negative) was referred 
to as the best docked structural pose, and the best interaction 

of the ligand to the protein. Ranking of the best binding 
was based on AutoDock Vina empirical scoring function 
which approximates the ligand binding affinity to the protein 
or enzyme in kcal/mol. Docking was repeated three times 
using either PDB ID:6M0J or PDB ID:6LZG, three highest 
scores were averaged and standard errors were calculated. 
Hydrogen bonding and other protein-ligand interactions 
were determined for the best scoring pose and for the docked 
conformation of the ligand located specifically at the inter-
face, at the spike protein or at the ACE2 alone. H-bonding 
and other noncovalent interactions at approximately 2.5 Å 
from the ligand or residue were generated from the Struc-
tural Analysis Tool in AutoDock Vina.

Results and discussion

Structures of SARS‑CoV‑2 spike receptor‑binding 
domain complexed with ACE2

There are 2 PDB file structures of the original strain of 
SARS-CoV-2 spike receptor-binding domain (RBD) bound 
to ACE2, namely, PDB ID:6M0J and PDB ID:6LZG, 
available online. Both contain 2 chains represented by 2 
sequence unique entities (Fig. 1). A slight difference exists 
between these 2 structures. In 6M0J, the ACE2 A chain 
and the spike glycoprotein E chain contain 603 and 229 
residues in length, respectively. However, in 6LZG, the 
ACE2 A chain and the spike glycoprotein B chain contain 
596 and 209 residues in length, respectively. The second-
ary structure for both are similar: 6M0J for chain A has 
62% helical (33 helices; 377 residues) and 3% beta sheets 
(9 strands; 24 residues), and for chain E has 14% helical 
(8 helices; 34 residues) and 24% beta sheets (17 strands; 
55 residues); and, 6LZG for chain A has 62% helical (33 

Fig. 1   PDF files ID6M0J and ID6LZG retrieved from PDB website 
showing ACE2–SARS-CoV-2 spike protein complex. Blue refers to 
ACE2, and magenta refers to SARS-CoV-2 spike protein

https://www.rcsb.org/structure/6LZG
https://www.rcsb.org/structure/6LZG
https://www.rcsb.org/structure/6M0J
https://www.rcsb.org/structure/6M0J
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helices; 372 residues) and 4% beta sheets (9 strands; 24 
residues), and for chain B has 14% helical (7 helices; 30 
residues) and 26% beta sheets (17 strands; 56 residues). 
Subtle variation in the secondary structures in Chain A 

and Chain B/E are in residues 193 and in 66–71, respec-
tively (see Figs. 2, 3). Difference in primary structure is 
mainly due to additional residues in 6M0J located at the 
end of the C termini in Chains A and E. The complete 

Fig. 2   Secondary structures of 
chain A in 6M0J and 6LZG
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sequence and chain view for both structures are included 
in the Supporting Information Figs. S1–S2.

Molecular docking of ligands into the SARS‑CoV‑2 
spike protein and ACE2 complex

ACE2 is one of the key enzymes involved in the renin-angi-
otensin-aldosterone system (RAAS) which is a cascade of 
vasoactive proteins involved in human physiological pro-
cesses. ACE2, which is located at and bound to the plasma 
membrane of the alveolar lung epithelia, renal tubular epi-
thelium, testicular Leydig cells, and gastrointestinal tract, 
converts Ang II to Ang (1–7) and Ang I to Ang (1–9). 
Conversion of Ang II to Ang (1–7) terminates the Ang II-
induced proinflammatory response. Consequentially, Ang II 
stimulates cellular internalization of ACE2 by endocytosis 
and its degradation in lysosomes. Thus, ACE2 is responsi-
ble for regulating and antagonizing Ang II mechanistic pro-
cesses, while Ang II simultaneously reduces the expression 
of membrane-bound ACE2. The exact regulatory mechanism 
of ACE2–Ang II interaction towards a healthy equilibrium, 
rather than an exacerbation of inflammation, is still not fully 
understood (Deshotels et al. 2014).

Recent evidence provided new insights into the complex-
ity of virus–host interactions. SARS-CoV-2 interacts with 
RAAS network through ACE2 which functions as SARS 
(SARS-CoV-1 and -2) viral entry point into the host organ-
ism. Initially, the spike S protein of SARS-CoV-2 is acti-
vated or primed by proteolytic cleavage with furin and Type 
II transmembrane serine protease (TMPRSS2) producing S1 

(for receptor binding) and S2 (for membrane fusion) subu-
nits of the S protein. The S1 subunit containing the RBD 
then attaches to the ACE2 causing endocytosis and trans-
location of both the virus and the enzyme into the intracel-
lular endosomes. This ACE2-S protein interaction results 
in increased sheddase or ADAM17 (Adamylysin Metal-
lopeptidase Domain 17) activity releasing or shedding the 
extracellular soluble ACE2 (sACE2) fragment. Enhanced 
host ACE2 receptor shedding contributes to loss of ACE2 
function and reduces its availability on the cell surface lead-
ing to accumulation of Ang II followed by massive release 
of cytokines. This cytokine storm induces uncontrolled 
immune response and organ damage (Aleksova et al. 2021; 
Samavati and Uhal 2020). Thus, exposure to SARS-CoV2 
has been associated with downregulation of ACE2 recep-
tors, and the imbalance of RAAS-ACE2/Angiotensin axis 
leads to subsequent increase in Ang II resulting in inflam-
mation, vasoconstriction, increase in blood pressure, acute 
lung injury and pulmonary edema (Ni et al. 2020; Mehta 
et al. 2020; Zhang et al. 2020b).

ACE2 inhibitors and Ang II receptor blockers (ARBs) 
are prescribed to treat patients with acute myocardial 
infarction, hypertension, heart failure and diabetes (Pon-
ikowski et al. 2016). ACEI and ARB prevents ACE/Ang II 
pathway limiting Ang II production and increasing ACE2 
expression. Concerns regarding the use of ACEIs and 
ARBs among COVID-19 adult patients and children have 
been raised based on the hypothesis that such medications 
may enhance ACE2 expression exacerbating viral infec-
tions (Sriram and Insel 2020; South et al. 2020). Results 

Fig. 3   Secondary structures of 
chain E in 6M0J and chain B in 
6LZG
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from BRACE clinical trial indicated treatment interrup-
tions of ACEIs/ARBs did not positively affect survival rate 
of COVID-19 patients (Lopes et al. 2021). Additionally, 
studies in rats using the ACE2 inhibitor therapy (such as 
losartan) indicated increased plasma Ang II and the vaso-
dilator heptapeptide angiotensin (1–7) levels, as well as 
cardiac ACE2 activity (Ferrario et al. 2005). Thus, the 
use of renin inhibitors, ACEIs and ARBs, and angioten-
sin (1–7) analogs may help regulate the RAAS pathway 
by increasing the angiotensin (1–7) levels (Gurwitz 2020; 
Offringa et al. 2020). Inhibition and blockage of virus-
ACE2 interaction utilizing antiviral peptides or peptides 
mimicking human ACE2 using computational modeling 
studies can offer potential use in prophylactic or therapeu-
tic tools to fight against COVID-19 (Vaduganathan et al. 
2020; Karoyan et al. 2021; Rathod et al. 2020; Yang et al. 
2020; Sakkiah et al. 2021; Han and Král 2020).

Despite the rapid vaccine development and mass vacci-
nations, the emergence of COVID-19 variants poses addi-
tional challenge and threat in this pandemic as the seemingly 
relentless virus is still wreaking havoc globally. During the 
early stages of the pandemic, the dominant variant referred 
to as the D614G was associated with high pathogenicity but 
without significant severity from its ancestral strain (Gio-
vanetti et al. 2021). The genetic evolution of the COVID-19 
virus was initially slow, but started to accelerate towards 
the end of 2020. Several variants of concerns (VOCs) have 
surfaced composed of the lineages B.1.1.7 (Alpha variant 
with 17 mutations initially detected in the United Kingdom), 
B.1.351 (Beta variant with 9 mutations as a result of the 
second wave of COVID-19 infections in South Africa), and 
B.1.1.28.1 (Gamma variant with 10 mutations originating 
from Brazil) (Aleem et al. 2021). All of these variants harbor 
mutations in the N-terminal and receptor-binding domains 
of the spike protein in which N501Y in the RBD is a com-
mon mutation to all variants (Bakhshandeh et al. 2021a, b; 
Walensky et al. 2021).

Viral mutation is associated with changes that may cause 
increased virulence or transmissibility, reduction in neutrali-
zation by antibodies obtained from vaccination or natural 
immunization or infection, and decreased effectiveness of 
vaccination or drug therapeutics. The Delta variant, also 
known as the B.1.617.2, is first detected in India during the 
devastating wave of viral infection in April-May 2021 (Vaid-
yanathan 2021; Callaway 2021). Delta variant, the current 
circulating dominant variant in the US and in some other 
countries at this time, seems to be 60% more transmissible 
than the Alpha variant (Aleem et al. 2021).

The point of entry for the ancestral strain for SARS-
CoV-2 at the early phase of the pandemic and the various 
variants that emerged remains the same at this point. The 
viral particles of SARS-CoV-2 variant is still accessing 
the host organism via ACE2-mediated infection. Genomic 

studies have identified with high degree of accuracy muta-
tions in the virus providing specific characteristics to the 
virus. Typically, viruses undergo numerous mutations but 
may not significantly alter their biological behavior and does 
not necessarily change the structure and components of the 
virus. Thus, it was hypothesized that current vaccine will 
still work against the SARS-CoV-2 variant, i.e. Alpha vari-
ant from UK (Conti et al. 2021).

Results from a mass immunization campaign conducted 
in Qatar indicated that the Pfizer-BioNTech (BNT162b2) 
and Moderna (mRNA1273) vaccines against COVID-19 
have 95% and 94.1% efficacy, respectively (Abu-Raddad 
et al. 2021). A follow-up study demonstrated that the Mod-
erna vaccine against the Alpha and Beta variants was 88.1 
and 100% effective after the first and second dose, respec-
tively (Chemaitelly et  al. 2021). Recent data regarding 
vaccine effectiveness against the Delta variant suggested 
that BNT162b2 and ChAdOx1 nCoV-19 (Astra Zeneca 
AZD1222) vaccines after two doses are still effective against 
the variant (Bernal et al. 2021).

The Lambda variant first reported in Peru has recently 
emerged (lineage C.37). It is now classified as virus of inter-
est (VOI) by WHO and is becoming widespread in South 
America and other countries. The Lambda spike protein 
contains L452Q and F490S mutations in the RBD, as the 
other previous variants, that may contribute to increased 
viral infectivity. Preliminary studies demonstrated that cur-
rently approved vaccines and antibody therapies can still 
protect against COVID-19 caused by the Lambda variant 
(Tada et al. 2021).

ACE inhibitors are one of the most widely prescribed 
medications for cardiovascular and chronic kidney diseases. 
Even though these drugs are considered to be relatively safe, 
administration of these drugs is monitored carefully by 
medical professionals for optimum treatment outcomes. In 
addition to efficacy, ACE inhibitors and blockers are particu-
larly well tolerated because they produce few idiosyncratic 
side effects and do not have adverse side effects associated 
with glucose and lipid metabolism observed with diuretics 
or beta blockers (Izzo and Weir 2011; Taylor et al. 2011; 
Morales et al. 2021). The most common side effects of ACE 
inhibitors and blockers are cough, elevated blood potassium 
levels, low blood pressure, dizziness, headache, drowsiness, 
fatigue, abnormal taste (metallic or salty taste), rash, chest 
pain, increased uric acid levels, and sun sensitivity. The most 
serious, but rare, side effects of ACE inhibitors are allergic 
reactions, kidney failure, pancreatitis, liver dysfunction and 
swelling of tissues (angioedema) (Herman et al. 2020; Hill 
and Vaidya 2021).

In this context, molecular modeling remains relevant 
as a predictor to evaluate binding of ligands such as ACE 
inhibitors or other current medications as potential repur-
posed therapeutics to target proteins or enzymes involved 
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during viral infection caused by the emerging variants (Xu 
et al. 2020; Nayak 2021; Suryamohan et al. 2021; Smith 
and Smith 2020; Acharya et al. 2020; Narkhede et al. 2020).

Binding affinity scores

ACE2 binds to the surface of the virus through the S protein. 
Investigation of the interaction of the receptor binding on the 
surface of the protein is important in fully understanding the 
mechanism of viral attachment and in designing drug thera-
peutics as potential inhibitors. Inhibition of spike-ACE2 pro-
tein–protein interaction using small molecules or peptides is 
the most logical and straightforward strategy to block viral 
cellular entry.

The spike glycoprotein construct plays a critical for the 
SARS-CoV2 viral entry and infection. The S-protein con-
sists of 1273 residues containing 5 regions: receptor binding 
domain or RBD (residues 319–541), receptor binding motif 
or RBM (residues 437–508) that binds to ACE2, fusion pep-
tide (residues 788–806), heptad repeat-1 (residues 920–970), 
and heptad repeat-2 (residues 1163–1202).

ACE2 has 2 extracellular domains consisting of the zinc 
metallopeptidase domain (residues 19–611) and the C-ter-
minal domain (residues 612–740). Three regions of the zinc 
metallopeptidase domain consisted of residues positioned 
at 30–41, 82–84, and 353–357 (Yan et al. 2020b). Due to 
the availability of the binding domains of each structure in 
ACE2 and in spike glycoprotein, the affinity of the interac-
tion of the whole complex can be measured by molecular 
modeling. Molecular dynamics simulation performed on the 
crystal structure of the SARS-CoV2 RBD bound to ACE2 
(PDB code: 6M0J) demonstrated that the maximum number 
of hydrogen bonds was observed between the receptor bind-
ing motif of the spike and the residues located at 35–54 and 
325–331 from ACE2 binding domain (Jafary et al. 2021). In 
silico computational approaches have been utilized in this 
regard as the first step to screen potential inhibitors such 
as small organic molecules, natural products, peptide mim-
ics or miniproteins to block spike-ACE2 intermolecular 
interactions (Prashantha et al. 2021; Ribaudo et al. 2021; 
Schütz et al. 2020). Published PDB crystal structures were 
then extensively used by previous investigators to study and 
analyze spike S-glycoprotein and ACE2 receptor interactions 
(Day et al. 2021; Akachar et al. 2020).

For the computer simulation utilized in our study, 
H-bonds and other non-covalent interactions were analyzed 
to determine ligand–protein interactions. Table 1 shows 
docked conformations of ACE2-SARS-CoV2 S spike com-
plex (PDB ID:6M0J) with representative ligands (Sigma 
ACEI, remdesivir, losartan, moexipril, hydroxychloroquine, 
and clopidogrel). The highest scoring binding affinities 
are listed in Table 2 determined for both PDB structural 
files 6M0J and 6LZG. The values are close to each other 

considering the fact that the only difference between these 
2 protein structural complexes are the primary structures 
at the end of the C-terminus and an insignificant second-
ary structure close to the N-terminus of the E chain. These 
portions of the E chain were not observed to be positions at 
which the ligands prefer to dock.

Table 2 also lists the structures of the ligands used in 
this study including the binding energies or docking scores 
and ligand–protein interactions (hydrogen bonding and 
other noncovalent interactions) determined from AutoDock 
Vina. The ligand–protein interactions of the superimposed 
ligand with the closest residues in the protein were deter-
mined using PDB ID: 6M0J. Both pdb files can be used and 
a very small variation of about 0–0.8 in the affinity scores 
was observed.

The highest scoring molecule is the ACE inhibitor (Sigma 
ACEI) commercially available from Sigma Aldrich (Cat 
#A0773). Remdesivir, hydroxychloquine, chloroquine and 
dexamethasone are therapeutics used for treatment or are 
being investigated against COVID-19. ACE2 blockers losar-
tan and olmesartan are prescribed as high-blood pressure 
medications. Quinapril, benazepril, ramepril, moexipril, 
zofenopril, enalapril, fosinopril, perindopril and captopril 
are ACE inhibitors and used therapeutically as antihy-
pertensive medications. MLN4760, nicotinanamine, and 
N-(2-aminoethyl)-1-aziridine-ethanamine (NAAE) were 
demonstrated to be ACE2 inhibitors in experimental in vitro 
cell-based assays (McKee et al. 2020).

Only 9 ligands, namely, Sigma ACEI, remdesivir, losartan, 
moexipril, benazepril, captopril, fosinopril, NAA, and NAM 
showed docked interaction at the interface of the ACE2-spike 
complex. This could be a significant observation as an indica-
tion that these ligands could potentially block viral entry into the 
host. Residues Arg403 and Lys417 in the spike protein appear 
to be involved in the H-bonding interaction with either a C=O, 
oxygen, or NH in Sigma ACEI, remdesivir, losartan and moex-
ipril upon being bound at the interface of both proteins. The 
docked superimposed conformations at the interface for Sigma 
ACEI, remdesivir, losartan, moexipril, benazepril, captopril, 
fosinopril, NAAE, and NAM were not the highest scores for 
these ligands but are within the 6 binding modes set as a default 
during the experiment. Clopidogrel and hydroxychloroquine 
were the only ligands observed to also dock at the SARS-CoV-2 
spike protein as shown in Table 1 and in Supporting Information 
Table S2, respectively. Hydroxychloroquine docked at the spike 
protein only when PDB ID:6LZG was used.

The binding affinities of the best docked conformations 
as listed in Table 2 are ranked in the order from highest to 
lowest:

Sigma ACEI > quinapril > remdesivir ~ ator-
v a s t a t i n  >  r a m e p r i l  >  o l m e s a r t a n  >  l o s a r -
tan > benazepril > moexipril > zofenopril > fos-
inopr i l  >  dexamethasone  > ena lapr i l  >  c lop i -
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Table 1   Docked conformation of ACE2–SARS-CoV2 S spike complex (PDB ID:6M0J) with different ligands

ACE inhibitor Remdesivir

Docked conformation

  
Structures

O
N

O
N N

H

H
N

H
N

O

O

O

O

O

O
H
N

O
N
H

O

H2N
O HN

H2N
NH

HN

N NHO

1 2 3
4

5
6

7
8

9

10

 

O

O
O

NHP
O

O
NH2

NN
N

O
NC

OHHO

1

2
3

 

ΔG (kcal/mol) − 9.4 ± 0.088 − 8.0 ± 0.033
H bonding
Ligand–protein

C=O(4)–Arg403(E) NH2(1)–Lys417(E)
OH(2)–His34(A)
O(3)–Arg403(E)

Other noncovalent interactions
Ligand–protein

OH (1)–Arg408(E)
Pro(2)–Asp405/Glu406(E)
Ile(3)–Ala387(A)
Gln(4)–Asn33/Glu37(A
Pro(5)–Pro389(A)
Arg(6)–Gln409(E)
Pro(7)–Tyr421(E)
Trp(8)–Lys26/Gln96(A)

Ph–Asn33(A)

Losartan Moexipril

Docked conformation

  
Structures

HN
N N

N

N

N

Cl

OH
1

2

3

4  

HO O
O

O

O

N

O
O

1
2 3

4

5
 

ΔG (kcal/mol) − 7.6 ± 0.041 − 7.1 ± 0.11
H bonding
Ligand–protein

N(1)–Lys417(E) O(1)–Asn33(A)
O(3)–Arg403(E)
O(5)–Arg408(E)
OH(4)–Ala387(A)
C=O(4)–Arg393(A)

Other noncovalent interactions
Ligand–protein

Cyc(1)–Lys417
Ph2–Glu23(A)
Ph3–Lys26(A)
Alkyl(4)–Leu29/Val93/Gln96(A)

Ph–His34(A)/Glu406(E)
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dogrel ~ MLN4760 > simvastatin > perindopril ~ hydroxy-
chloroquine > chloroquine > NAM > captopril > NAAE.

The binding affinities of the docked conformations at the inter-
face of the SARS-CoV-2 spike protein and ACE2 are ranked in 
the order from highest to lowest (with the corresponding scores):

Sigma ACEI (− 9.4) > remdesivir (− 8.0) > losar-
tan (− 7.6) > moexipril (− 7.1) > fosinopril ~ benazepril 
(− 6.9) > NAM (− 5.7) > captopril (− 4.6) > NAAE (− 3.5).

In general, the highest scoring conformations for all the 
ligands are shown with the ligands binding to the ACE2 (except 
for benazepril) and not to the spike protein nor at the interface 
using PDB ID:6M0J. Additional docked images for the ligands 
benazepril, fosinopril, quinapril, dexamethasone and atorvastatin 
are shown in Table S2 (Supporting Information).

Previous investigators have demonstrated the use of 
molecular docking in silico to study the interaction of 24 
ligands with four SARS-CoV-2 receptors, namely, Nsp9 
replicase, main protease (Mpro), NSP15 ribonuclease, and 
spike protein (S-protein) interacting with human ACE2 
using several PDB database crystal structures (6W4B, 6Y84, 
6VWW, and 2AJF) (Barros et al. 2020). In this study, the 
antimalarial drug Metaquine and anti-HIV drug Saquinavir 
interacted by hydrogen bonding and hydrophobic contacts 
with all the receptors suggesting their potential as candi-
date or repurposed drugs against COVID-19. The same 
study showed the calculated ΔG value of − 5.4 kcal/mol 
for hydroxychloroquine docked on the ACE2-spike complex 
comparable to ΔG value of − 6.3 kcal/mol determined in 
our modeling experiment. Another study using simulation 

technique to repurpose existing small molecules for potential 
COVID-19 therapeutics indicated that amongst the 37 mol-
ecules investigated (out of 61), HIV protease inhibitors and 
RNA-dependent RNA polymerase (RdRP) inhibitors showed 
promising features of binding to COVID-19 enzyme (Shah 
et al. 2020). In this in silico approach, the antiviral drug 
Methisazone (an inhibitor of mRNA and protein synthesis) 
and CGP42112A (an Ang AT2 receptor agonist) were sug-
gested as COVID-19 treatment options based on the dock-
ing score (using protein crystal structure PDB ID: 5R81) of 
− 6.928 kcal/mole and − 7.521 kcal/mol for Methisazone 
and CGP42112A, respectively.

The aforementioned results from other investigators illus-
trated that docking scores obtained in our molecular modeling 
experiments are comparable, and can be used as the initial 
screening tool for potential drug therapeutics for COVID-19.

Protein–ligand interactions

Several hydrogen bonding interactions were observed 
between spike protein and ACE2 at the interface: Asp30(A)-
Lys417(E), Gly354(A)-Gly502(E) and Glu37(A)-Tyr505(E). 
Tables 1 and 2 list the hydrogen bonding interaction of the 
docked ligands with the protein complex. Out of the 18 
ligands tested, 4 did not exhibit hydrogen bonding interac-
tions with either ACE2 or the spike protein.

Other noncovalent intermolecular interactions at the 
boundary of both proteins involve polar hydroxyl or car-
bonyl (C=O) groups with polar amino acid residues such as 

Table 1   (continued)

Hydroxychloroquine Clopidogrel

Docked conformation

  
Structures

N

H
N N OH

Cl

1
2 3

 
Cl

N

S

O O
1

 
ΔG (kcal/mol) − 6.3 ± 0.09 − 5.8 ± 0.00
H bonding
Ligand–protein

NH(1)–Tyr385(A) C=O–Gly339(E)

Other noncovalent interactions
Ligand–protein

OH–Arg393(A)
Pyr N–His378(A)
N2–Arg393/Asp350(A)

Cyc(amine)–Phe342/Leu368 E)
Ph–Asp364/Phe338(E)
Thiphenyl–Ser371/Val367(E)

A refers to chain A designated as the ACE2 receptor (blue); E refers to the SARS-CoV-2 spike protein as chain E (magenta); Ph: phenyl or ben-
zene ring; Pyr: pyridine; Cyc: cyclic chain
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Table 2   Highest scoring docked conformations of ACE2–SARS-CoV2 S spike glycoprotein complexed with different ligands

Ligands Molecular structure ΔGa (kcal/mol) ΔGb (kcal/mol) H bonding
Ligand–protein

Non-covalent interac-
tions
Ligand–protein

ACE inhibitor 
(Sigma) O

N
O

N N
H

H
N

H
N

O

O

O

O

O

O
H
N

O
N
H

O

H2N
O HN

H2N
NH

HN

N NHO

1 2 3
4

5
6

7
8

9

10

 

− 10.0 ± 0.033 − 9.2 ± 0.033 C=O(1)–Lys74(A) 
C=O(5)–Trp69(A)

C=O(9)–Trp349(A)
Arg(6)NH2–

Met62(A)
Arg(6)NH–Ser43(A)

Pro(1)–Ser70(A)
Pro(2)–Leu100(A)
Ile(3)–Gln102(A)
Pro(5)–Leu73(A)
Pro(7)–Trp349(A)
Trp(8)–Phe40/

Tyr385(A)
Cyc(10)-Ala348(A)

Remdesivir

O

O
O

NHP
O

O
NH2

NN
N

O
NC

OHHO

1

2

3

4

 

− 8.1 ± 0.15 − 7.9 ± 0.070 NH2(1)–Glu398(A)
NH(3)–Asp350(A)

Alkyl(4)–Phe390/
Phe40(A)

Phe–Ser47(A)
OH(2)–His378(A)

Hydoxychloro-
quine

N

H
N N OH

Cl

1
2 3

 

− 6.3 ± 0.09 − 6.3 ± 0.22 NH(1)–Tyr385(A) OH–Arg393(A)
Pyr N–His378(A)
N2–Arg393/

Asp350(A)
Chloroquine

N

H
N N

Cl

1
2

 

− 6.1 ± 0.07 − 6.1 ± 0.22 NH(1)–Tyr385(A) OH–Arg393
Pyr N–His378(A)
N2–Arg393/Asp350/

Phe40(A)
Dexamethasone

O

H
HO

F H

OH

OH
O

2

1

3

 

− 7.2 ± 0.00 − 7.3 ± 0.00 C=O(3)–Ser47/
Trp349(A)

OH(2)–Asp350(A)
OH(3)–Asp382/

Tyr385(A)

Losartan HN
N N

N

N

N

Cl

OH
1

2

3

4  

− 7.6 ± 0.19 − 7.2 ± 0.088 None OH–His378/
Ala348(A)

Het(1)–Asn394(A)
Phe(2)–Phe40/

Arg393(A)
Alkyl(4)–Try349(A)

Olmesartan
N

N
N

H
N

N
N

O

OH

O O
O

O
1

2 3

4
5

6 7

 

− 7.7 ± 0.033 − 7.4 ± 0.033 N(1)–Asp350(A)
C=O(6)–Ala348(A)

Ph(2)–Trp349/
Phe40(A)

Alkyl(4)–Thr347(A)
Cyc(7)–His401(A)

Atorvastatin
N
H

N

F

O OH OH

OH

O1 2
3

4
5

6

7

 

− 8.1 ± 0.067 − 8.0 ± 0.058 OH(3)–His378(A)
OH(5)–Pro346(A)
C=O()–Asp350(A)

Ph(1)–Tyr385(A)
Ph(F)–Trp349/

Phe40(A)

Simvastatin

HO

O O
OHO

1 2

3

 

− 6.5 ± 0.00 − 6.7 ± 0.00 OH–Asp382(A) Cyc(1)–Phe40(A)
Cyc(2)–Trp69/

Phe390(A)
Cyc(3)–Asp350(A)

Clopidogrel

Cl
N

S

O O

 

− 6.9 ± 0.00 − 6.7 ± 0.067 None Ph(Cl)–Phe40(A)
Thiphenyl–Asp350(A)

Quinapril HO O
O

O

O

N
1

2 3
4

 

− 8.4 ± 0.033 − 8.1 ± 0.23 C=O(3)–Gln98(A) O(1)–Gln102(A)/
Tyr202(A)

OH(4)–Leu95(A)
Bn–Asn194(A)
Fused Ph–Leu95/

Lys562(A)
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Table 2   (continued)

Ligands Molecular structure ΔGa (kcal/mol) ΔGb (kcal/mol) H bonding
Ligand–protein

Non-covalent interac-
tions
Ligand–protein

Ramepril HO O

N
O

O

O 3
1

2
4

 

− 7.7 ± 0.14 − 8.0 ± 0.14 C=O(2)–Lys441(A) Bn–Phe438/
Pro415(A)

OH(4)–Ser405/
Leu370(A)

Cp–Leu410(A)
O(1)–Asp292(A)

Benazepril

N

HO OOH
N

O

O
1

2 3
4

5

 

− 7.6 ± 0.10 − 7.3 ± 0.27 C=O(3)–Asp350(A) Fused Ph–Phe40/
Trp349(A)

C=O(2)–Arg393(A)
Bn–Leu391(A)

Moexipril HO O
O

O

O

N

O
O

1
2 3

4

 

− 7.5 ± 0.00 − 7.6 ± 0.088 C=O(2)–Try349 (A)
C=O(4)–Try349(A)
OH(4)–Asp350(A)

O(5)–Ser47/Met62(A)
Fused Ph–Phe40(A)
Bn–Phe390(A)
C=O(4)–Try349(A)
EtO(1)–His378/

His401(A)

Zofenopril HO O

NS

OO

S

1
2 3

4

 

− 7.4 ± 0.033 − 7.6 ± 0.12 None PhS–Ser47/Ser44(A)
C=O(3)–Asn394(A)
OH(4)–Tyr385(A)
PhC=O(2)–

Arg393(A)
Enalapril

1

HO O

N
O

O

O 2
4

3

 

− 7.1 ± 0.20 − 7.4 C=O(2)–Lys441(A) Bn–Phe438/Ile291/
Met366(A)

OH(4)–Ser405/
Leu370(A)

Pyr–Leu410(A)
O(1)–Asp292/

Asp367(A)
Fosenopril

3

HO O

NPO
O

O

O O

1

2 4

5

 

− 7.3 ± 0.00 − 7.5 ± 0.11 P=O–Asp350(A) iPr–His401(A)
Ph–Tyr385/Phe40(A)
Cyc–

Thr347Trp349(A)
P=O–Asp382(A)

MLN-4760 Cl

Cl

N

N
H
N

O

HO

HO O

1
2
3

 

− 6.9 ± 0.12 − 7.3 ± 0.067 OH(1)–Ala348(A)
NH(2)–Ala348(A)
OH(3)–Asp340(A)

iBut–His401(A)
Ph–Asp350/

Arg393(A)

Perindopril HO O

N
O

O

O
1

2 3

4

 

− 6.3 ± 0.00 − 6.2 ± 0.15 None OH(4)–Gln81/
Asn103(A)

C=O(3)–Gln98(A)
Cyc–Leu95(A)
O(1)–His195/

Tyr196(A)
Nicotianamine 

(NAM) NHO2C
CO2H

NHHO2C

NH2

1

2

3

4

5

 

− 5.9 ± 0.088 − 6.2 ± 0.14 C=O(5)–Trp566(A)
OH(5)–Asn210(A)
OH(1)–Gly205(A)
NH(2)–Gly205(A)

Cyc–Leu95(A)
CycN–Lys562(A)
NH(4)–Gln98(A)
C=O(1)–Tyr196(A)

Captopril HO O

NHS

O
1

2
3

 

− 4.8 ± 0.00 − 5.4 ± 0.033 C=O(3)–Met270(A) SH–Thr276(A)
Met–Phe274(A)
OH(1)–Ala153(A)
CycPro–Met270/

Trp271(A)
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Arg, Asp and Glu in either proteins. Aromatic functionality 
and hydrophobic alkyl chains in the ligands are observed 
to interact also with aromatic Phe, Tyr, and His, and with 
hydrophobic Ala, Val, Leu and Ile side chains of either the 
spike protein or the ACE2 receptor, respectively.

Conclusion

Despite the plethora of potential inhibitors targeting every 
stage of the viral life processes, no effective drug has obtained 
approval for COVID-19 or SARS treatment. Current therapeu-
tics provided by health-care personnel involves antiviral, anti-
malarial, anti-inflammatory, herbal medicines (Jan et al. 2021; 
Alrasheid et al. 2021), and active plasma antibodies (Nadeem 
et al. 2020; Vijayvargiya et al. 2020). The current global out-
break is a vivid reminder that new viruses will emerge and 
mutate, and infectious pathogens will resurface prompting 
active robust research approaches that must be implemented 
as countermeasures to save human lives (Fauci et al. 2020).

Results presented in this study indicated that available medica-
tions captopril, moexipril, benazepril, fosinopril, and losartan pre-
scribed for other indications interacted at the interface of SARS-
CoV-2 spike protein and ACE2 receptor. Remdesivir, Sigma ACEI, 
NAA, and NAM are investigational and research drugs that also 
exhibited interactions at the boundary of the 2 protein complex. 
These observations can be an important parameter to consider as a 
viral entry blockage. Molecular modeling techniques may provide 
valuable information to enhance our current understanding of avail-
able therapeutics to treat the viral outbreak the world faces in our 
current unprecedented times. Thus, as the entire world watches the 
continuous evolution of the virus shaped and controlled by natural 
selection, novel variants will emerge that are more resistant to the 
current vaccines which should prompt everyone to be vigilant.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s40203-​021-​00114-w.
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