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Abstract: Functionalized graphene–polymer nanocomposites have gained significant attention for
their enhanced mechanical, thermal, and antibacterial properties, but the requirement of multi-step
processes or hazardous reducing agents to functionalize graphene limits their current applications.
Here, we present a single-step synthesis of thermally reduced graphene oxide (TrGO) based on shellac,
which is a low-cost biopolymer that can be employed to produce poly(vinyl alcohol) (PVA)/TrGO
nanocomposites (PVA–TrGO). The concentration of TrGO varied from 0.1 to 2.0 wt.%, and the critical
concentration of homogeneous TrGO dispersion was observed to be 1.5 wt.%, below which strong
interfacial molecular interactions between the TrGO and the PVA matrix resulted in improved thermal
and mechanical properties. At 1.5 wt.% filler loading, the tensile strength and modulus of the PVA–
TrGO nanocomposite were increased by 98.7% and 97.4%, respectively, while the storage modulus
was increased by 69%. Furthermore, the nanocomposite was 96% more effective in preventing
bacterial colonization relative to the neat PVA matrix. The present findings indicate that TrGO can be
considered a promising material for potential applications in biomedical devices.

Keywords: nanocomposites; shellac; poly(vinyl alcohol); thermally reduced graphene oxide; me-
chanical properties; thermal stability; antibacterial activity

1. Introduction

Poly(vinyl alcohol) (PVA) is a widely used commercial polymer owing to its high
transparency, hydrophilicity, and adhesive properties [1–4]. Furthermore, its strong oxygen
barrier capabilities and mechanical and biodegradable properties promote the application
of PVA in fiber manufacturing, food packaging, and biomedicine [5–9]. However, the
mechanical and electrical properties of PVA are negatively affected by the poor dewetting
properties of this polymer [10,11], and its solubility, viscosity, and film strength may also
differ depending on the degree of saponification [12]. To improve the aforementioned
properties, various inorganic nanomaterials, such as clay [13], carbon nanotubes [14], and
metal oxide nanoparticles [15], have been incorporated into a PVA matrix. However,
poor dispersion and significant agglomeration of these nanofillers in the PVA matrix limit
the improvement of the physical properties far below the expected level. Hence, it is
essential to synthesize PVA nanocomposites with homogeneously dispersed fillers, which
can significantly improve PVA physicochemical properties.

Owing to its high thermal, electrical, and mechanical properties, graphene has also
been considered a potential filler for the synthesis of lightweight polymer nanocompos-
ites [16]. However, the current manufacturing methods are not appropriate for producing
high-quality graphene at the industrial scale [17]. Furthermore, owing to the presence
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of strong van der Waals forces, the obtained graphene flakes exhibit poor dispersion in
the polymer matrix [18,19]. On the contrary, graphene oxide (GO) exhibits homogeneous
dispersion properties due to the presence of oxygen-containing functional groups that
establish strong interactions with the hydroxyl groups of the polymer matrix [20]. This
homogeneous dispersion of GO at intermolecular level helps the efficient load transfer
between the filler and the PVA matrix, resulting in significant enhancement of the physic-
ochemical properties of the nanocomposites, even at low filler concentrations. However,
GO is electrically insulating and thermally unstable; therefore, it needs to be reduced
to restore the electrical and thermal properties [21]. During the preparation of polymer
nanocomposites, the direct use of reduced graphene oxide (rGO) fillers is preferred to
optimize the industrial synthesis and application of graphene-based polymer composites.
However, the rGO chemical reduction process is time-consuming and requires the use
of several toxic reagents that induce high structural disorder, which results in reduced
mechanical properties of the polymer nanocomposites [22,23].

Shellac, a low-cost natural biopolymer, has been widely used in organic biomedical
devices because of its excellent biocompatibility [24,25]. The long aliphatic carbon (C–C)
backbone and a relatively lower thermal decomposition temperature of shellac provide an
opportunity for more efficient graphitization than other synthetic polymers [26]. Earlier
reports have shown that shellac-derived GO can be used as an active material in the
fabrication of sensors and in photocatalytic applications [27–29]. Furthermore, it exhibits
superior adhesion, due to the presence of oxygen-containing functional groups that form
strong covalent bonds with the surface. This brought about a significant improvement
in the interlaminar shear and flexural strength of GO [30]. These advantages of shellac-
derived GO suggest its potential as a cost-effective polymer composite additive to improve
the antibacterial and mechanical properties of materials.

The present study demonstrates the effect of various concentrations of shellac-derived
thermally reduced graphene oxide (TrGO) on the thermal, mechanical, and antibacterial
properties of PVA–TrGO nanocomposites. TrGO nanosheets were synthesized by a single-
step thermal reduction process, in which homogeneous PVA–TrGO nanocomposites were
produced by a water-based solution casting technique. The chemical and structural prop-
erties of PVA–TrGO nanocomposites were investigated using Fourier-transform infrared
(FT-IR) spectroscopy and wide-angle X-ray diffraction (WAXD). Furthermore, the thermal,
mechanical, and antibacterial properties of PVA–TrGO nanocomposites were investigated
using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile
test, dynamic mechanical analysis (DMA), and Gram-negative Escherichia coli (ATCC 25922),
respectively. It is expected that this study will help elucidate the effect of the nano-and
microscale TrGO reinforcement of a PVA matrix and provide a viable method for the
synthesis of polymer nanocomposites used in medical applications requiring improved
mechanical and antibacterial properties.

2. Materials and Methods
2.1. Materials

A 99% hydrolyzed PVA (Mw = 31,000–50,000) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Shellac flakes were purchased from Shellac Shack (Port Orford, OR,
USA). Isopropanol (IPA; 99.5%) was purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Fabrication of PVA–TrGO Films

The PVA–TrGO nanocomposites were synthesized using a solution casting technique.
Shellac was used as a carbon precursor to synthesize TrGO nanosheets via a single-step
thermal reduction process. First, ball milling (planetary ball milling PM100 (Retsch),
Hamburg, Germany) of shellac flakes (10 g) was carried out in a stainless-steel jar while
agitating at a revolution speed of 200 rpm and an autorotation speed of 250 rpm. Ball
milling running and cooling were performed for 5 min, to complete one milling cycle.
A total of 30 milling cycles was performed, corresponding to a milling time of 150 min.
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Fourier Transform Infrared (FT-IR) spectra for shellac powder were obtained to observe any
impurities during the ball milling process, as shown in Figure S1. The resultant powder was
then placed into a tube furnace (Kejiafurnace, Zhengzhou, China) for thermal reduction.
The ramping rate of the tube furnace was set to 3 ◦C/min and maintained at 900 ◦C for
30 min under a vacuum of 0.12 mbar.
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Figure 1. Schematic representation for the synthesis of poly(vinyl alcohol (PVA)–thermally reduced
graphene oxide (TrGO) nanocomposite films.

PVA was dried at 90 ◦C for 24 h in a vacuum drying oven (Thermo Fisher Scientific,
Waltham, MA, USA). Three grams of dried PVA was dissolved in 10 mL of distilled (DI)
water at 90 ◦C at a stirring rate of 300 rpm. Various concentrations (0.1 wt.%, 0.5 wt.%,
1 wt.%, 1.5 wt.%, and 2 wt.%) of TrGO were dispersed in 10 mL of DI water by ultrasonica-
tion (Branson5800, Branson Ultrasonic Corp., Brookfield, CT, USA) for 1 h. The dispersion
was placed in a homogenizer (T 18, IKA, Staufen, Germany) for 10 min, followed by a bath
sonication process for another 60 min. The resultant TrGO suspension was then added
to the PVA solution and mixed by bath sonication for 30 min. After homogenization, the
mixture was poured into a Teflon mold and dried at 25 ◦C for 1 d in a fume hood (Nara
fume hood, Flowmaster, Seoul, Korea) until solidified, as shown in Figure 1. The Teflon
mold was kept at 60 ◦C in a vacuum oven (OV11, JEIO Tech, Daejeon, Korea) until the
mass of the sample was constant. Finally, the resultant film was peeled off from the mold
and compressed for 10 min using a hot press technique to eliminate voids. The resulting
film surface was smooth and had an average thickness of 180 µm.

2.3. Characterization
2.3.1. Thermally Reduced Graphene Oxide

Raman spectra of shellac-derived TrGO flakes were acquired in backscattering mode
using an ultrahigh-throughput spectrometer (alpha300R, WiTec, Ulm, Germany). X-ray
diffraction (XRD) measurements were performed using a Bruker D8 Advance diffrac-
tometer (Bruker, Billerica, MA, USA) with Cu Kα radiation (0.154 nm). The crystallinity
and elemental mapping were investigated using high-resolution transmission electron
microscopy (HR-TEM, JEOL Ltd., Tokyo, Japan) and high-angle annular dark-field scan-
ning TEM (HAADF-STEM) fitted with an aberration corrector (CEOS GmbH, Heidelberg,
Germany). A JEOL JEM-2100F electron microscope (JEOL Ltd., Tokyo, Japan) operating
at 200 kV was used to perform the HR-TEM and HAADF-STEM. The chemical analysis
was performed using X-ray photoelectron spectroscopy (XPS) (Thermo Fisher Scientific,
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Waltham, MA, USA). The system was equipped with a double-focusing hemispherical ana-
lyzer and a monochromatic Al Kα source (1486.6 eV) (Thermo Fisher Scientific, Waltham,
MA, USA). The vacuum of the main chamber was maintained at 1 × 10−10 mbar during
the entire measurement. XPSPeak41 software developed by Raymund Kwok was used for
the deconvolution of the high-resolution XPS spectra.

2.3.2. PVA–TrGO Nanocomposites

FTIR spectra of the PVA–TrGO nanocomposites were obtained using Varian 670-IR
(Agilent Technologies, Santa Clara, CA, USA) to investigate the formation of hydrogen
bonds between PVA and TrGO with different TrGO concentrations. The crystallinity of
the nanocomposites was analyzed using wide-angle X-ray diffraction (WAXD). WAXD
patterns of the PVA–TrGO nanocomposites were obtained in the 20 range 8–40◦ at a rate of
2◦/min, using a high-resolution X-ray diffractometer (D8 Advance, Bruker, Billerica, MA,
USA) with Cu Kα target. The crystallinity index (CI) of the film was calculated using the
following equation:

CI =
Ac

Ac + Aa
(1)

where Ac is the integrated area of the crystalline peaks, and Aa is the integrated area
under the amorphous halo. The thermal studies were conducted using DSC (Q200, TA
Instruments, New Castle, DE, USA) and TGA (Q500, TA Instruments, New Castle, DE,
USA). During the DSC measurement, nitrogen gas was purged into the chamber at a
flow rate of 50 mL/min. The crystallization isotherms of the samples were investigated
by completing a heating–cooling cycle where the samples were first heated from 30 ◦C
to 250 ◦C at a ramping rate of 10 ◦C/min and then cooled to 0 ◦C at a ramping rate of
10 ◦C/min. The third scan was performed from 0 ◦C to 250 ◦C at a rate of 10 ◦C/min,
during which the melting endotherms were identified. The degree of crystallinity (Xc) was
calculated as follows:

Xc =
∆Hm

∆H0
m
× 100% (2)

where ∆Hm and ∆H0
m (138.7 J/g) are the enthalpies of the nanocomposite and pure PVA

matrix, respectively. The thermal stability of the PVA–TrGO nanocomposites with varying
TrGO concentrations was investigated using TGA in a nitrogen environment. The samples
were annealed from 30 ◦C to 800 ◦C at a ramping rate of 10 ◦C/min. The morphologies
and dispersion states of the nanocomposites were investigated by field-emission scan-
ning electron microscopy (FE-SEM) (FEI Nova Nano 230, New York, NY, USA) at 10 kV
accelerating voltage. Cross-sectional surface analysis was performed by fracturing the
samples in liquid nitrogen and coating them in a platinum layer. The tensile properties of
the nanocomposites, with sample dimensions of 5 mm× 30 mm× 0.18 mm, were analyzed
using a universal test machine (UTM, Shimadzu, Kyoto, Japan) with a crosshead speed
of 1 mm/min, in accordance with the ASTM D882 standard. The dynamic mechanical
behavior of the composites was analyzed using dynamic mechanical analysis equipment
(Q800, TA Instruments, DE, USA), in accordance with the ASTM D4065 standard. The
measurements were carried out in multi-frequency strain mode using a tension film clamp
within the temperature range of 40 ◦C–150 ◦C, at a heating rate of 3 ◦C/min and a frequency
of 1 Hz.

The antibacterial activities of the nanocomposites were investigated using Gram-
negative E. coli (ATCC 25922). The bacterial strain of E. coli (ATCC® 25922™) from a stock
was streaked onto a Luria–Bertani (LB) agar plate (Difco Generic LABWARE, Cadorago,
Italy) and incubated at 37 ◦C with 5% CO2. After 18 h of incubation, the isolated colonies
that appeared were inoculated into 10 mL of LB medium (Difco Generic LABWARE,
Cadorago, Italy ), incubated at 37 ◦C, and stirred at 150 rpm until the logarithmic growth
phase was achieved with a concentration in the range of 107–108 colony-forming units
(CFU)/mL. Approximately 100 µL, at a concentration of 108 CFU/mL, of the bacterial
suspension was added to the surface of the PVA–TrGO nanocomposites. Bacterial cells
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were dispensed on empty Petri dishes as the control. After the treatment, the bacterial
solution on the nanocomposite surface was successively diluted 101–106 fold in sterile
phosphate-buffered saline (PBS) and cultured on LB agar plates. The cultured plates were
incubated at 37 ◦C with 5% CO2 for 18 h. The experiment was performed in triplicate for
accurate statistical analysis.

3. Results and Discussion
3.1. Structural and Chemical Characterization of Shellac-Derived TrGO

A structural analysis of TrGO was performed using XRD and Raman spectroscopy, and
the results are shown in Figure 2. The Raman spectra of TrGO displayed three main peaks:
a D-band (~1345 cm−1), a G-band (~1592 cm−1), and a broad 2D band (2300–3200 cm−1),
consistent with previous reports [22,30,31]. It was observed that the intensity ratio of the
D and G bands (ID/IG) was ~0.65, which was significantly lower than that previously
reported for rGO [22,32]. It is hypothesized that the thermal reduction of TrGO resulted
in lower structural disorder and an increase in in-plane crystallinity [33], whereby the
disordered structure and defects therein were removed. Furthermore, the XRD spectrum
of TrGO exhibited a diffraction peak at ~26.2◦, which corresponds to the presence of (002)
graphitic planes [34]. Using Bragg’s equation, the interplanar spacing (d) was estimated as
~0.334 nm, suggesting the efficient graphitization of the material. This result was clearly
supported by HR-TEM, as illustrated in Figure 2c,d. As shown in Figure 2c, the TrGO
nanosheets exhibited a smooth layered structure with a lateral dimension of ~2 µm. The
average lattice spacing was estimated as ~0.34 nm (Figure 2d, inset), which is in close
agreement with the interplanar spacing of the graphite lattice [33].
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Figure 2. Structural characterization of TrGO synthesized from shellac using (a) Raman spectra and (b) x-ray diffraction
spectra, (c) high-resolution TEM image (20,000×) of few-layered TrGO nanosheets, (d) magnified (150,000×) HR-TEM
image to validate the crystallinity of TrGO.

The high-resolution C−1s spectrum of TrGO was deconvoluted to investigate the pres-
ence of different oxygen-containing functional groups, and the results are shown in Figure
3a. The spectrum was deconvoluted into three main peaks, corresponding to C=C (sp2,
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284.4 eV), C–OH (hydroxyl, 285.3 eV), and C=O (carbonyl, 287.9 eV) [35]. These oxygen-
containing functional groups play a critical role in the homogeneous dispersion of TrGO in
the PVA matrix, which affects the mechanical strength of PVA–TrGO nanocomposites and
will be discussed later. As shown in Figure 3b–d, the elemental mapping of TrGO (C (red)
and O (green)) revealed the presence of carbon and oxygen in shellac-derived TrGO.
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3.2. PVA–TRGO Nanocomposites’ Properties
3.2.1. Structural Analysis

The chemical structure analysis of the PVA–TrGO nanocomposites was performed
using Fourier transform infrared (FTIR) spectra, and the results are presented in Figure 4a.
The appearance of a broad band (3000–3500 cm−1) in the pure PVA matrix was attributed
to the symmetrical stretching vibration of the hydroxyl group, which indicates strong
intermolecular and intramolecular hydrogen bonding [36]. Other absorption peaks were
assigned as follows: the peaks at 2940 cm−1 and 2910 cm−1 arose from asymmetric CH2
stretching [23,37], while those at 1730, 1326, 1256, and 1090 cm−1 were ascribed to C=O
stretching, O–H bending, C–H bending, and C–O stretching vibrations, respectively, of PVA
(Table 1). However, for the PVA–TrGO nanocomposites, the hydroxyl peaks systematically
decreased (from 3370 cm−1 to 3312 cm−1) with increasing TrGO concentration, indicating
the formation of hydrogen bonds between the hydroxyl groups of PVA and the oxygen-
containing functional groups of TrGO. Furthermore, the peak intensity increased with
increasing TrGO concentration up to 1.5 wt.%. The reduction in the peak intensity observed
for the PVA–TrGO-2 wt.% sample can be attributed to the decrease in hydrogen bonds,
which was caused by the agglomeration of TrGO sheets by strong van der Waals forces.
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Table 1. Band assignments of PVA–TrGO nanocomposites obtained from the FTIR spectra.

Band (cm−1) Assignments

1090 C–O Stretching, Epoxide Groups of PVA
1256 C–H Bending
1326 O–H Bending Vibration
1730 C=O Stretching

2910, 2940 Asymmetric CH2 Stretching
3000–3050 O–H Stretching

Figure 4b shows the WAXD patterns of the PVA–TrGO nanocomposites with different
TrGO concentrations. For the pure PVA matrix, the WAXD patterns exhibited three major
peaks at 19.7◦, 22.6◦, and 11.3◦, which represent the (101), (200), and (100) planes, respec-
tively [38–40]. As TrGO was introduced in PVA, the WAXD patterns showed diffraction
peaks similar to those of pure PVA, which implies that the TrGO sheets were homoge-
neously dispersed in the PVA matrix. Interestingly, the WAXD diffraction pattern for the
PVA–TrGO-2 wt.% sample exhibited the appearance and disappearance of the character-
istic peak of TrGO (002) and pure PVA (100), respectively, as shown by the red dotted
circle in Figure 4b. The development of TrGO peaks at such high concentrations can be
attributed to the agglomeration of TrGO nanosheets in the PVA matrix because of the
strong van der Waals interactions between the sheets. Still, the crystallinity of PVA was
attributed to hydrogen bonding with its branching chains [41]. The stacking of polymer
chains increases the WAXD peak intensity and has a strong influence on the crystallinity
and physicochemical properties of polymer nanocomposites [36]. As shown in Figure 4c,
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the crystallinity of PVA–TrGO nanocomposites increased up to TrGO concentrations of
1.5 wt.%, which was due to increased intermolecular interactions between the filler and
the matrix and resulted in enhanced mechanical properties. This phenomenon will be
discussed later.

3.2.2. Thermal Properties

DSC analysis was conducted to investigate the effect of TrGO concentration on the
thermal properties of the PVA–TrGO nanocomposites. The melting temperature (Tm),
crystallization temperature (Tc), and degree of crystallinity (%Xc) were calculated from the
exothermic heat flow curve, as shown in Figure 5. As listed in Table 2, the Tm and % Xc
values of the PVA–TrGO nanocomposites increased with increasing TrGO concentration
up to 1.5 wt.%, which was due to the cumulative effect of heat-shielding capability and
strong intermolecular interactions between the TrGO fillers and the polymer matrix [42–45].
Furthermore, the high surface-to-volume ratio and high surface energy of TrGO can also
increase the crystallization and chain mobility of PVA [36]. It is worth mentioning that the
discrepancy in the crystallinity fraction obtained from DSC and WAXD results has also
been shown in previous reports [46–48]. Especially for PVA–TrGO-2wt.% nanocomposites,
the deviation was quite significant, which can be attributed to the following factors: firstly,
DSC provides information from the whole sample, whereas WAXD retrieves information
within a few µm, hence is surface-sensitive. Thus, the inhomogeneous distribution of TrGO
nanofillers in the PVA matrix can lead to a different crystallinity fraction, but with a similar
trend [49], as observed here. Secondly, when the material undergoes thermal treatment
during DSC measurement, the temperature elevation promotes relaxation, which can cause
a partial structural recovery, leading to a deviation from the true crystallinity of the material,
as observed using WAXD. Furthermore, the DSC technique affects the nonequilibrium state
because of the inherent heating process, whereas the WAXD technique does not include
any strong interaction with the measured system, and the sample is not subjected to any
strong perturbation [48].

Table 2. DSC data and crystallinities of PVA–TrGO films with different TrGO concentrations.

TrGO Con-
centration

(wt.%)
Tc (◦C) Tm (◦C) ∆Hm

a Xc (%) b CI (%) c

0 183.43 212.23 29.44 21.23 34.2
0.1 187.65 216.77 40.5 29.2 40.89
0.5 191.36 219.78 43.15 31.11 47.04
1 193.56 219.95 43.39 31.28 51.04

1.5 195.14 221.91 45.51 32.81 57.1
2 192.06 219.23 45.03 32.47 32.42

a Enthalpies of the PVA–TrGO nanocomposites from DSC analysis software. b Calculated using Equation (2).
c Calculated using Equation (1).

The thermal stability of PVA–TrGO nanocomposites was also measured using TGA,
and the weight loss curves are shown in Figure 6a. As displayed in Table 3, up to a TrGO
concentration of 1.5 wt.%, the degradation temperature at the weight loss of 5% increased
gradually (Figure 6b) from 135 °C to 219 °C. This indicated that the high heat resistance
of TrGO contributes significantly to the thermal stability of PVA films [50]. However, for
the TrGO-2 wt.% sample, it decreased to 215 °C, which could be due to the high amount of
TrGO in the PVA matrix causing agglomeration of the TrGO sheets, and thus, a decrease
in heat resistance. The TrGO residue after thermal decomposition was found to increase
gradually with increasing TrGO concentration.
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3.2.3. Morphology

The reported FE-SEM images (Figure 7) show the cross-sectional morphology of the
fractured PVA–TrGO nanocomposites. For the pure PVA matrix, the surface appeared to
be highly porous, as shown in Figure 7a. However, for PVA–TrGO-1 wt.% (Figure 7b),
the surface exhibited a layered structure aligned in one particular direction and a notable
roughness, as observed earlier [51]. Interestingly, for the PVA–TrGO-1.5 wt.% sample,
the surface appeared to be smoother than that of the PVA–TrGO-1 wt.% sample. This
might be due to the stable dispersion of TrGO without significant aggregation, leading
to a smooth surface morphology. A homogeneous dispersion also improves the chemical
affinity between TrGO and PVA, which increases the interfacial interaction, resulting in
enhanced mechanical strength. However, when the TrGO concentration was increased
to 2 wt.%, as shown in Figures 7d and S2, local aggregation of the TrGO nanosheets in
the PVA matrix could be observed because of the development of strong van der Waals
attractive forces between the sheets due to the high TrGO concentration.
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3.2.4. Mechanical Properties

The tensile properties of the different PVA–TrGO nanocomposite samples were ana-
lyzed using a film tension test. As shown in Figure 8, the tensile strength and modulus
of the PVA–TrGO-1.5 wt.% sample were ~51.5 MPa and ~750 MPa, respectively, which
corresponds to ~98.7% and 97.4% increases, respectively, compared to those of the pure
PVA matrix (~25.9 MPa and 380 MPa, respectively). The elongation at break decreased
with an increasing TrGO concentration. It should be noted that the TrGO sheets are strong
and rigid units, and the distribution of these units within the PVA matrix enhanced certain
mechanical properties, such as stiffness and rigidity. This is because intermolecular inter-
actions, such as hydrogen bonding between oxygen functional groups in TrGO and –OH
groups in PVA, were induced, as shown in Figure 9. However, at the high concentration
of 2 wt.% TrGO, the tensile properties deteriorated significantly because of TrGO agglom-
eration caused by van der Waal forces. As shown in Figure 10, the increase in the tensile
properties of the presently investigated PVA–TrGO nanocomposites was compared with
previously published results. Aslam et al. reported that addition of 0.02 wt.% of rGO to a
PVA matrix enhanced the tensile strength and modulus by 71.4% and 12.5%, respectively,
when compared to the control sample [52]. Mo et al. reported that addition of 10 wt.%
of rGO in a PVA matrix enhanced the tensile strength and modulus by 66.4% and 21.7%,
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respectively [38]. Li et al. prepared PVA–rGO-3 wt.% nanocomposites by a solvothermal
reduction process and reported a 53% and 52.6% increase in the tensile strength and mod-
ulus, respectively [53]. In addition, Yang et al. reported that the introduction of 3.5 wt.%
graphene into a PVA matrix also improved the tensile strength and modulus by 31.8%
and 15.5%, respectively [51]. However, in this study, tensile strength and modulus of the
nanocomposite were improved by 98.7% and 97.4%, respectively, significantly more than
what reported previously.
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The dynamic mechanical properties of the PVA–TrGO nanocomposites were used to
investigate the elastic stiffness as a function of temperature. As shown in Figure 11a, the
PVA–TrGO nanocomposites exhibited a systematic increase in the storage modulus (E’)
with increasing TrGO concentration. In particular for the PVAy-TrGO-1.5 wt.% sample,
E’ increased to ~5.32 GPa, which represents a 69% improvement compared to that of the
pure PVA matrix (3.15 GPa). The glass transition temperature (Tg) was also determined
from the peak temperature of the tan δ curves and is shown in Figure 11b. As expected,
for the PVA–TrGO-1.5 wt.% sample Tg increased to 93.6 °C, which represents a ~7.4%
improvement compared to that of the pure PVA matrix (87.2 °C), which was ascribed
to the strong attachment of TrGO to the pure PVA matrix, leading to increased rigidity
(Figure 8b).
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3.2.5. Antibacterial Activity

To investigate the potential of PVA-TrGO nanocomposites for biomedical applications,
the antibacterial activity of the PVA–TrGO-1.5 wt % sample was studied. This sample
was chosen because it exhibited the best thermal and mechanical properties among all
samples. Pathogenic bacterial strains of Gram-negative E. coli (ATCC®25922™) were
used to evaluate the antibacterial activity by calculating the CFUs. Figure 12a–c shows
the viability loss of the bacteria after 3 h of incubation with pure PVA, pure TrGO, and
PVA–TrGO-1.5 wt %. Quantitative analysis based on CFUs, as illustrated in Figure 12d,
indicated significantly reduced bacterial activity in the case of PVA–TrGO nanocomposites,
showing an impressive ~3.5 log, which represents more than 96% reduction of E. coli
viability, while the pure PVA matrix exhibited negligible antibacterial properties. The high
antibacterial activity of the nanocomposites can be attributed to either of the following
explanations: (a) direct contact of the bacteria with the edges of TrGO, which were able to
pierce the cellular membrane, or (b) wrapping of TrGO around the bacteria thanks to its two-
dimensional structure, which prevented nutrient uptake by the bacteria, resulting in cell
death [54,55]. The relatively lower antibacterial activity of pure TrGO flakes with respect
to the PVA–TrGO nanocomposite can be attributed to its strong tendency for aggregation
due to the presence of strong van der Waals interactions between the nanosheets [56]. This
restacking tendency of TrGO nanosheets causes the loss of its two-dimensional properties,
leading to lower antibacterial activity with respect to homogeneously dispersed TrGO in a
PVA matrix [57]. These results suggest that the PVA–TrGO nanocomposites, with superior
mechanical and antibacterial properties, have the potential to become important materials
in several biomedical applications.
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polymer matrix, (b) pure TrGO, and (c) PVA–TrGO 1.5wt % nanocomposite toward Escherichia coli
(ATCC®25922™) and (d) number of E. coli viable bacteria, calculated from CFU. Three independent
measurements were performed for statistical analysis.

4. Conclusions

In conclusion, shellac-derived TrGO was synthesized by a single-step thermal reduc-
tion process and exhibited homogeneous dispersion in a PVA matrix, allowing for simple
solution casting to produce PVA–TrGO nanocomposites. The homogeneous dispersion of
TrGO throughout the PVA matrix is attributed to the presence of strong hydrogen bonds
between the hydroxyl groups of PVA and the oxygen-containing functional groups of
shellac-derived TrGO, resulting in enhanced thermal and mechanical properties. In partic-
ular, in the samples containing 1.5 wt % TrGO, the tensile strength, tensile modulus, and
storage modulus of the PVA–TrGO nanocomposites were increased by ~98.7%, ~97.4%,
and ~69%, respectively. Furthermore, the nanocomposite also showed superior bacte-
ricidal performance, showing more than 96% antibacterial effectiveness towards E. coli,
compared to the pure PVA matrix. These findings suggest that shellac-derived TrGO can be
used as a reinforcement material for the synthesis of polymer nanocomposites for various
biomedical applications.
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