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Abstract. A subset of mRNAs, polyribosomes, and 
poly(A)-binding proteins copurify with microtubules 
from sea urchin embryos. Several lines of evidence in- 
dicate that the interaction of microtubules with ribo- 
somes is specific: a distinct stalk-like structure ap- 
pears to mediate their association; ribosomes bind to 
microtubules with a constant stoichiometry through 

several purification cycles; and the presence of ribo- 
somes in these preparations depends on the presence 
of intact microtubules. Five specific mRNAs are en- 
riched with the microtubule-bound ribosomes, indicat- 
ing that translation of specific proteins may occur on 
the microtubule scaffolding in vivo. 

I 
N many embryos, the pattern of development that fol- 
lows fertilization can be traced back to the localization 
of developmental determinants in the egg cytoplasm 

(Wilson, 1925; Davidson, 1986). The inheritance of a 
specific subset of mRNAs and proteins provides the macro- 
molecular blueprints for the construction of diverse cellular 
forms with unique functions. In many cases, the compart- 
mentalization of developmentally significant mRNAs is 
thought to occur through an association with the cytoskele- 
ton. Similarly, in somatic cells, the cytoskeleton provides a 
network upon which individual mRNAs can be arranged in 
a three-dimensional pattern. The localized synthesis of 
specific proteins may have important consequences for the 
intrinsic regulation of cell fate and the specification of cellu- 
lar domains such as axons and dendrites. All the major 
cytoskeletal structures, microtubules, microfilaments, and 
intermediate filaments, have been implicated in the targeting 
and transport of mRNA (reviewed by Jeffery, 1989; Fulton, 
1993; Singer, 1992; Steward and Banker, 1992; Suprenant, 
1993; Wilhelm and Vale, 1993). 

Of the cytoskeletal elements, microtubules are especially 
well designed for mRNA localization. Microtubules are 
asymmetric with a fast-growing (plus) and slow-growing 
(minus) end. Within the cell, microtubules are generally or- 
ganized with their minus ends embedded in a microtubule 
organizing center and their plus ends oriented radially to- 
wards the cell periphery (Euteneuer and Mclntosh, 1981; 
Haimo and Telzer, 1981). Along this organized network, 
dynein and kinesin generate the forces necessary for micro- 
tubule-based transport towards the minus or plus ends, re- 
spectively (Gibbons and Rowe, 1965; Vale et al., 1985; Lye 
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et al., 1987; Paschal et al., 1987). Finally, the rapid turnover 
rates, provided by dynamic instability (Mitchison and Kirsch- 
ner, 1984), allow microtubule arrays to be rapidly changed 
into dramatically new configurations during the transition 
from interphase to mitosis. Taken together, these unique 
properties of microtubules provide a highly organized and 
yet dynamic network for the anchoring and distribution of 
mRNA to a given region of an egg or embryo. 

Recent evidence indicates that specific mRNAs are local- 
ized and transported within oocytes and embryos in a 
microtubule-dependent manner. Microtubules are involved 
in the transport of Vgl RNA to the vegetal hemisphere of 
stage IV Xenopus oocytes (Yisraeli et al., 1990) and the 
perinuclear localization of cyclin B transcripts in synctial 
Drosophila embryos (Raft et al., 1990). The mRNA for the 
anterior morphogen, bicoid, is transported from the nurse 
cells to the anterior margin of the oocyte in a microtubule- 
dependent process (Pokrywka and Stephenson, 1991). Dur- 
ing the subsequent cellularization of Drosophila embryos, a 
network of microtubules sandwiches the RNA coding for the 
segmentation gene product fushi tarazu against the plasma 
membrane, thus acting as a physical barrier for the diffusion 
of a developmental determinant (Edgar et al., 1987). Finally, 
granules containing myelin basic protein mRNA appear to 
move along microtubule tracts in oligodentrocytic processes 
(Ainger et al., 1993). 

Specific localization signals in the mRNA itself may be re- 
quired for mRNA association with the cytoskeleton. For bi- 
coid, Vgl, and nanos (posterior Drosophila morphogen), lo- 
calization signals have been identified in the 3' untranslated 
region of the transcripts (Macdonald and Struhl, 1988; Gott- 
lieb, 1992; Gravis and Lehman, 1992; Mohry and Melton, 
1992; Macdonald et al., 1993). The 3' untranslated region 
of actin mRNA is both necessary and sufficient for the local- 
ization of ~-actin to the cell periphery and c~-actin to the 
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perinuclear region of cultured fibroblasts (Kislauski et al., 
1993). Each localization signal may have a cytoskeletal 
receptor that mediates attachment to and/or motility along 
a cytoskeletal track. Although such receptors have not been 
identified, possible candidates include RNA-binding pro- 
teins (Schwartz et al., 1992). In Drosophila, three additional 
genes, exuperantia, swallow, and staufen, appear to be 
necessary for the association of bicoid RNA with the 
cytoskeleton (Berleth et al., 1988; Stephenson et al., 1988; 
St. Johnston et al., 1989; Pokrywka and Stephenson, 1991). 
The products of these genes may be mRNA chaperones or 
anchors to the cytoskeleton. 

Messenger RNA may interact with the cytoskeleton 
directly, or through other components of the translational 
machinery, such as ribosomes or cytoplasmic ribonucleo- 
protein particles. In many cultured mammalian cells, clus- 
ters of ribosomes surround microtubules, and they are linked 
to the microtubule walls by short filaments (Wolosewick and 
Porter, 1976; Heuser and Kirschner, 1980; Ris, 1985). In 
hemipteran insects, ribosomes appear to move along micro- 
tubule tracks from the anterior ovarioles to the developing 
oocytes (reviewed in Stebbings, 1986). In the mitotic ap- 
paratus, ribosome-like particles are attached to adjacent mi- 
crotubules by fine filamentous arms (Goldman and Rebhun, 
1969; Salmon and Segall, 1980; Silver et al., 1980; 
Hirokawa et al., 1985; Suprenant et al., 1989). 

We have developed a novel model system to study how and 
why components of the translational machinery interact with 
microtubules. Unfertilized sea urchin eggs are metabolically 
quiescent cells that contain large stores of unassembled 
microtubule protein as well as maternal mRNAs, of which 
only 1-5 % are actively being translated. The ionic events at 
fertilization activate protein synthesis (reviewed by Rosen- 
thai and Wilt, 1987), and they promote the polymerization 
of microtubules (reviewed by Schatten, 1984). Both pro- 
cesses appear to be driven by the alkalinization of the cyto- 
plasm that occurs within minutes of fertilization (Grainger 
et al., 1979; Johnson et al., 1976; Dube et al., 1985; Schat- 
ten et al., 1985; Suprenant and Marsh, 1987). In addition, 
the association of translationally active poly(A) ÷ RNA with 
the cytoskeleton correlates with the activation of protein syn- 
thesis (Moon et al., 1983), indicating that the cytoskeleton 
may play a direct role in translational regulation in sea ur- 
chins. We discovered recently that microtubule assembly in 
egg extracts in vitro is also promoted by alkaline pH 
(Suprenant and Marsh, 1987). These purified microtubules 
are decorated with densely stained particles that we charac- 
terized as monoribosome-like on the basis of their size, 
RNase sensitivity, and sedimentation in sucrose gradients 
(Suprenant et al., 1989). In selected sections prepared for 
electron microscopy, the ribosome-like particles are at- 
tached to the microtubule wall by a long, tapered stalk (Su- 
prenant et al., 1989). This microtubule-ribosome complex 
is stable, and it can be repetitively assembled and disas- 
sembled. 

In this report, we demonstrate that ribosomes associate 
with microtubules, and their association may be develop- 
mentally regulated, as polyribosomes rather than monoribo- 
somes are associated with microtubules purified from two- 
cell embryos. We have developed methods to purify these 
polyribosome-microtubule complexes with intact messenger 
RNA molecules. Specific poly(A) ÷ RNAs are enriched in 

these microtubule preparations, and they can be translated 
into polypeptides in vitro. This reconstituted system should 
prove valuable for dissecting how mRNAs and proteins are 
targeted to the cytoskeleton. 

A brief account of these results has appeared in abstract 
form (Suprenant, K. A., and J. Drawbridge. 1991. J. Cell 
Biol. 115:341a). 

Materials and Methods 

Experimental Materials and Solutions 

Sea urchins, Strongylocentrotuspurpuratus, were purchased from Marinus, 
Inc. (Long Beach, CA). All nucleotides and analogues were purchased from 
Boehringer Mannheim Biochemicals (Indianapolis, IN). Ultrapure phenol 
was obtained from Gibco BRL (Gaithersburg, MD). Placental RNasin and 
nuclease-treated, rabbit reticulocyte lysate were purchased from Promega 
(Madison, WI) and Ambion, Inc. (Austin, TX). Primary antibodies were 
obtained from the following sources: anti-tubulin (DMIA) and anti-actin 
(C4) from ICN ImmunoBiologicais (Lisle, IL); anti-cytokeratia (BT-571) 
from Biomedical Technologies (Stoughton, MA); anti-kinesin (SUK4) 
from J. Scholey (University of California, Davis, CA); anti-dynein (71-4.2) 
from D. Asai (Purdue University, Lafayette, IN); anti-ribosome (40S) and 
anti-PABPs from M. Winkler (University of Texas, Austin, TX). These an- 
tibodies were used at the following dilutions: DM1A (1:1000); C4 (1:250); 
BT-571 (1:200); SUK4 (1:500); 71-4.2 (1:500); anti-ribosome (1:500); and 
anti-PABP (1:500). Secondary antibodies were purchased from Zymed 
Laboratories, Inc. (South San Francisco, CA). All other reagents were ob- 
tained from the Sigma Chemical Co. (St. Louis, MO) and Research Or- 
ganics (Rochester, NY). RNase-free glassware and plasticware were used 
throughout this study. 

Gametes and Embryo Culture 

Eggs and sperm were obtained by intracoelomic injection of 0.55 M KC1. 
Sperm were collected "dry" and stored on ice until needed. Eggs were shed 
into MiUipore-filtered Instant Ocean (MF-IO) artificial sea water (Aquar- 
ium Systems, Mentor, OH), and were harvested by gentle centrifugation 
(100 g, 2 min). After three washes in artificial sea water, egg jelly coats were 
removed in "19:1" (500 mM NaCI, 27 mM KC1, 2 mM EDTA, pH 7.8). 

Sea urchin eggs were fertilized in MF-IO, gently centrifuged (100 g, 2 
min), and resuspended in Ca++-free artificial sea water (Salmon, 1982), 
containing 10 t~g/ml pronase, 1 mM DTT, and 17 mM MgC12 (Silver et 
al., 1980). After 15 min, the fertilization envelopes were removed by filtra- 
tion through a 153-/~m mesh nylon. The embryos were cultured in Ca ++- 
free sea water at 14"C with gentle stirring. Two-cell embryos ('~2 h after 
fertilization) were concentrated by centrifugation (100 g, 2 min). 

Ribosome Isolation 

Ribosomes were isolated from unfertilized sea urchin eggs by preparative 
sucrose step gradients exactly as described (Hille and Danilchik, 1986). 

Microtubule Protein Isolation 

Microtubule protein was isolated from unfertilized sea urchin eggs by the 
pH and temperature-dependent assembly methods of Suprenant and Marsh 
0987), as modified by Suprenant et al. (1989). 

Microtubule protein was isolated from two-cell embryos as described 
above with the exception that 2 mM DTT, 100 ~M emetine, and 500 U/ml 
RNasin were included in the lysis buffer. The microtubule reassembly buffer 
additionally contained 30 U/mi RNasin, 2 mM DTT, and 100/~M emetine. 
After three cycles of assembly and disassembly, purified microtubule pro- 
tein was drop-frozen in liquid nitrogen and stored at -80°C. 

Electron Microscopy 

Micmtubule pellets were fixed and embedded for thin sectioning as previ- 
ously described (Suprenant and Marsh, 1987). 

Micmtubules were prepared for negative staining under three different 
solution conditions. In the first method, microtubule protein was diluted 
into PMEG (100 mM KPipes, I mM MgSO,,, I mM EGTA, and 1 mM 
GTP) and assembled into micmtubules for 15-20 rain at 30°C. In the sec- 
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ond method, microtubnles were assembled in PMEG in the presence of 20 
#M taxol (Vallee and Collins, 1986). For the third preparation, microtu- 
bules were assembled in PMEG and fixed with 1% glutaraldehyde. For 
quantitation, two methods of negative staining for electron microscopy were 
used. In the first method, freshly cleaved mica sheets were lightly coated 
with carbon by vacuum evaporation (Valentine et al., 1968). The carbon 
film was floated on top of a 1-ml suspension of assembled microtubnles. Af- 
ter 2 min, the carbon film was retrieved with the mica sheet and transferred 
to the negative stain (2% aequeous uranyl acetate) for 1 rain. The carbon 
film was recovered on a copper electron microscope grid and air dried. In 
the second method, Formvar-coated grids were coated with a thin layer of 
vacuum-evaporated carbon. After ionizing the surface by glow discharging, 
the grids were inverted on top of a 50-#1 mierotubule suspension for 2 rain. 
The grids were gently rinsed three times with distilled water and negatively 
stained for 1 rain on a drop of 2% aequeous uranyl acetate. Grids were air 
dried and viewed with an electron microscope (JEN-1200 EXII; JEOL 
U.S.A., Inc., Peabody, MA) at 80 kV. 

The criteria used to quantitate the numbers of bound ribosomes to 
microtubules were modeled after previous studies of microtubule-bound 
adenovirus particles (Weatherbee et al., 1977). Electron micrographs were 
taken at a total magnification of 40,000 (approximate field of view = 4.5 
#m2), and microtubule length measurements were done on enlargements 
(x300) of randomly selected images. Ribosomes were presumed to be at- 
tached to a microtubule if they were +4 nm from the microtubnle edge. 
FOr each data set, measurements were made on •75-100 randomly selected 
microtubules. Each experiment was done in triplicate. ANOVA and the Stu- 
dent's t test were used to analyze each data set. 

Protein, RNA, Poly(A) Analysis, and 
In Vitro Translation 
Protein concentrations were determined by the method of Lowry et al. 
(1951) with bovine serum albumin as a protein standard. 

RNA was isolated by proteinase K digestion in the presence of SDS, fol- 
lowed by phenol-chloroform extraction and ethanol precipitation (Winlder 
et al., 1985). Precipitated RNA was dissolved in a small volume of RNase- 
free water, and the total RNA concentration was determined by OD260. 
Poly(A) + RNA concentration was determined by a [3H]POly(U) hybridiza- 
tion assay. The fraction of poly(A) (percent of poly(A)) is expressed as the 
ratio of poly(A) (as determined by hybridization to [3H]poly(U)) to total 
RNA (as determined by OD260 readings). 

RNA was translated in vitro in a message-dependent rabbit reticulocyte 
lysate (Pelham and Jackson, 1976) (Ambion, Inc., Austin, TX). [35S]- 
Methionine-labeled polypeptides were resolved on 4-16 % acrylamide gels 
(below). Autoradiography of dried gels was done on XAR film (Eastman 
Kodak Co., Rochester, NY). 

SDS-PAGE and Western Blotting 
Proteins were analyzed on SDS-PAGE with the discontinuous buffer formu- 
lation of Laemmli (1970). For Western blot analysis, unstained gels were 
transferred to nitrocellulose (Towbin et al., 1979) and processed as previ- 
ously described (Suprenant et al., 1993). Quantitation was by scanning den- 
sitome .t=ry using known concentrations of purified ribosomes as a standard. 

Results 

Ribosomes Are Attached to Egg Microtubules 
Assembled In Vitro 
While developing a method for the purification of microtu- 
bule protein from unfertilized sea urchin eggs (Suprenant 
and Marsh, 1987), we discovered that purified egg microtu- 
bules are decorated with ribosome-like particles (Suprenant 
et al., 1989). These monoribosomes are attached directly to 
the microtubule wall by a long tapered stalk (Fig. 1; and 
Suprenant et al., 1989), and it is believed that this attach- 
ment is essential for their copurification with microtubules. 

To determine what percentage of the egg's ribosomes 
copurify with these microtubules, we probed immunoblots 
with a polyclonal antiserum generated against the sea urchin 
40S ribosomal subunit (Drawbridge et al., 1990). On West- 

ern blots, this antiserum recognized predominantly a 40-kD 
polypeptide in both crude cytosolic extracts and purified 
microtubule preparations (Fig. 2). We estimated that 1-3 % 
of the total ribosomes copurified with microtubules, which 
in turn comprise 1-3 % of the soluble egg protein. 

Quantitation of Microtubule-associated Ribosomes in 
Unfertilized Egg Preparations 
A specific structural interaction between a ribosome and a 
microtubule would be reflected in a constant stoichiometry 
of binding. To accurately determine the number of ribo- 
somes bound to microtubules under a variety of experimen- 
tal conditions, a quantitative EM method was developed. 
Several methods of sample preparation, microtubule stabili- 
zation, and negative staining for electron microscopy were 
used to determine the most reproducible method for analy- 
sis. Initially, microtubules (2-4 mg/ml) were negatively 
stained with aqueous uranyl acetate on either a Formvar or 
carbon film support (see Materials and Methods). It was de- 
termined that 9.83 + 1.45 and 9.36 5:1.38 ribosomes were 
bound per micron of assembled microtubules that were nega- 
tively stained on carbon or Formvar films, respectively. 
Since there were no significant differences in these numbers, 
the Formvar method was chosen because it used much less 
protein and it produced high quality images. 

At 2-4 mg/ml, microtubules were frequently tangled into 
large unquantifiable mats on the EM grid. To dilute the 
microtubule protein further (0.2-0.4 mg/ml), it was neces- 
sary to stabilize the microtubules against disassembly with 
either a fixative, glutaraldehyde, or the microtubule-stabiliz- 
ing drug, taxol. Comparable numbers of ribosomes were as- 
sociated with microtubules that were unfixed, glutaralde- 
hyde fixed, or taxol stabilized, although there was a slightly 
larger statistical variance in the data obtained in the glutaral- 
dehyde-fixed or taxol-stabilized microtubules (Table I). The 
number of ribosomes associated with egg microtubules un- 
der all the assay conditions ranged from 7 to 10 ribosomes 
per micrometer of microtubule. 

The association of ribosomes with microtubules is not de- 
pendent on the presence of a motor protein such as dynein 
or kinesin. To examine the possible nucleotide requirements 
for ribosome association, taxol-stablilized microtubules 
were incubated in the presence and absence of several Mg 
nucleotides (ATP, ADP, AMP, ATP,yS, AMPPNP, GTP, 
UTP, CTP, and ITP), and sedimented through a 20% 
(wt/vol) sucrose cushion. In the presence of 20 #M taxol and 
2-10 mM Mg nucleotide, there were no significant differ- 
ences in the number of microtubule-bound ribosomes, as as- 
sayed by immunoblotting (data not shown). In addition, we 
were unable to detect any cross-reactivity by immunoblot- 
ting of purified microtubule protein with either the SUK-4 
or the 71-4.2 antibodies against kinesin and dynein, respec- 
tively (kindly provided by J. Scholey, University of Califor- 
nia, Davis, CA, and D. Asai, Purdue University). 

Polyribosomes Are Associated with Microtubules 
Purified from Two-ceU Embryos 
In addition to identifying the molecular components respon- 
sible for ribosome binding, we are also interested in what 
mRNAs may be associated with these microtubules assem- 
bled in vitro. The rate of protein synthesis in the unfertilized 
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Figure L Electron micrograph of a third-cycle microtubule preparation from unfertilized sea urchin eggs. Arrow points to a single ribosome 
attached to the microtubule wall by a thin stalk. An enlargement of this region is shown in the lower right. Bar, 0.1 /~m. 

Figure 2. Ribosomal proteins copurify with microtubules isolated 
from unfertilized eggs. (A) Coomassie blue-stained gel of cytosolic 
extract proteins (lane 1 ) and purified microtubule proteins (lane 2). 
Molecular weight standards are shown to the left (x10-3). The po- 
sitions of c~- and B-tubulins, as well as the abundant 107-, 100-, and 
77-kD microtubule proteins are shown to the right. (B) Corre- 
sponding immunoblot probed with an anti-ribosomal antiserum 
generated against the 40S subunit (Drawbridge et al., 1990). The 
major polypeptide recognized by this antiserum is a 40-kD poly- 
peptide. 

egg is low, and after  ferti l ization, the rate of  protein synthesis 
increases 30-fold (Goust in and Wilt ,  1981). Consequently,  
there are many more  po ly r ibosome  complexes  in the zygote 
than in the unfert i l ized egg. To identify m R N A s  that may be 
associated with  microtubules ,  we have developed a method  
for the purif icat ion o f  a po ly r ibosome-micro tubu le  complex  
f rom two-cell  sea urchin embryos.  The  microtubule  purifica- 

Table L Quantitation of Ribosome Binding to Microtubules 

Numbers of 
ribosomes//,~m MT ANOVA 

PMEG 9.83 + 1.45 1.14 
9.36 + 1.38 

PMEG-taxol 7.65 + 1.94 4.37 
10.06 + 2.35 
5.46 + 0.91 

PMEG-glutaraldehyde 8.52 + 2.90 2.62 
7.07 + 1.92 
9.24 + 2.83 

Microtubules were either assembled in PMEG or PMEG-taxol, or they were 
assembled in PMEG and then fixed with glutaraldehyde. Each sample was nega- 
tively stained for electron microscopy and quantitated as described in Materials 
and Methods. The number of ribosomes bound per length of mierotubule 
(mean + SE for triplicate assays) and the ANOVA is shown for each experi- 
ment. MT, microtubule. 
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Figure 3. Electron micrograph of a third-cycle micrombule preparation from sea urchin embryos at the two-cell stage. In longitudinal section 
(A), clusters of polyribosomes (arrow) are interspersed with microtubules. In cross-section (B), a single polyribosome (arrowhead) con- 
tacts a single microtubule. Bar, 0.2 ~m. 



tion scheme developed for sea urchin eggs (Suprenant and 
Marsh, 1987; Suprenant et al., 1989) requires repeated cy- 
cles of temperature and pH changes over a 6-8-h period. 
This treatment frequently results in degradation of associated 
RNA. To stabilize mRNA in polyribosomes, emetine, an 
inhibitor of ribosome translocation, as well as placental 
RNasin, an RNase inhibitor, was included in the homogeniza- 
tion and assembly buffers (see Materials and Methods). 

Fig. 3 illustrates that the microtubules assembled under 
these isolation conditions appeared normal in both longitu- 
dinal and cross-sections. There was, however, an increase in 
the number of incomplete microtubules or S-shaped proto- 
filament sheets (see Fig. 3 B). This may be caused by the 
presence of RNasin, emetine, or the higher concentrations 
of DTT used to stabilize the placental RNasin. In addition 
to microtubules, polyribosome profiles were visible in both 
longitudinal and cross-sections (Fig. 3, A and B). In regions 
where the microtubules and ribosomes are tightly packed, it 
is difficult to see any attachments between the two organdies. 
In cross-section, the polyribosome complexes can occasion- 
ally be observed to contact a single microtubule at that level 
of section (see Fig. 3 B). In selected sections, ribosomes 
were aligned along the length of single microtubules. These 
ribosomes appear to be arranged periodically with a repeat 
distance of 28.2 + 2.9 nm (Fig. 4). It is not known whether 
these ribosomes are in a polyribosome structure or whether 
they are bound singly to a repeated structural component of 
the microtubule. Either way, this striking alignment of ribo- 
somes along the microtubule wall is indicative of a specific 
interaction. 

The Copurification of Polyribosomes Depends on 
Microtubule Integrity 
We considered the possibility that these polyribosomes were 
massive enough to pellet under the centrifugation conditions 
used to purify microtubules. To rule this out, third-cycle 
microtubules were assembled in the presence and absence of 
nocodazole, a microtubule assembly inhibitor, and cyto- 
chalasin D, an inhibitor of actin filament formation. Each 
microtubule preparation was centrifuged through a 30% su- 
crose cushion, and the pellets and supernatants were ana- 
lyzed by SDS-PAGE and Western blotting (Fig. 5). Under 
conditions where microtubule assembly was prevented, 
polyribosomes did not sediment. 

The major messenger RNA-binding proteins in sea urchin 
are two poly(A)-binding proteins of 80,000 and 66,000 Mr 
(Drawbridge et al., 1990). Both the 80- and 66-kD poly(A)- 
binding proteins (PABPs) 1 are found in these third-cycle 
microtubule pellets, indicating that mRNA may be present 
in these complexes. Fig. 5 shows that, like ribosomes, 
sedimentation of PABPs is dependent on microtubule in- 
tegrity. Cytochalasin D has little effect on the sedimentation 
of PABPs, ribosomes, or microtubule protein. 

In addition to the inhibitor studies, Western blots were 
done to determine if there were any intermediate filament- 
like polypeptides in these microtubule preparations (Fig. 6). 
Low levels of a cytokeratin-like polypeptide were detected 
in these microtubule-ribosome complexes. No actin was de- 

1. Abbreviations used in this paper: EMAP, echinoderm microtubule- 
associated protein; PABPs, poly(A)-binding proteins. 

tectable in these preparations, which is consistent with the 
results of the cytochalasin experiments described above. 

Limiting Factor for Ribosome Binding 
There is a limit to the quantity of ribosomes that associate 
with microtubules assembled in vitro (Fig. 7). Increasing the 
amount of polymerized microtubules does not increase the 
quantity of sedimentable ribosomes. Aliquots of two-cell 
embryo extracts (39,000 g supernatants) were incubated in 
the presence of increasing amounts of phosphocellulose- 
purified brain tubulin. Polymerized microtubules were 
pelleted and analyzed by SDS-PAGE and immunoblotting. 
Increasing the amount of polymerized microtubules ap- 
peared to have no effect on the amount of cosedimenting 
ribosomes (Fig. 8). Identical results were obtained with the 
addition of purified sea urchin egg tubulin (data not shown). 

Translational Status of 
Microtubule-nssoclated Ribosomes 

To examine the translational status of the purified polyribo- 
somes, microtubules from two-cell embryos were purified by 
two cycles of pH- and temperature-dependent assembly and 
disassembly in the presence of emetine, cycloheximide, NaF, 
or puromycin. In all cases, the translational inhibitors did 
not affect the amount of ribosomes obtained (Table I/). These 
results indicate that stable polyribosomes were preformed 
before their association with the assembled microtubules. 

To determine whether the polyribosomes were actively 
translating any message, microtubule-bound polyribosome 
complexes were translated in vitro in a nuclease-treated 
reticulocyte lysate. Few detectable polypeptides were trans- 
lated from the microtubule-associated polyribosomes (data 
not shown). These results indicate that the template activity 
of the microtubule-associated messages may be modulated 
by constituents or a general inhibitor of translation. The lat- 
ter case is more likely since the microtubule preparation will 
dramatically reduce the translation of control Xef-1 RNA in 
a rabbit reticulocyte lysate (Fig. 9). 

Specific Messenger RNA Molecules Are Enriched in 
Two-ceU Embryo Microtubules 
The presence of polyribosomes and PABPs indicate that 
mRNA may be a specific component of these microtubule 
complexes. To determine whether poly(A) ÷ RNAs are tar- 
geted to microtubules, total RNA was prepared from two- 
cell embryo extracts and from purified microtubules. Cow 
sidering the amount of time that a microtubule preparation 
takes and the elevated temperatures required for the assem- 
bly of microtubules, it was difficult to retain intact mRNAs 
during purification. To achieve this goal, emetine, an inhibi- 
tor of ribosome translocation, and RNasin, an inhibitor of 
RNases, were included in all of the microtubule assembly 
buffers. In addition, an RNase-free environment, with baked 
glassware, sterile plasticware, and autoclaved solutions, was 
created. 

Microtubules purified from two-cell embryos contain 
large amounts of RNA that can be purified by phenol- 
chloroform extraction. The bulk of this RNA is ribosomal; 
however, a [3H]poly(U) hybridization assay indicates that 
poly(A) tails comprise 0.02 % of the total microtubule- 
associated RNA (by mass). On the basis of an average mes- 

The Journal of Cell Biology, Volume 127, 1994 978 



Figure 4. Higher magnification electron micrograph of a third-cycle microtubule preparation from two-cell embryos. In several places, 
ribosomes are lined up along the walls of a microtubule (arrowheads) with a distinct periodicity (28 + 2.9 nm). Bar, 0.2/~m. 
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Figure 5. Sedimentation of polyribosomes requires microtubules. 
Microtubule protein (m) was diluted to a final concentration of 2 
mg/ml in the presence of 1 x 10 -~ M nocodozole (noc), 25/,g/ml 
cytochalasin (cyt), or 1% (vol/vol DMSO (con), the drug control 
vehicle. Samples were warmed to 30°C for 30 min to polymerize 
microtubules and were then centrifuged (39,000 g for 30 min at 
30°C) through a 30% (wt/vol) sucrose cushion. Equal volumes of 
the supernatants (s) and resuspended pellets (p) were separated on 
an 8 % polyacrylamide gel and were stained with Coomassie blue 
(.4). (B and C) Corresponding Western blots probed with antisera 
against the 40-kD ribosomal protein and 66- and 80-kD PABPs, 
respectively. 

sage size of 2,000-3,000 nucleotides with a 50-nucleotide 
poly(A) tract (Davidson, 1986), we estimate that 0.5-0.9% 
of the total microtubule-associated RNA is mRNA. Five 
times more poly(A) ÷ RNA is associated with microtubules 
purified from two-cell embryos than from unfertilized eggs 
(Table III). 

The translation of unique polypeptides from microtubule- 
associated RNA would indicate that specific mRNAs are en- 
riched in these microtubule complexes. Messenger RNAs 
were translated into [35S]methionine-labeled polypeptides 
in a message-dependent, rabbit reticulocyte lysate (Fig. 
10). Total RNA purified from two-cell embryo extracts trans- 
lates into numerous polypeptides ranging from 20,000 to 
>200,000 Mr. An equal quantity of microtubule-associated 

Figure 6. Microtubule preparations from two-cell embryos contain 
traces of a cytokeratin-like polypeptide and no detectable actin. 
Cytosolic extract (e) and microtubule protein (m) were separated 
by SDS-PAGE (A) and were immunoblotted with anti-tubulin (B), 
anti-actin (C), and anti-cytokeratin antibodies (D). The positions 
of ot-tubulin (tu), actin (ac), and cytokeratin (cy) are marked. 

Figure 7. Limiting factor for ribosome binding. Sea urchin microtu- 
boles were coassembled in two-cell embryo extracts in the absence 
(lane 1) and presence of 0.5 mg (lane 2) and 1.0 mg (lane 3) 
phosphocellulose-purified bovine brain tubulin. The coassembling 
polypeptides were analyzed by SDS-PAGE (A) and by immunoblot- 
ting (B) with antibodies against ot-tubulin and the 40-kD polypep- 
tide from the 40S ribosomal subunit. 

RNA also translated into numerous polypeptides spanning 
the same relative molecular mass range. Significantly, there 
are at least five labeled polypeptides that are highly enriched 
in the microtubule preparation. These polypeptides have rel- 
ative molecular masses of 89, 77, 57, 51, and 39 kD. The 
identity of these polypeptides is not known at this time. 

Discussion 

There is a long history of observations of messenger RNA 
associations with cytoskeletal elements in various cell types 
(reviewed by Jeffery, 1989; Fulton, 1993; Singer, 1992; 
Steward and Banker, 1992; Suprenant, 1993; Wilhelm and 
Vale, 1993). Most of these observations have been based on 
the isolation of crude cytoskeletal preparations by subcellu- 
lar fractionation of mechanically disrupted or detergent- 
extracted cells. The prevailing approach has been to prepare 
detergent extracts of whole cells, to call this a cytoskeleton, 
and to identify any polyribosomes remaining as "cytoskeletal 
associated" While these approaches were important and pi- 
oneering (Lenk et al., 1977), they are also very difficult to 
control for artifacts. In this report, we have demonstrated 
that we can purify and reconstitute a microtubule-poly(A) ÷ 
RNA-ribosome complex in sufficient quantity to permit bio- 
chemical analysis. This preparation should prove invaluable 
for dissecting which mRNA molecules interact with micro- 
tubules in vivo, and for the identification and characteriza- 
tion of molecular components involved in their localization. 

Ribosomes copurify with microtubule preparations from 
unfertilized sea urchin eggs through repetitive cycles of 
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Figure 8. Quantitation of the amount of ribosomes that copurify 
with increasing amounts of microtubules. Histogram of the immu- 
noblotting data presented in Fig. 7. With the addition of 0.5 and 1.0 
mg brain tubulin, the amount of sedimentable tubulin in the form 
of microtubules doubles. In contrast, the amount of sedimentable 
ribosomal protein remains constant. 

Table II. Percentage of  Total Two-cell Ribosomes 

Control Emetine Cycloheximide NaF Puromycin 

1 .0-3 .0  1.2-3.5 1 .5-4.3  1 .5-4 .4  1 .4-4 .0  
n = 3  n = 3  n = 2  n = 3  n = 2  

Quantitation of ribosome binding to microtubules in the presence of translational 
inhibitors. Immunoblotting was used to determine the fraction of the total ribo- 
somes that copurified with microtubules in the absence and presence of 100 #M 
emetine, 20 #g/ml cycloheximide, 10 mM NaF, or 500 #g/ml puromycin. 

Table I11. Percentage of Poly(A) RNA/Total RNA 

Unfertilized egg Two-cell embryo 

Cytosolic extract 0.023 0.090 
HIP 0.013 0.056 
H2P 0.004 0.020 

Quantitation of the percentage of poly(A) RNA in microtubule preparations from 
unfertilized eggs and two-cell embryos. The percent of poly(A)RNA/total RNA 
was calculated as described in Materials and Methods for the starting extracts 
and first cycle (H1P) and second cycle (H2P) mierotubule pellets. 

temperature- and pH-induced assembly and disassembly. 
Their microtubule association is mediated by ionic interac- 
tions, and in selected thin sections, a long tapered stalk can 
be observed to connect the two organelles (this report; and 
Suprenant et al., 1989). Because the stalk is trypsin sensitive 
and RNase resistant (Suprenant et al., 1989), it is believed 
to be composed principally of  protein. Well-defined protru- 
sions are visible on three-dimensional reconstructions of  eu- 
karyotic ribosomes, and it is conceivable that these ribo- 
somes are attached to microtubules through a prominent 
stalk on the 60S subunit (Lake, 1985; Verschoor and Frank, 
1990). Circumstantial evidence suggests that the abundant 
77-kD echinoderm microtubule-associated protein (EMAP) 
may comprise part or all of the stalk (Suprenant et al., 1993). 
Ribosomes are associated with EMAP-containing microtu- 
bules, but not with EMAP-deticient microtubules. Moreover, 
microtubules extracted with moderate salt levels (0.35 M 
KC1) have neither ribosomes nor EMAPs associated with 
them (Suprenant et al., 1989, 1993). 

Only a small percentage of the eggs' ribosomes (<3 % by 
mass) copurify with the microtubules, suggesting that they 
may be a subset of distinct ribosomes or that there is a limit- 

Figure 9. Translation of XeF-1 
RNA is impaired in the presence 
of purified microtubule protein. 
(Lane 1 ) Xef-I RNA alone. (Lane 
2) Xef-1 RNA and two-cell 
microtubule protein. 

Figure 10. In vitro translation of 
microtubule-associated mRNA. 
Total RNA was purified by phe- 
nol-chloroform extraction from 
two-cell embryo extracts (lane b), 
as well as from microtubules 
purified from two-cell embryos 
(lane c). Equal amounts of RNA 
were translated in vitro in a mes- 
sage-dependent rabbit reticulo- 
cyte lysate in the presence of 
[35S]methionine. The translated 
polypeptides were separated by 
SDS-PAGE and autoradiographed. 
A 50-kD product (arrow) is pres- 
ent in the zero-message control 
(lane a), as well as the experi- 
mental samples (lanes b and c), 
and should be disregarded. Five 
polypeptides (with relative mo- 
lecular masses of 89, 77, 57, 51, 
and 39 kD) are enriched above 
background levels in the microtu- 
bule-derived RNA lane. 
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ing factor for their association. Although the conservation of 
ribosomes is often emphasized, the prototypical eukaryotic 
ribosome is composed of "o80 different proteins and four 
RNA species, and it is conceivable that transcriptional and 
translational mechanisms give rise to subpopulations of 
ribosomes during the life cycle of an organism. There are a 
few examples of organ-specific or stage-specific ribosomal 
proteins (Ramagopal, 1992; Etter et al., 1994), although it 
is not known how their function or regulation may differ. Per- 
haps the microtubule-associated ribosomes are specialized 
for protein and RNA targeting to the cytoskeleton. 

There are several lines of evidence that lead us to believe 
that the ribosome-microtubule interaction is specific: a dis- 
tinct morphological structure appears to mediate their as- 
sociation; they copurify with microtubules through several 
cycles of microtubule assembly and disassembly; they bind 
with constant stoichiometry; there is a limiting factor for 
binding; and their association appears to be developmentally 
regulated. It is unlikely that the ribosomes are nonspe- 
cifically trapped within a network of microtubules. Ribo- 
somes remain attached to microtubules in nearly the same 
ratio, whether they are associated with cycle-purified micro- 
tubules or taxol-stabilized microtubules. In the latter case, 
the microtubules were diluted 10-fold. If ribosomes were 
trapped, these associations would be reduced upon dilution. 
An additional argument against trapping is that we have 
purified microtubules (using the same methods as for sea ur- 
chins) from a variety of cells that contain large quantities of 
ribosomes (clam oocytes, mouse B16 cultured ceils, bovine 
brain), and yet these microtubule preparations do not con- 
tain ribosomes that we can detect in the electron microscope 
(Suprenant et al., 1993). 

Little protein synthesis occurs in the unfertilized egg 
cytoplasm, and this fact is reflected in the predominance of 
monoribosomes in our microtubule preparations. Occasion- 
ally, polyribosomes were associated with unfertilized egg 
microtubules, but this was probably caused by the activation 
of protein synthesis by the alkaline pH of the microtubule as- 
sembly buffer (Grainger et al., 1979; Johnson et ai., 1976). 
To obtain a preparation that consistently was composed of 
polyribosomes and microtubules, we developed methods to 
isolate microtubules from two-cell sea urchin embryos, a 
stage when protein synthesis has increased 30-fold over that 
in the unfertilized egg (Goustin and Wilt, 1981). At this stage 
of development, polyribosome-microtubule complexes can 
be routinely purified using multiple cycles of assembly and 
disassembly. 

The copurification of polyribosomes with two-cell micro- 
tubules was dependent upon the presence of microtubules, 
and, in selected sections, a single polyribosome cluster can 
be seen to directly contact a single microtubule. The bridges 
between ribosomes and microtubules in unfertilized egg 
microtubule preparations are not observed in two-cell em- 
bryo preparations. This may mean that the stalks are not 
present at the later stage. It is more likely, however, that the 
stalks are difficult to resolve because of the crowded packing 
of polyribosomes surrounding the microtubule. In the two- 
cell embryo microtubule preparations, these polyribosomes 
frequently appeared to be stretched out lengthwise along the 
microtubule wall with an axial periodicity of 28 + 3 nm. The 
periodicity of ribosomes in a fully-loaded sea urchin poly- 
some is 16-17 nm (Martin and Miller, 1983) suggesting that 

the longer axial periodicity along the microtubule wall may 
result from the interaction of ribosomes with a periodic 
structural component of the microtubules. 

There are several polypeptides in these microtubule prepa- 
rations that could be involved in ribosome binding. The most 
obvious candidate is the 77-kD EMAP (Suprenant et al., 
1993). It was shown previously that bovine brain MAPs bind 
to isolated ribosomes in a phosphorylation-dependent man- 
ner (Jessus et al., 1984a, 1984b). In addition, tau-like im- 
munoreactivity is detected on polyribosomes in both neu- 
ronal and glial cells (Papasozomenos and Binder, 1987), as 
well as in the nucleoli of human neuroblastoma cells 
(Loomis et al., 1990). These examples indicate that MAPs 
may interact directly with ribosomes. In addition to MAPs, 
we have detected a 50-kD cytokeratin-like polypeptide in 
these preparations. The cytokeratin-like polypeptide may be 
related to the 50-55-kD polypeptide found in isolated mi- 
totic apparatuses and detergent-resistant cytoskeletons (Ray- 
mond et al., 1987; Rebhun and Palazzo, 1988; Steffen and 
Linck, 1992). In many studies, polyribosomes appear to 
be associated with a detergent-resistant, intermediate fila- 
ment-rich cytoskeleton (Pachter, 1992; Jeffery, 1989). 

In addition to cytoskeletal proteins, these microtubule- 
ribosome complexes contain both the 66, and 80-kD PABPs 
of sea urchin eggs (Drawbridge et al., 1990). PABPs are 
highly conserved mRNA-binding proteins that participate in 
the regulation of message stability (Sachs, 1993). In sea ur- 
chin eggs, the level of PABPs is much greater than needed 
to bind all of the poly(A) tails in the cell, and it is tempting 
to speculate that PABPs also are involved in the localization 
of ribosomes and poly(A) + RNAs to the cytoskeleton. 

Nearly 6 % of the total RNA in the two-cell embryo can 
be phenol extracted from microtubules prepared at this 
stage. Although the bulk of the microtubule-associated RNA 
is ribosomal, significant amounts of mRNA were also de- 
tected. We identified five specific mRNAs that are highly en- 
riched in two-cell microtubule preparations. Although the 
identity of the polypeptide products of these messages is un- 
known, it is worthwhile to note that the relative molecular 
masses of tubulin and the major proteins that copurify with 
it are identical to the relative molecular masses of the in vi- 
tro translation products of the five microtubule-enriched 
mRNAs. One possibility is that the messages that copurify 
with microtubules code for microtubule proteins, and that 
their association with microtubules is mediated through na- 
scent chain targeting in the polyribosome complex (Singer, 
1992; Suprenant, 1993). It has been suggested that titin and 
the myosin heavy chain, two large cytoskeletal proteins, may 
be cotranslationally assembled in this manner into nascent 
myofibrils (Isaacs and Fulton, 1987; Isaacs et al., 1989). The 
inability of puromycin to block polyribosome association 
does not rule out the possibility of nascent chain targeting 
because stable polyribosomes may be preformed in the two- 
cell embryo before isolation and microtubule association. 

The poly(A) + RNA itself may contain a localization sig- 
nal that directs the polyribosomes to the microtubules. Lo- 
calization signals have been identified in the 3' untranslated 
region of several localized messages (Macdonald and Struhl, 
1988; Gottlieb, 1992; Gravis and Lehman, 1992; Mowry 
and Melton, 1992; Schwartz et al., 1992; Kislauski et al., 
1993; Macdonald et al., 1993). The microtubule-associated 
RNA may contain similar localization signals. It is not 
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known whether the microtubule-associated RNA binds 
directly to the microtubules or to a receptor such as RNA- 
and/or microtubule-binding proteins. 

Besides protein and/or mRNA targeting, microtubules 
may also be involved in ~anslational regulation of the mRNAs 
with which they are associated (reviewed in Suprenant, 
1993), perhaps in the autoregulation of/~-tubulin mRNA lev- 
els (Tbeodorakis and Cleveland, 1992). In the future, it will 
be important to identify the specific mRNAs associated with 
these microtubules to distinguish among these possibilities. 
The ability to isolate and reconstitute a complex of specific 
mRNAs, ribosomes, and microtubules provides the first step 
toward this direction. 
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