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The transcription factor OsSUF4 interacts with
SDG725 in promoting H3K36me3 establishment
Bing Liu1, Yuhao Liu1, Baihui Wang1, Qiang Luo1, Jinlei Shi1, Jianhua Gan2, Wen-Hui Shen 1,3, Yu Yu1 &

Aiwu Dong1

The different genome-wide distributions of tri-methylation at H3K36 (H3K36me3) in various

species suggest diverse mechanisms for H3K36me3 establishment during evolution. Here,

we show that the transcription factor OsSUF4 recognizes a specific 7-bp DNA element,

broadly distributes throughout the rice genome, and recruits the H3K36 methyltransferase

SDG725 to target a set of genes including the key florigen genes RFT1 and Hd3a to promote

flowering in rice. Biochemical and structural analyses indicate that several positive residues

within the zinc finger domain are vital for OsSUF4 function in planta. Our results reveal a

regulatory mechanism contributing to H3K36me3 distribution in plants.
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H istone lysine methylation, as one of the most studied
epigenetic marks, is evolutionarily conserved and plays an
essential role in regulating gene expression in eukaryotes,

ranging from single-celled yeast to multicellular animals and
plants. The presence of methylation on different lysine residues of
histones and the extent (mono, di-, and tri-) of methylation
represent distinct chromatin statuses that may subsequently affect
the accessibility of protein factors to target DNA to promote or
repress gene transcription1. Although histone lysine methylations
are conserved epigenetic marks, their genomic distributions vary
broadly across species, especially between animals and plants. For
example, in mammals, tri-methylation at H3K9 (H3K9me3) is
found in silenced chromatin and pericentromeric hetero-
chromatin2, while very low levels of H3K9me3 have been detected
in plants; instead, H3K9me2 is mainly distributed in pericen-
tromeric heterochromatin and at repeats and transposons within
the euchromatin3. Although H3K4me3 is similarly enriched at
the promoter regions of both animals and plants4–6, H3K36me3
distributions are diverse. In animal cells, H3K36me3 is mainly
distributed at the 3′ end of the gene body7, but it is close to the
transcription start site (TSS) in plants8,9. It suggests that different
mechanisms for H3K36me3 establishment and function may exist
between plants and animals.

Histone lysine methylation marks are mostly established by
the SET-domain group (SDG) of proteins, and different classes
of SDGs are responsible for depositing methyl on specific his-
tone lysine residues10–14. For example, some of the Ash1 class
SDGs are H3K36-specific histone methyltransferases (HMTa-
ses), among which typical members include the yeast SET2 and
human SETD2/HYPB13. At least three Ash1 class members
both in Arabidopsis (SDG4/ASHR3, SDG8/ASHH2/EFS, and
SDG26/ASHH1) and in rice (SDG708, SDG724, and SDG725)
have been identified to be responsible for H3K36 methylation8.
SDG4 is specifically expressed in floral organs and contributes
to the regulation of pollen tube growth15. SDG26, SDG708, and
SDG724 are involved in flowering time control8,16–18. SDG8
and SDG725 seem to be the major H3K36 HMTases in
Arabidopsis and rice, respectively, because they are broadly
expressed and involved in diverse biological processes9,18–26.
Arabidopsis SDG8 and rice SDG725 are the closest homologs of
yeast SET2 and human SETD2, and they share similar domain

organization. This evolutionary conservation in modifying
enzymes seems to conflict with the divergence in genomic
distributions of H3K36me3, which prompted us to study the
mechanisms underlying the establishment of H3K36 methyla-
tion in various species.

Here, we use the rice H3K36 methyltransferase SDG725 as a
bait to screen its binding proteins and identify a C2H2-type zinc
finger transcription factor, named SUPPRESSOR OF FRI 4
(OsSUF4), as a binding protein of SDG725. OsSUF4 physically
interacts with SDG725 and recognizes a 7-bp DNA element
within the promoter regions of the rice florigen genes
RICE FLOWERING LOCUS T1 (RFT1) and Heading date 3a
(Hd3a) to promote rice flowering. The target genes of OsSUF4
are not limited to RFT1 and Hd3a but include a number of
genes involved in many biological processes. Thus, our findings
highlight that distinct binding proteins of histone-modifying
enzymes may lead to divergence in histone methylation
distribution and eventually exhibit individual functions in various
species.

Results
Genome-wide distributions of H3K36me3 in various species.
We previously reported differences in the H3K36me3 distribution
pattern in rice from that in animals26. To gain a complete
understanding of H3K36me3 distributions in eukaryotes, we used
published ChIP-sequencing (ChIP-seq) data of single-celled yeast,
the invertebrates Caenorhabditis elegans and Drosophila mela-
nogaster, the vertebrates mice and humans, and the model plants
Arabidopsis thaliana and rice. The profiles and heatmaps of
H3K36me3 across the different genomes are presented in Fig. 1.
In yeast and C. elegans, H3K36me3 showed a similar pattern and
was distributed over the entire gene body regions. In contrast, the
distribution of H3K36 in D. melanogaster, mice, and humans was
mainly enriched at the 3′ end of the gene body, with an apparent
peak close to the transcription terminal site (TTS). In Arabidopsis
and rice, H3K36me3 signals tended to accumulate at the 5′ end of
the gene body, peaking near the TSS (Fig. 1). The different dis-
tribution patterns of H3K36me3 in various species indicate the
complicated and divergent mechanisms for establishing H3K36
methylation during eukaryotic evolution.
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Fig. 1 Genome-wide distributions of H3K36me3 in various species. Upper panel: integrative genomic distribution of H3K36me3 in yeast, C. elegans,
D. melanogaster, mice, humans, rice, and Arabidopsis. Lower panel: corresponding heatmaps of H3K36me3. Each line represents a gene
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SDG725 interacts with transcription factor OsSUF4. To
determine why H3K36me3 was mainly distributed at the 5′ end
of the gene body in plants, we chose SDG725, the major H3K36
methyltransferase in rice, as a bait to screen its binding proteins
using the yeast two-hybrid system. Given that the full-length
SDG725 protein was poorly expressed in yeast, the C-terminal
fragment of SDG725 (1240–2150 amino acids, hereafter called
SDG725C) containing the SET domain was chosen as the bait.
Approximately 259 positive clones were obtained from yeast
two-hybrid screening, of which 10 corresponded to OsSUF4
(Os09g38790). OsSUF4 encodes a C2H2-type zinc finger tran-
scription factor27,28. Based on the amino acid sequence of full-
length OsSUF4, we performed a phylogenetic analysis in
eukaryotes and found that its homologs were widespread in
eukaryotes but absent in yeast (Supplementary Fig. 1). The
plant SUF4 proteins separated from other eukaryotes and

formed a group containing two distinct clades for monocot
and dicot.

We performed yeast two-hybrid (Fig. 2a), glutathione
S-transferase (GST) pulldown (Fig. 2b), and bimolecular
fluorescence complementation (BiFC; Fig. 2c) assays to confirm
the interaction between OsSUF4 and SDG725. In yeast, only cells
expressing both OsSUF4 and SDG725 activated the ADE2
reporter gene (Fig. 2c). For GST pulldown, we generated
transgenic rice plants over-expressing HA-tagged OsSUF4 under
the control of the maize ubiquitin promoter (PUbi::HA-SUF4)
with a wild-type phenotype. GST pulldown experiments showed
that HA-OsSUF4 protein was retained by GST-SDG725C but not
by GST (Fig. 2b, Supplementary Fig. 2). For BiFC, the coding
regions of OsSUF4 and SDG725C were fused with the N-terminal
and C-terminal fragments of YFP, respectively, and the resulting
constructs OsSUF4-YN and SDG725C-YC were co-transfected
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Fig. 2 OsSUF4 interacts with SDG725C in vitro and in vivo. a The interaction between OsSUF4 and SDG725C in a yeast two-hybrid assay. AS1 and
AS2 serve as the positive control. Upper panel: Schematic representation of full-length and truncated SDG725 proteins. b The left panel showed GST and
GST-SDG725C (GST-725C) proteins used in the pulldown assay, and the right panel showed HA-OsSUF4 pulled down by SDG725C using rice plants over-
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experiments showing the interaction of OsSUF4 and SDG725C in Nicotiana benthamiana leaf epidermal cells (Bar= 50 µm). DIC differential interference
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into tobacco leaves. YFP signals were only observed in the nuclei
when OsSUF4-YN and SDG725C-YC were co-transfected, indi-
cating that OsSUF4 interacts with SDG725C in planta (Fig. 2c).

OsSUF4 comprises two conserved C2H2-type zinc finger
domains at the N-terminus and a large proline-rich domain at
the C-terminus. To investigate which domain of OsSUF4 is
required for the interaction with SDG725C, we generated two
constructs: one containing two zinc finger domains (1–105 amino
acids, SUF4N), and the other including the proline-rich domain
(58–355 amino acids, SUF4C). We found that SUF4C not SUF4N
interacted with SDG725C in yeast two-hybrid experiments
(Fig. 2d). Together, these results proved that the transcription
factor OsSUF4 physically interacts with the H3K36-specific
methyltransferase SDG725 in rice.

OsSUF4 promotes rice flowering. To investigate the function of
OsSUF4 in vivo, we first checked its expression pattern in rice.
Quantitative reverse transcription (qRT)-PCR analysis indicated
that OsSUF4 is transcribed ubiquitously, including in the root,
stem, shoot, flag leaf, young leaf, and inflorescence of wild-type
rice (Supplementary Fig. 3). RNA interference (RNAi) was sub-
sequently performed to obtain a knockdown mutant of OsSUF4.
Nucleotides 23–359 and 363–612 were, respectively, selected as

hairpin structures, resulting in two RNAi constructs P35S::
OsSUF4Ri-1 (hereafter named suf4Ri-1) and P35S::OsSUF4Ri-2
(suf4Ri-2). A total of 20 and 15 independent transgenic lines of
suf4Ri-1 and suf4Ri-2 were, respectively obtained, which showed
similar and stable phenotypes after five generations (Fig. 3a).
qRT-PCR analysis confirmed that the transcription levels of
OsSUF4 in suf4Ri-1 and suf4Ri-2 dramatically decreased com-
pared with wild-type plants (Fig. 3b), and OsSUF4-knockdown
mutants displayed a late-flowering phenotype at both long day
(LD) and short day (SD) conditions (Fig. 3c). As well as the RNAi
lines, more than 10 stable co-suppression lines (hereafter referred
to as SUF4cs) were obtained by transforming P35S::OsSUF4 into
wild-type rice, which also showed decreased OsSUF4 transcrip-
tion and a late-flowering phenotype similar to suf4Ri-1 and
suf4Ri-2 (Fig. 3a–c).

Coordinately, the late-flowering phenotype was observed in the
OsSUF4-knockdown mutant suf4Ri-1, the SDG725-knockdown
mutant 725Ri-1, and the suf4Ri-1 725Ri-1 double mutant
(Fig. 3d–f), suggesting that both OsSUF4 and SDG725 function
in the same genetic pathway of flowering time control in rice.
Many rice genes have been identified as being involved in
flowering time control, such as the two florigen genes RFT1 and
Hd3a, and their regulatory genes Grain number, plant height, and
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Fig. 3 OsSUF4 promotes rice flowering under both LD and SD conditions. a Overall morphologies of 10-week-old wild-type (WT), two independent OsSUF4
RNAi lines suf4Ri-1 and suf4Ri-2, and OsSUF4 co-suppressed (suf4cs) rice plants under SD conditions. b Relative transcript levels of OsSUF4 in WT, suf4Ri-1,
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heading date 7 (Ghd7), OsMADS51, GIGANTEA (OsGI),
Ehd2/Rice INDETERMINATE 1 (OsID1/RID1), Heading date 1
(Hd1), and Early heading date 1 (Ehd1)29.

We then traced the transcriptional change of these flowering
genes in OsSUF4-knockdown mutants. Leaves of 30-day-old
plants under SD conditions were collected at 4-h intervals over a
24-h period for RNA extraction and qRT-PCR. In OsSUF4-
knockdown mutants suf4Ri-1, suf4Ri-2, and suf4cs, the expression
of flowering genes was similar, so only that in suf4Ri-1 is shown.
The transcription levels of florigen genes Hd3a and RFT1 and
their upstream regulatory gene Ehd1 were dramatically decreased
upon knockdown of OsSUF4 or SDG725 (Fig. 3g). Similar to each
single mutant, the transcription levels of these three flowering
genes in the suf4Ri-1 725Ri-1 double mutant were also
significantly reduced (Fig. 3g). In contrast, the transcription
levels of OsMADS51, OsGI, Ehd2, and Hd1 were not obviously
changed (p-value > 0.05) in suf4Ri-1, 725Ri-1, and suf4Ri-1 725Ri-
1 (Fig. 3g). In agreement with the previous studies showing that
Ghd7 functions as a repressor of flowering30, the transcripts of
Ghd7 were elevated in suf4Ri-1, 725Ri-1, and suf4Ri-1 725Ri-1
(Fig. 3g). Under LD conditions, Hd3a, RFT1, and Ehd1 were also
remarkably down-regulated in single mutants and the double
mutant, and their transcription levels at 4 h after dawn are shown
in Supplementary Fig. 4. Taken together, our results indicated
that OsSUF4 promotes flowering in rice probably by affecting the
expression of key flowering genes Hd3a, RFT1, and Ehd1.

RFT1 and Hd3a are direct target genes of OsSUF4. OsSUF4 is
predicted to be a transcription factor, so we next questioned
whether it directly binds to key flowering genes. ChIP-PCR was
performed to analyze the possible in vivo binding of OsSUF4 to
the flowering genes with a monoclonal antibody against OsSUF4.
As shown in Supplementary Fig. 5a, the antibody recognized the
purified his-tagged OsSUF4 but not the control His-FCA protein.
The antibody specificity was further verified using rice plants
overexpressing HA-OsSUF4. HA-OsSUF4 was successfully
detected by both the HA antibody and OsSUF4 antibody (Sup-
plementary Fig. 5b). ChIP-PCR analysis showed that OsSUF4
enrichment at fragments 2 (Nucleotides −1254 to −1155) and 3
(Nucleotides −503 to −426) of RFT1 promoter and fragments 10
(Nucleotides −1038 to −937) and 11 (Nucleotides −562 to
−477) of Hd3a promoter was significantly decreased in the
suf4Ri-1 mutant compared with the wild type (Fig. 4a). OsSUF4
enrichment was not changed at the loci within Ehd1 and
MADS51 promoters, but Ehd1 was down-regulated in suf4Ri-1
(Supplementary Fig. 6), suggesting that RFT1 and Hd3a, but not
Ehd1, are the direct targets of OsSUF4. Notably, loss of SDG725
in the 725Ri-1 mutant reduced OsSUF4 enrichment at RFT1 and
Hd3a promoters; conversely, loss of OsSUF4 led to decreased
SDG725 enrichment at RFT1 and Hd3a promoters in the suf4Ri-1
mutant (Fig. 4a), demonstrating that OsSUF4 and SDG725
enhance the binding of each other to RFT1 and Hd3a promoters.
When an antibody against H3K36me3 was used for ChIP-PCR
analysis, most enrichment of H3K36me3 on RFT1 and Hd3a
chromatin was located downstream of the TSS (fragment 5 for
RFT1 and fragment 13 for Hd3a), which is consistent with the
genome-wide distribution pattern of H3K36me3 in Fig. 1.
However, H3K36me3 enrichment was also observed upstream of
the TSS (fragment 4 for RFT1 and fragment 12 for Hd3a).
Consistent with the reduced enrichment of SDG725 at RFT1 and
Hd3a promoters, reduced H3K36me3 was also detected in the
suf4Ri-1 mutant (Fig. 4a). By using an antibody against H3,
similar profiles of H3 enrichment on RFT1/Hd3a were observed
in the wild type, the single mutants and the double mutant
(Supplementary Fig. 7), indicating that the decreased levels of

OsSUF4, SDG725, and H3K36me3 at RFT1/Hd3a promoter
regions in suf4Ri-1 and 725Ri-1 mutants are not due to the loss of
nucleosome occupancy.

To further investigate the genetic relationship between OsSUF4
and RFT1/Hd3a, we generated the mutants in RFT1 and Hd3a
loci, respectively, by clustered regularly interspaced short
palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)
931. The single guide RNAs (sgRNAs) were designed to target the
specific sites within the 5′ ends coding regions of RFT1 (5′-GAC
CCAACAGCCCAGGGTCGTGG-3′) and Hd3a (5′-GGCTCCAA
GACCGTGTCCAATGG-3′), respectively. After genotyping and
sequencing, we confirmed to obtain four and five mutant lines for
RFT1 and Hd3a, respectively, which contained deletions or
insertions within the coding region and resulted in early stop
codons. Then we selected the line named rft1-1 (containing 1-bp
thymine insertion within the coding region) and the line hd3a-1
(containing 1-bp adenine insertion within the coding region) for
further analyses. Consistent with the late-flowering phenotype of
known RFT1/Hd3a RNAi or CRISPR/Cas9 mutants32,33, our rft1-
1 and hd3a-1 mutants also flowered late under LD or SD
conditions (Fig. 4b, c). We then generated suf4Ri-1 rft1-1 and
suf4Ri-1 hd3a-1 double mutants by genetic crossing, which
displayed late-flowering phenotypes similar to those of single
mutants rft1-1 and hd3a-1 under LD or SD conditions,
supporting the concept that OsSUF4 acts upstream of RFT1 and
Hd3a to promote rice flowering (Fig. 4b, c).

OsSUF4 binds to a specific 7-bp element. Electrophoretic
mobility shift assay (EMSA) was performed to refine the precise
OsSUF4-binding element within the Hd3a promoter. First, we
proved that OsSUF4 bound to fragment 10 of the Hd3a promoter
(Nucleotides −1038 to −937, upstream of the TSS, hereafter
named as Hd3a-a) in ChIP–PCR analysis (Fig. 4a). Thus, dif-
ferent truncated fragments of Hd3a-a were synthesized as DNA
probes in EMSA experiments (Fig. 5a), showing that His-OsSUF4
bound to Hd3a-c but not to Hd3a-b (Fig. 5b). Next, we proved
that His-OsSUF4N containing the C2H2 zinc finger domains, not
His-OsSUF4C, bound to Hd3a-c (Fig. 5b). Then, Hd3a-c was
shortened to Hd3a-d and Hd3a-e, and the 32-bp Hd3a-e fragment
was finally determined as the effective OsSUF4-binding fragment
(Fig. 5b).

To map the precise element, we generated a series of mutations
within Hd3a-e and found that a 9-bp element (5′-TACGGAAA
T-3′) is essential for the association with His-OsSUF4N (Fig. 5c).
Consistently, Hd3a-mu8, in which the 9-bp element was mutated,
failed to be recognized by His-OsSUF4N (Fig. 5d). We next
searched for the 9-bp element within the RFT1 promoter, which
is another direct target of OsSUF4, and discovered a 7-bp
conserved element (5′-CGGAAAT-3′, Nucleotides −989 to
−983). EMSA analysis showed that His-OsSUF4N bound to the
RFT1 promoter fragment containing the 7-bp element (Fig. 5d),
indicating that 5′-CGGAAAT-3′ within the promoters of Hd3a
and RFT1 is the core element for OsSUF4 binding.

To validate that this element is essential for OsSUF4-binding
in vivo, a dual-luciferase reporter assay was performed to evaluate
the effect of OsSUF4 on wild-type and mutated Hd3a and RFT1
promoters. The promoter regions of Hd3a (1885 bp upstream of
the TSS to 156 bp downstream of the TSS) and RFT1 (1777 bp
upstream of the TSS to 253 bp downstream of the TSS)
containing the 7-bp element were cloned into a luciferase
reporter vector fused with the firefly luciferase reporter (Fig. 6a).
When the effector construct PUbi::OsSUF4 and the reporter
construct were co-transformed into rice protoplasts, the activity
of firefly luciferase driven by wild-type Hd3a and RFT1
promoters was dramatically enhanced to 12-fold and 9-fold,
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Fig. 4 OsSUF4 and SDG725 enhance the association of each other at target genes. a ChIP analyses at RFT1 and Hd3a promoters using antibodies against
OsSUF4, SDG725, and H3K36me3 in WT, suf4Ri-1, 725Ri-1, and suf4Ri-1 725Ri-1 plants, respectively. Upper panel: schematic representation of RFT1 and
Hd3a structures and fragments examined in ChIP-PCR. Values are the mean ± SD of three individual biological replicates normalized to the internal control
OsUbiquitin5. Asterisks indicate significant differences between indicated genotypes and WT (Student’s t-test: *P < 0.01). b, c CRISPR/Cas9-mediated
target mutagenesis of RFT1 and Hd3a, respectively. Upper panel: schematic representation of target site. Nucleotide insertion (shown in blue) resulted in an
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respectively, compared with the negative controls. For mutated
promoters with deletions of the 7-bp element, firefly luciferase
reporter activity was dramatically reduced (Fig. 6a), supporting
the fact that this element is essential for Hd3a and RFT1
activation by OsSUF4 in planta.

We then generated transgenic rice expressing β-glucuronidase
(GUS) driven by the native promoters of RFT1/Hd3a (PHd3a::
GUS/PRFT1::GUS) and mutated promoters lacking the 7-bp
element (PHd3aΔe::GUS/PRFT1Δe::GUS). GUS signals in transgenic
rice were significantly reduced upon deletion of the 7-bp element
within either the RFT1 or Hd3a promoter (Fig. 6b). A
histochemical GUS assay in leaf blades again confirmed that the

7-bp element is important for normal expression of Hd3a and
RFT1 in rice (Fig. 6c). Taken together, we conclude that OsSUF4
activates the expression of Hd3a and RFT1 by directly binding to
their promoters in rice, and that the 7-bp sequence within RFT1
and Hd3a promoters is the core cis-element for OsSUF4
recognition.

As the counterparts of SDG725 and OsSUF4 in Arabidopsis,
the interaction between SDG8 and AtSUF4 was previously
reported34. AtSUF4 binds to the 5′-CCAAATTTTAAGTTT-3′
element within the promoter of the floral repressor gene
FLOWERING LOCUS C (FLC) in Arabidopsis34,35. By analyzing
the functional substitutability of OsSUF4 and AtSUF4, we found
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that OsSUF4 binds to the Arabidopsis FLC promoter containing
the element: 5′-CCAAATTTTAAGTTT-3′ in vitro, whereas
AtSUF4 does not bind the rice Hd3a-e fragment (Supplementary
Fig. 8a). We then introduced constructs of AtSUF4 and OsSUF4
driven by the native promoter and terminator of AtSUF4
(PAtSUF4::AtSUF4 and PAtSUF4::OsSUF4) into the Arabidopsis
suf4-2 mutant27,36 for functional comparison. 15 and 10
transgenic lines expressing AtSUF4 or OsSUF4 in suf4-2 back-
ground were respectively obtained. The transcript levels of
OsSUF4 in two independent transgenic lines of PAtSUF4::OsSUF4
were similar with that of AtSUF4 in a line of PAtSUF4::AtSUF4
(Supplementary Fig. 8b). In suf4-2 mutant, the transcription of
FLC was completely suppressed, and the FLC suppression was
rescued by the introduction of AtSUF4 but not by OsSUF4 under
the control of the AtSUF4 promoter (Supplementary Fig. 8c),
indicating the functional divergence of the two homologs in
planta.

More target genes of OsSUF4 in the rice genome. We then
investigated whether additional genes contained the 7-bp element
were recognized by OsSUF4. By screening the rice genome, 3809
genes were discovered to contain the 7-bp element within their
promoter regions (Supplementary Data 2). Considering that
OsSUF4 acts as a transcription activator and that OsSUF4
knockdown should down-regulate target genes, we conducted
RNA-sequencing to analyze the global profile of the suf4Ri-1
mutant. A list of 1863 genes had been found down-regulated to
more than 1.5-fold in suf4Ri-1 as compared to the wild-type
control (Supplementary Data 3). This list does not include RFT1

and Hd3a, because these floral genes are expressed at very low
levels in young rice plants, such as 14-day-old seedlings used in
our RNA-seq analysis. Among the 1863 down-regulated genes,
132 genes contain each at least one 7-bp OsSUF4-binding ele-
ment (Fig. 7a) and thus represent candidate direct targets of
OsSUF4. The other genes might be indirectly down-regulated. Of
the 132 genes, 100 genes (75.8%) showed enriched H3K36me3
modification (Fig. 7b, Supplementary Data 4). Among 1731
down-regulated genes not containing the 7-bp element, 1000 sets
of 132 randomly selected genes were checked for H3K36me3
enrichment analysis (Supplementary Fig. 9). The numbers of
H3K36me3 enriched genes from 1000 sets are shown in histo-
gram as Supplementary Fig. 9. The percentage for the gene
number over 100 is 2.6% (26 times among 1000 sets, P-value <
0.05), supporting that the 100 genes containing the 7-bp element
were significantly enriched of H3K36me3 (Supplementary Fig. 9).
Moreover, H3K36me3-enrichment downstream of TSS for these
100 genes was significantly higher as compared to the other
H3K36me3-enriched genes (n= 16,046) in the wild-type rice
genome (Fig. 7c), supporting the idea that OsSUF4 recruits
SDG725 to promote H3K36me3 establishment at 5′ ends of target
genes.

To further validate the OsSUF4 target genes, we randomly
selected seven of the 100 genes containing the 7-bp element
within their promoters (Fig. 7a), with enriched H3K36me3
modification (Fig. 7b), and which were down-regulated in the
suf4Ri-1 mutant compared with the wild type (Supplementary
Fig. 10). EMSA tested the direct binding of OsSUF4 to target
genes in vitro using a 35-bp tandem repetitive sequence
consisting of 5 × 7-bp elements as the positive control (Fig. 7d).
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EMSA showed that OsSUF4 directly bound to the promoter
fragments of the seven genes, suggesting that the 7-bp element
was able to be recognized by OsSUF4 in vitro (Fig. 7d). A ChIP
assay was performed to confirm the protein–DNA binding

in vivo. As expected, OsSUF4 enrichment at the promoters of the
seven genes was significantly decreased in the suf4Ri-1 mutant
and increased in plants overexpressing HA-OsSUF4 (Fig. 7e),
indicating that OsSUF4 has more target genes in the rice genome.
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Taken together, our results suggest that in addition to the key
flowering genes RFT1 and Hd3a, OsSUF4 binds to a set of target
genes whose promoters contain a 7-bp core element, and may
contribute to H3K36me3 establishment at the 5′ end of gene body
by interacting with the H3K36-specific methyltransferase
SDG725.

Structural basis for target DNA recognition by OsSUF4. To
unravel the structural basis underlying target DNA recognition by
OsSUF4, we carried out a crystallographic study of the zinc finger
domain (aa 10–100) of OsSUF4. The structure was solved by a Se-
SAD phasing method and refined up to 1.95 Å resolution (Sup-
plementary Table 1). As depicted in Fig. 8a, the OsSUF4 zinc
finger domain contained two C2H2 type zinc finger motifs with
different folding. The first zinc finger motif adopts a canonical
C2H2 fold containing a short antiparallel β-sheet followed by one
α-helix; instead of a β-sheet, the second zinc finger motif contains
a coiled-coil (Fig. 8a, Supplementary Fig. 11). The zinc-

coordinating cysteines and histidines located in the β-sheet/
coiled-coil and the α-helix, respectively, and coordination of the
two zinc ions are very similar (Supplementary Fig. 12a). In many
known C2H2-type zinc finger proteins, neighboring C2H2 motifs
are connected by long and flexible loops; however, only two
residues were shown to be embedded in the junction region of the
two zinc finger motifs of OsSUF4, preventing them from syn-
chronously nestling into the DNA major groove. Structural
comparison revealed that folding of the first zinc finger motif of
OsSUF4 is similar to that of the Tramtrack protein (PDB_ID:
2DRP) zinc finger DNA-binding domain37. However, different
from Tramtrack, the second zinc finger motif of OsSUF4 floats
over the DNA, suggesting that the first motif is probably
responsible for DNA binding by OsSUF4 (Supplementary
Fig. 12b).

Notably, the first zinc finger domain is enriched with positively
charged residues (R18, K24, K31, K33, K36, and K43), forming an
electropositive interface (Fig. 8b, Supplementary Fig. 12c). To test
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whether these residues were involved in DNA binding by
OsSUF4, we performed mutagenesis and isothermal titration
calorimetry analysis. As shown in Supplementary Fig. 12d, the
wild-type OsSUF4 zinc finger domain bound to the substrate
DNA (5′-GGGTACGGAAATGGTA-3′) with a Kd value of 51.28
± 3.68 μM, whereas R18A, K24A, K31A, K33A, K36A, K43A, and
R18A/K33A/K36A/K43A mutants all lost their DNA-binding
ability. To further confirm the functional importance of these
residues, we performed a dual luciferase assay in planta (Fig. 8c).
Compared with wild-type OsSUF4, Hd3a promoter activation by
all single mutant proteins was significantly reduced; a more
dramatic reduction was observed for the R18A/K33A/K36A/
K43A mutant. Taken together, our findings suggested that the
positive residues within the surface of the first zinc finger motif
are essential for target DNA binding by OsSUF4 (Fig. 8d).

Discussion
In this study, using the major H3K36 methyltransferase SDG725
as bait, we identified OsSUF4 as a C2H2-type zinc finger tran-
scription factor in rice that interacts with SDG725 in vitro and
in vivo. Several lines of evidence indicated that via the interaction
with OsSUF4, SDG725 is recruited to the promoters of florigen
RFT1 and Hd3a for H3K36me3 deposition to promote gene
activation and rice plant flowering. We also mapped a 7-bp DNA
element, 5′-CGGAAAT-3′, as the core element for OsSUF4
binding. Deletion of this 7-bp cis-element clearly reduced the
promoter activity of RFT1 and Hd3a. A further 3809 genes were
shown to contain the 7-bp cis-element within their promoter
regions throughout the rice genome, of which 132 were down-
regulated over 1.5-fold in the OsSUF4 knockdown mutant.
Among the 132 genes containing the 7-bp element and down-
regulated in the OsSUF4 knockdown mutant, 100 showed enri-
ched H3K36me3 modification. Seven randomly selected genes of
these 100 were all direct targets of OsSUF4. Collectively, our
results help to explain H3K36me3 at the 5′ ends of RFT1 and
Hd3a and may contribute to a better understanding of the
situation genome-wide.

OsSUF4 homologs are widespread in eukaryotes but absent in
yeast (Supplementary Fig. 1). ZNF207 and SETD2 were possible
counterparts of OsSUF4 and SDG725 in humans; however, no
interaction between SETD2 and ZNF207 was detected in a yeast
two-hybrid assay (Supplementary Fig. 13). As the counterpart of
OsSUF4 in Arabidopsis, AtSUF4 was previously reported to
interact with the Arabidopsis H3K36 methyltransferase SDG834,
while the DNA-binding element and target genes of
AtSUF4 seem to largely differ from those of OsSUF4, implying
that during evolution, dicot and monocot plants evolved func-
tionally separate SUF4 proteins. Consistently, our rescue
experiments showed that AtSUF4 but not OsSUF4 can rescue
the Arabidopsis suf4-2 mutant (Supplementary Fig. 8c). Never-
theless, the methylation deposition mechanism mediated by the
SUF4 transcription factor and H3K36 methyltransferase seems
to be conserved in Arabidopsis and rice. Thus, we propose that
OsSUF4/AtSUF4 help SDG725/SDG8 to target the 5′ end of
gene body regions and promote H3K36 methylation, which is in
line with the apparent TSS-proximal pattern of H3K36me3 in
plants. The interaction between enzymes and transcription
factors might influence the targeting of the enzymes and the
distribution of the corresponding modifications. SDG725, by
interaction with the transcription factor OsSUF4, is enriched
close to the TTS regions of some OsSUF4-targeted genes, such
as RFT1 and Hd3a. SDG725 deficiency also impairs OsSUF4
binding at the targets, suggesting a reciprocal enhancing
mechanism. The C-terminal domain of OsSUF4 interacts with
SDG725 (Fig. 1d) and the N-terminal zinc finger domain of

OsSUF4 is responsible for DNA binding (Fig. 8). A speculation
would be that the complex formation with SDG725 might
change the structure of OsSUF4 for a better association with
DNA. SDG725 contains a CW-domain capable of binding with
H3K4me138, indicating that SDG725 may interact with chro-
matin also through OsSUF4-independent mechanism. Finally,
SDG8 and AtSUF4 were found in larger complex containing
other protein components34. A similar complex may also exist
in rice, which acts as a functional unit in H3K36me3 deposition
and active transcription of the florigens RFT1 and Hd3a, as well
as possibly other OsSUF4-target genes.

Several pieces of evidence suggest that the link between tran-
scription factors and epigenetic modifiers is not limited to H3K36
methylation. In Arabidopsis, several transcription factors were
found to recruit Polycomb repressive complex 2 for H3K27me3-
mediated gene silencing, such as telomere repeat-binding fac-
tors39. Moreover, the H3K4me3 demethylase AtJMJ14 interacted
with transcription factors NAC050 and NAC052 to bind the
CTTG(N)5CAAG motif and regulate various biological pro-
cesses40–49. In rice, the C2H2 zinc finger protein SDG723/OsTrx1/
OsSET33 Interaction Protein 1 was recently reported to interact
with OsTRX1, which is responsible for establishing H3K4me3 on
flowering gene Ehd1 and promoting flowering50. Further
exploration into trans-acting factors and cis-acting DNA elements
involved in chromatin epigenetic regulation will help our
understanding of methylation establishment and spreading, and
their related biological significance.

Methods
Phylogenetic analysis. Alignment of amino acid sequences of OsSUF4 homologs
in different species was performed via the ClustalW program51. The resulting file
was subjected to phylogenetic analysis using MEGA4.0 software52. The trees were
constructed with the following settings: Neighbor-Joining for tree inference,
complete deletion option for each class analysis, and bootstrap test of 1000 repli-
cates for internal branch reliability.

ChIP-seq analysis. Raw published H3K36me3 ChIP-seq data for different species
were downloaded from the Sequence Read Archive (SRA) database (https://trace.
ncbi.nlm.nih.gov/Traces/sra/sra/). Access numbers are SRP048526 for yeast53,
SRP007859 for C. elegans (http://www.modencode.org), SRP023380 and
SRP023365 for D. melanogaster (http://www.modencode.org), SRP016121 for
mice54, SRP132532 for humans55, SRP002100 for Arabidopsis56, and SRP063912
for rice8. SRA files for all species except Arabidopsis were transformed to FASTQ
files using the fastq-dump package in SRAToolkit v2.9.057. Bowtie v1.9 was used to
map H3K36me3 ChIP-seq data to the reference genome of each species. Arabi-
dopsis H3K36me3 SRA data were transformed to FASTQ files with the abi-dump
package in SRAToolkit v2.9.0, then mapped to the Arabidopsis genome (TAIR10)
with SHRiMP v2.2.3 software58. Unique (MAPQ > 20) and non-redundant mapped
reads were generated with SAMtools v1.959, and aggregated plots and heatmaps
were constructed with deepTools v2.0 and R v5.0 software.

For the distribution analysis of H3K36me3 on different gene groups, regions
from 3 kb upstream of the TSS site to 3 kb downstream of the TTS site were plotted
using deepTools v2.060. Briefly, gene body regions of different length genes were
fitted to 1 kb and divided into 300 bins; regions of 3 kb upstream and downstream
of the TTS were, respectively, divided into 300 bins. The methylation levels of each
bin were calculated by the reads per kilobase of transcript per million mapped
reads value and calibrated to the input. The aggregated plots were treated with R
v5.0 software. Visualization of ChIP-seq profiles was performed in the Integrative
Genomics Viewer v2.3.4659 with deepTools v2.0.

To identity H3K36me3-enriched genes in WT, SICER.sh from SICER
v1.1 software61 was used to identify the H3K36me3-enrichment region (peaks) by
comparing the ChIP-seq library with the input DNA library (parameters:
W-200, G= 200, FDR < 1e−3 for H3K36me3). Significant peaks were found with
FDR < 1e−3 and IP-DNA/Input-DNA ≥ 2. ChIPpeakAnno62 from http://www.
bioconductor.org/ was performed for peak annotation. Genes (1 kb upstream of
TSS and gene body regions) containing significant H3K36me3 peaks were
considered H3K36-enriched genes. The P-value was calculated by the
Kolmogorov–Smirnov test.

Plant transformation and growth conditions. To create RNAi constructs, DNA
fragments containing nucleotides from 23 to 359 and 363 to 612 of the OsSUF4
open-reading frame were selected to produce the hairpin structure using primers
listed in Supplementary Data 1. The hairpin structures were then cloned into the
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pDS 1301 vector63, resulting in P35S::OsSUF4-RNAi-1 and P35S::OsSUF4-RNAi-2.
The full-length cDNA of OsSUF4 was amplified by RT-PCR using primers listed in
Supplementary Data 1. The resulting product fused with DNA encoding HA-tag
was then cloned into the pU1301 plant expression vector containing the maize (Zea
mays) Ubiquitin promoter, yielding PUBI::HA-OsSUF4. Regarding CRISPR/Cas9
plants, single guide RNA oligos were inserted into the BGK032 vector (BGK032,
BIOGLE GeneTech, Hangzhou, China).

To generate transgenic constructs carrying PRFT1::GUS, PHd3a::GUS, PRFT1Δe::
GUS, and PHd3aΔe::GUS, wild-type or mutated promoters of RFT1 and Hd3a were
inserted into the pCAMBIA1391Z vector. The primers for creating these constructs
are listed in Supplementary Data 1. Agrobacterium tumefaciens (strain EHA105)-
mediated transformation to Oryza sativa spp. Japonica cv Nipponbare (http://
signal.salk.edu/cgi-bin/RiceGE) was performed according to a previously described
procedure. Briefly, after being induced, the calli were immersed in the
Agrobacterium tumefaciens suspension for 5 min, and then transformed to a J3
medium (L3, 2.5 mg l−1, 2,4-D, 500 mg l−1 proline, 500 mg l−1 glutamine, 3%
maltose, 0.25% phytagel, 200 mM acetosyringone, 1% glucose, pH 5.8).
Differentiation of resistant callus was on DL3 medium64. Plants were grown in two
locations, namely Shanghai and Sanya, which represent natural LD and SD
conditions, respectively. Seedlings used for quantitative RT-PCR and ChIP assays
in rice were cultured in artificial growth chambers under LD conditions (14 h 30 °
C: 10 h 28 °C, light:dark) or SD conditions (10 h 30 °C: 14 h 28 °C, light:dark).

The Arabidopsis mutant suf4-2 (SALK_093449) was obtained from the
Arabidopsis Biological Resource Center (ABRC, http://www.arabidopsis.org) and
the Saskatoon collection65, and the mutant has been previously described28. To
generate PAtSUF4::HA-OsSUF4 and PAtSUF4::HA-AtSUF4 transgenic plants, a DNA
fragment including the promoter (1275 bp upstream of the TSS) and terminator
(425 bp downstream of the TTS) of AtSUF4, the full length coding sequence (CDS)
encoding OsSUF4 and AtSUF4 were amplified and inserted into the
pCAMBIA1300 vector. The resulting construct was transformed into the
Arabidopsis suf4-2 mutant. Arabidopsis plants were grown under a photoperiod of
16 h light and 8 h dark.

Yeast two-hybrid assay. Total RNA for cloning the cDNA library into pGAD
vectors was extracted from wild-type plants using Matchmaker Library Con-
struction and Screening Kits (Clontech, Shiga, Japan). Yeast screening was per-
formed using truncated SDG725 protein (SDG725C, amino acids 1240–2150) as
the bait by yeast mating. Full-length or truncated CDS of OsSUF4, SDG725, and
ZNF207 were amplified and cloned into pGADT7 or pGBKT7 (Clontech) using the
primers listed in Supplementary Data 1, resulting in constructs pGADT7-OsSUF4,
pGADT7-OsSUF4N, pGADT7-OsSUF4C, pGADT7-ZNF207, pGBKT7–725C, and
pGBKT7-SETD2. The yeast two-hybrid assay was performed according to the
manufacturer’s protocol (Clontech) and the interaction was screened on media
lacking tryptophan, leucine, and adenine (SD −W/−L/−A).

Pulldown assay. Full-length or truncated cDNA of OsSUF4 and AtSUF4 (OsSUF4,
OsSUF4N, OsSUF4C, and AtSUF4) and C-terminal cDNA of SDG725 (SDG725C)
were amplified using primers listed in Supplementary Data 1, then cloned into the
pET32a expression vector (Novagen, Madison, WI, USA) and pGEX-4T1 (GE
Healthcare, Milwaukee, WI, USA), resulting in His-OsSUF4, His-OsSUF4N, His-
OsSUF4C, His-AtSUF4, and GST-SDG725C. Protein expression analysis and
purification for the pulldown assay in vitro were performed using a kit according to
manufacturer’s recommendations (GE Healthcare). For the pulldown assay using
over-expressed HA-OsSUF4 plants, total nuclear extracts were incubated with GST
or GST-SDG725C beads in pulldown buffer (50 mM Tris pH 7.5, 100 mM NaCl, 1
mM ethylenediaminetetraacetic acid [EDTA], 10% glycerol) for 2 h. Pulldown
fractions were analyzed by western blotting using an anti-GST antibody (SG4110-
01, Shanghai Genomics, Shanghai, China) at a 1:1000 dilution, anti-His antibody
(SG4110-38, Shanghai Genomics) at a 1:1000 dilution, and anti-HA antibody
(ab9110, Abcam, Cambridge, MA, USA) at a 1:1000 dilution.

BiFC assay. OsSUF4 cDNA was amplified using primers listed in Supplementary
Data 1 and cloned into pXY103 and pXY106 vectors. SDG725C cDNA was
amplified by primers listed in Supplementary Data 1 and cloned into the pXY104
vector. Then, different groups of constructs were transiently expressed in the leaves
of 4–8-week-old Nicotiana benthamiana plants via agroinfiltration. The fluores-
cence was observed 2 days after infiltration using a confocal laser scanning
microscope (LSM 710, ZEISS, Germany).

Gene transcription analysis. To analyze expression levels of flowering-related
genes, 30-day-old (SD) and 35-day-old (LD) rice shoots were harvested for each
sample at indicated time points for total RNA extraction using TRIzol reagent
according to the manufacturer’s instructions (15596018, Invitrogen, Carlsbad, CA,
USA). For RNA-seq analysis, 14-day-old seedlings were collected under SD con-
ditions. Reverse transcription was performed using Improm-II reverse transcriptase
(A3801, Promega, Madison, WI, USA) according to the manufacturer’s protocol.
Quantitative PCR was performed using gene-specific primers listed in Supple-
mentary Data 1. Rice OsUbiquitin5 and Arabidopsis ACTIN2 were used as refer-
ence genes to normalize the data.

ChIP–PCR assay. The ChIP assay was performed using 14-day-old or 30-day-old
(SD) rice seedlings. Briefly, 2.0 g seedlings were harvested and fixed using fixation
buffer (0.4 M sucrose, 10 mM Tris–HCl pH 8.0, 1 mM EDTA, 1% formaldehyde,
and 1 mM PMSF). The nucleus were extracted using lysis buffer (50 mM HEPES
pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 5 mM β-mercaptoethano,
10% glycerol, and Protease Inhibitor cocktail). Then, DNA was sonicated into
fragment below 500-bp using lysis buffer with 0.8% SDS, followed by immuno-
precipitation with anti-H3K36me3 (ab9050, Abcam) at a 1:600 dilution, anti-HA
(ab9110, Abcam) at a 1:300 dilution, anti-SDG725 at a 1:300 dilution and anti-H3
(ab1791, Abcam) at a 1:300 dilution66. The monoclonal antibody against OsSUF4
was produced by Abmart using the peptide DVLAAHYGEE (1:300 dilution). After
gradual washes using low-salt buffer (50 mM HEPES pH 7.5, 1 mM EDTA pH 8.0,
150 mM NaCl), high-salt buffer (50 mM HEPES pH 7.5, 1 mM EDTA pH 8.0, 500
mM NaCl), LiCl wash buffer (10 mM Tris–HCl pH 8.0, 1 mM EDTA pH 8.0, 0.5%
NP-40, 0.25 M LiCl) and TE buffer (10 mM Tris–HCl pH 8.0, 1 mM EDTA pH
8.0). The complex was eluted using elution buffer (1% SDS, 0.1 M NaHCO3). The
precipitated DNA was obtained by reversing the crossing-linking of protein–DNA.
To determine the enrichment of precipitated DNA, quantitative PCR was per-
formed using TB Green™ Premix Ex Taq™ II kit (RR8020A, Takara, Shiga, Japan)
and specific primers listed in Supplementary Data 1.

Electrophoretic mobility shift assay. EMSA was performed using a LightShift
Chemiluminescent EMSA KIT (20148, Thermo Fisher Scientific, Waltham, USA).
Briefly, each reaction contained 5 µg purified protein, 0.02 µM labeled probe, and
100-fold unlabeled probe, 2 µL binding buffer, and 0.5 µL poly(dI-dC). Binding
reactions were incubated at 25 °C for 30 min. Then the reaction mixture was
subjected to electrophoresis at 100 V for 2 h using 5% polyacrylamide gel. After
transferred to a positive charged nylon membrane (INYC00010, Millipore, MA,
USA), the membrane was cross-linked below ultraviolet lamp. The membrane was
treated with the LightShift Chemiluminescent EMSA Kit and then was exposed
to film.

Protoplast transformation and dual-luciferase reporter assay. Rice protoplast
isolation and transformation were performed using 2-week-old seedlings. Briefly,
different promoters including wild-type and mutated forms were amplified and
inserted into the pGreenII-0800-LUC vector using gene-specific primers listed in
Supplementary Data 1. Wild-type or mutated CDS of OsSUF4 fused with a HA-tag
were cloned into the pU1301 vector and used as effectors. Levels from 14-day wild-
type seedlings were excised and incubated in enzyme buffer A (1.5% cellulose RS,
0.3% macerozyme, 0.1% pectolyase, 0.6 M mannitol, 10 mM MES, 1 mM CaCl2,
0.1% bovine serum albumin, pH 5.7) for 5 h. After adding an equal volume of W5
buffer (154 mM sodium chloride, 125 mM CaC12, 5 mM KCl, 2 mM MES, pH 5.7),
the harvesting cells were resuspended in MMG buffer (0.6 M mannitol, 15 mM
MgCl2, 4 mM MES, pH 5.7). 10 mg of each vector was added to the protoplasts for
10 min using 40% PEG buffer (0.6 M mannitol, 15 mMMgCl2, 4 mM MES, pH 5.7)
and then were washed for two times using W5 buffer. At last, the protoplasts were
resuspended in incubation buffer (0.6 M mannitol, 4 mM MES, 4 mM KCl, pH
5.7). After incubating for 12–16 h, the protoplasts were spun down and incubated
with lysis buffer. Firefly and Renilla luciferase were quantified using a dual-
luciferase assay kit (E1910, Promega).

Histochemical GUS staining. Five-week-old PRFT1::GUS/PRFT1Δe::GUS (LD)
and PHd3a::GUS/PHd3aΔe::GUS (SD) plants were used for GUS staining. Leaf
blades were collected and infiltrated with staining solution (50 mM sodium
phosphate buffer, pH 7.0, 0.5 mM potassium ferrocyanide, 0.5 mM potassium
ferricyanide, 0.1% Triton X-100, 10 mM EDTA, 1% dimethyl sulfoxide, and 0.5
mg/mL X-Gluc) in a vacuum chamber, then incubated at 37 °C for 12 h. Chlor-
ophylls were removed by incubating in 70% ethanol at 65 °C and dehydrating
through an ethanol series (50%, 70%, 90%, and 100%) and ethanol/histoclear series.
The leaves were embedded in paraffin and sectioned at a thickness of 10 μm using
an Ultracut UCT ultramicrotome (Leica).

RNA-seq analysis. Library construction and sequencing were performed as pre-
viously described8. The original paired-end reads were first trimmed using
CUTADAPT v1.10. Then, TOPHAT2 v2.0.1369 was used to align adapter-removed
raw reads to the complete reference genome of Nipponbare (japonica) rice (http://
rice.plantbiology.msu.edu). Normalized gene transcription levels were calculated as
fragments per kilobase of exon per million fragments mapped by CUFFLINKS
v2.2.167. Next, differentially expressed genes (DEGs) were identified using the
CUFFDIFF program, which is a subpackage of CUFFLINKS. DEG identification
was performed at a threshold of a more than 1.5 fold-change and an adjusted P-
value < 0.05.

BEDToolsv2.17.0 and “Biostrings” package were used to search for the
promoter (2 kb upstream of the TSS) containing the “CGGAAAT” element. Genes
down-regulated to more than 1.5-fold were referred to as down-regulated genes in
suf4Ri-1. Venn diagrams were generated using ‘Venn Diagram’ packages in R
software.
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Protein crystallization and structure determination. The DNA fragment
encoding the OsSUF4 zinc finger domain (amino acids 10–100) was subcloned
into the pET28-SUMO vector and expressed in Escherichia coli BL21(DE3)
competent cells. To facilitate structural determination, Se-Met-substituted
OsSUF4 was also prepared. Proteins were purified by the Ni-chelating column
and size-exclusion chromatography (Superdex G75, GE Healthcare), stored in
20 mM Tris–HCl pH 8.0, 100 mM NaCl, 2 mM dithiothreitol buffer, and con-
centrated to 20 mg/mL prior to use. All crystals were grown at 18 °C using the
sitting drop vapor diffusion method. The drop contained equal volumes of
protein and reservoir solution (0.1 M Hepes, pH 7.0, 30% w/v PEG6000). X-ray
diffraction data were collected on beamline BL17U1 at the Shanghai Synchro-
tron Radiation Facility. Data processing was carried out using the HKL2000
program68. The structure was solved using single-wavelength anomalous dif-
fraction with the Autosol program embedded in the Phenix suite69. Structural
refinement was performed using the Refmac program of CCP4i70. Coot71 were
used for model building. Details of data collection and refinement statistics are
summarized in Supplementary Table 1.

ITC assay. All mutant proteins used in ITC assays were purified following the
same method as wild-type proteins. Oligonucleotides were purchased from Sangon
Biotech. To obtain stable and uniform DNA duplexes, complementary oligonu-
cleotides were mixed in a molar ratio of 1:1, heat-denatured at 95 °C, then slowly
cooled to 12 °C. ITC was carried out by MicroCal iTC200 (GE Healthcare) in 100
mM NaCl, 20 mM Tris–HCl, pH 8.0 buffer at 25 °C. Then, 2 mM OsSUF4 was
titrated into 0.1 mM DNA and the mutants. The thermogram was processed by the
ITC data analysis module of Origin 7.0 (MicroCal) and fitted into the one-site-
binding mode.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq data in this study have been deposited in the Sequence Read Archive (SRA)
database and are available with the following accession code: SRP186556. PDB accession
code of the OsSUF4 zinc finger domain is 6J0D. The data that support the findings of this
study are available from the corresponding authors upon reasonable request. The source
data of the gels and immunoblots in Figs. 2b, 5b–d, 7d, Supplementary Fig. 2,
Supplementary Fig. 5, and Supplementary Fig. 8, as well as the source data underlying
Figs. 3b, c, e–g, 4, 6a, b, 7e, 8c, Supplementary Fig. 3, Supplementary Fig. 4,
Supplementary Fig. 6, Supplementary Fig. 7, Supplementary Fig. 8b, c, and
Supplementary Fig. 10b are provided in the Source Data file.
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