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Abstract

Advanced hemodynamic monitoring is a critical component of treatment in clinical situations
where aggressive yet guided hemodynamic interventions are required in order to stabilize
the patient and optimize outcomes. While there are many tools at a physician’s disposal to
monitor patients in a hospital setting, the reality is that none of these tools allow hi-fidelity
assessment or continuous monitoring towards early detection of hemodynamic instability.
We present an advanced automated analytical system which would act as a continuous
monitoring and early warning mechanism that can indicate pending decompensation before
traditional metrics can identify any clinical abnormality. This system computes novel fea-
tures or bio-markers from both heart rate variability (HRV) as well as the morphology of the
electrocardiogram (ECG). To compare their effectiveness, these features are compared
with the standard HRV based bio-markers which are commonly used for hemodynamic
assessment. This study utilized a unique database containing ECG waveforms from healthy
volunteer subjects who underwent simulated hypovolemia under controlled experimental
settings. A support vector machine was utilized to develop a model which predicts the stabil-
ity or instability of the subjects. Results showed that the proposed novel set of features out-
performs the traditional HRV features in predicting hemodynamic instability.

Introduction

Critical illness and injury is capable of leading to hemodynamic changes which, when left
untreated, can lead to acute hemodynamic decompensation, shock, multi-organ failure and
ultimately death. Advanced hemodynamic monitoring is a critical component of treatment in
clinical situations where aggressive, yet guided interventions are required in order to stabilize
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the patient and optimize outcomes. Hemodynamic decompensation and compromise can
occur for various reasons such as hypovolemia, sepsis, trauma, burns, heart failure, neurogenic
injury, acute myocardial infarction, etc. While there are many tools at a physician’s disposal to
monitor the patient in the hospital setting, the reality is that none of these tools allow hi-fidelity
assessment of early physiologic changes that if recognized could result in earlier intervention
and improvements in outcome. In fact, standard methods for assessing hemodynamic status,
such as arterial blood pressure (BP), heart rate (HR) and arterial hemoglobin oxygen saturation
(Sa02), can remain stable until the onset of overt conditions and thus often do not provide
adequate actionable information that would enable physicians and care givers to perform the
necessary early interventions that may avert pending decompensation [1, 2].

Critical illness and injury do not always result in an immediate change in vital signs that
provide caretakers a warning that action must be taken immediately. The body is capable of
producing impressive compensatory physiology which maintains vital signs in normal ranges
until these compensatory mechanisms are exhausted, resulting in a state of decompensation. In
hemorrhage, for example, depending on the injury and rate of blood loss, as much as 40% of
circulatory blood volume could be lost before vital signs become overtly abnormal. [2] The
ability to compensate, however, is specific to an individual and is based on many factors includ-
ing basal state of health, aerobic capacity, etc [3].

Therefore, although there is a need for high-fidelity assessment of hemodynamic function
that would allow for early intervention, most methods that rely on standard vital signs obtained
from current technologies are severely limited [1] [4] [5].

Currently, there are research studies being conducted which attempt to determine hemody-
namic stability using continuous non-invasive BP measurements and examination of arterial
waveforms collected using devices such as Nexfin (formerly known as Modelflow, Finapress)
[6, 7] pulse oximetry, and seismocardiogram [8]. While these approaches are showing promise,
there is a need to exploit other readily obtainable signals such as the ECG.

As aresult, there is a need for an improved set of features extracted from both HRV as well
as the raw ECG signal which are designed to function specifically in quick and real-time moni-
toring settings with short windows of ECG signal, this study presents new options which could
be useful, presenting certain novel features which are compared and contrasted against stan-
dard HRV based features. To test their effectiveness a database which contains physiological
data of simulated hypovolemia in healthy volunteer subjects under controlled experimental set-
tings was used.

The remaining sections are organized as follows: Section Data describes the physiological
signal database used for this study. Section Methods contains multiple subsections describing
the signal decomposition and feature extraction phase, including extraction of standard HRV
based features and the new set of features presented in this study. Section Results describes the
process of feature space reduction, machine learning modeling, and performance evaluation.
Finally the Discussion section provides the conclusion from this study.

Data

To develop, test and validate the proposed automated signal processing system for continuous
monitoring of hemodynamic condition of patients, a specific database was utilized. This database
consists of hi-fidelity physiological signals, which includes electrocardiogram (ECG) signal sam-
pled at 500Hz, collected from volunteer subjects undergoing Lower Body Negative Pressure
(LBNP), housed at the U.S. Army Institute of Surgical Research (USAISR) in San Antonio, TX.
This model of LBNP has been established as a human model of compensated hemorrhage [3].
The data was collected by the USAISR under a research protocol and consent procedure that was
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sanctioned by its own internal review board (IRB). The participants provided a written consent
to participate in this study. The USAISR was solely responsible for recording the consents and
maintaining the records. Under a Cooperative Research and Development Agreement between
the USAISR and the University of Michigan, a completely de-identified version of this dataset
was provided by the USAISR for this study. This dataset consists of 200 subjects, all of whom
were healthy volunteers recruited by the USAISR and none of whom had undergone any special
conditioning prior to the study. These subjects were asked to refrain from exercise, alcohol and
stimulants such as caffeine and other non-prescription drugs for the 24 hours prior to this experi-
ment thereby mitigating any potential biases on their cardiovascular functions.

Central hypovolemia was simulated in the subjects by introducing increasing negative pres-
sure to their lower body, performed using an LBNP chamber [9]. In this experiment, each sub-
ject is positioned such that the lower half of their body is inside the chamber while the upper
half of the body is attached to multiple sensors that collect continuous physiological signals
during the experiment. The LBNP protocol consisted of a 5-minute rest period (baseline) fol-
lowed by 5 minutes of chamber decompression at 15, 30, 45, and 60 mmHg and then additional
increments of 10 mmHg every 5 minutes until the onset of hemodynamic decompensation or
the completion of 5 minutes at 100 mmHg. The attending investigator closely monitored each
subject to determine the onset of hemodynamic decompensation, identified by a precipitous
fall in systolic arterial BP concurrent with presyncopal symptoms such as bradycardia, gray-
out (loss of color vision), tunnel vision, sweating, nausea or dizziness. The LBNP model used in
this study provides a platform by which to examine the compensatory physiology of central
hypovolemia and to design early warning systems that may allow caretakers advance warning
prior to overt decompensation.

Among the 200 cases of subject data available, some were not utilized in this study. Some of
the data collected had very low signal to noise ratio and some subjects were too intolerant of
negative pressure, resulting in insufficient time in the chamber. Data from 178 subjects was uti-
lized in the final analysis.

During hemodynamic compensation to hypovolemia the information available with typical
vitals such as BP and HR does not provide adequate actionable acumen for physicians and care
givers to perform necessary interventions. Fig 1(a) and 1(b) show the variation of HR and
mean BP across each stage for all the 178 subjects, respectively. For this study we have utilized
the continuous waveform of the ECG lead-II only.

First, it can be seen that there is significant overlap in data at each level of the LBNP, both in
HR as well as BP. The majority of the subjects remain within what is considered as a normal
range of HR of 60-100 beats per minute (BPM) even during the later and more severe levels of
LBNP. Similarly, the average mean BP of all the subjects remains within a range of 80-120
mmHg throughout the LBNP experiment. Second, there are large overlaps within the standard
deviations of the data between subsequent stages of the LBNP. In this cohort, 56 individuals
reached up to 4 levels of negative pressure (60 mmHg), 55 reached up to level 5 (70 mmHg), 47
reached level 6 (80 mmHg), 16 reached level 7 (80 mmHg) and 4 reached level 8 (100 mmHg).
This suggests that there is a fairly large amount of inter-personal variability between these sub-
jects. In fact, significant variation exists in the tolerance and compensatory reserve of individu-
als undergoing LBNP in this controlled model, with very few individuals capable of reaching
100 mmHg of LBNP. Due to these factors, using a simple rule based systems for recognizing
severity of hemorrhage via traditional vital signs is not an efficient mechanism to detect onset
of hemodynamic decompensation at an early stage. A further challenge to such an approach
might be the need to know the baseline vital signs which is not always practical in real-life. It is
evident that neither the BP nor the HR of these subjects changes overtly even during the severe
stages of LBNP.

PLOS ONE | DOI:10.1371/journal.pone.0148544 February 12,2016 3/20



@’PLOS ‘ ONE

Detection of Hemodynamic Instability Using Computational System

160 Heart Rate Across Each LBNP Stage, Across All Subjects

Heart Rate

ssB8TT11 L

(a)
Normal Level-1 Level-2 Level-3 Level-4 Level-5 Level-6 Recovery

Mean BP Accross Each LBNP Stage Accross All Subejcts

i —_ !
140 B H H
- -+ —“+ i ! : :
2120 H ' H - H H - |
5 H H H
2 : : H H H i
2 : | 1 H | H
°
=3
o 80 T ' H H H T H
@ : : H : : : :
< : : H - H
3 60 —— = = == == H
- T
40 ! :
H
20 !
(b) :
Normal Level-1 Level-2 Level-3 Level-4 Level-5 Level-6 Recovery

LBNP Levels

Fig 1. Heart Rate and Blood Pressure. The central mark within each box is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers are the standard deviations of the data at each stage and
the outliers are plotted in red ‘+'. (a): Box plot depicting the interpersonal variability of HR in each stage
across all subject; (b): Box plot of overall mean and standard deviation of arterial BP across each stage of the
LBNP experiment.

doi:10.1371/journal.pone.0148544.g001

Methods

Our methodology includes several steps executed in sequence as shown in Fig 2. Each of these
steps are explained in detail in the following sections.

Preprocessing

The first step in the preprocessing stage is windowing. Since the system is designed for applica-
tion in real-time continuous monitoring settings, a tumbling window system has been utilized.
After testing a variety of windowing methods, a beat size based windowing approach was then
utilized where each window contains 120 complete beats of ECG. Other sizes of windows were
also empirically tested and the results are shown in later sections. Each window of the ECG sig-
nal is modeled to fit a polynomial function of degree 6, where the optimal coefficients are deter-
mined by minimizing the sum of squared errors, and subtracted from the ECG signal to
remove the baseline drift [10].

The next step in the preprocessing stage is noise removal. For this, the Savitzky-Golay filter
has been utilized which is a generalized moving average filter with its coefficients determined
by an unweighted linear least-squares regression and a second degree polynomial model [11].
The filtered signal is then used for peak detection.

Peak Detection

After pre-processing, we detect the P, Q, R, S, and T peaks within the signal. To do this, the
ECG window is first filtered using a level-10 wavelet transform and Daubechies 4 mother
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Fig 2. Methods Flowchart. Outline of the various discrete steps involved in the designed methodology.

doi:10.1371/journal.pone.0148544.9002

wavelet. This is done by setting the approximate coefficients and detail coefficients at level 10
to zero. This process maintains the shape of the signal and keeps the location and sharpness of
the peaks intact while removing very low-frequency noise.

The filtered signal is then used to find the R peaks. The SQRS function in the PhysioNet
toolbox, which is based on the algorithm in [12], has been used for this purpose. Next, the Phy-
sioNet routine ecgpuwave was used to find the P, Q, S, and T peaks, and the R peaks that were
found in the previous step were provided as inputs to the algorithm. Any missing P, Q, Sand T
peaks were augmented based on the timing of the same peak in the previous periods normal-
ized by the ratio of the current and previous RR intervals. The results were visually inspected
and the performance and accuracy of the detections were verified.

The ECG signals were normalized before feature extraction by subtracting the median of
the signal and dividing by the mean of the R peak amplitudes. This allows us to later use the
amplitude of the P, Q, S and T peaks as features.

By using a processing window for feature extraction that has a fixed length, some of the
extracted features can become dependent on the HR. Our intention was to exclude HR from
the feature set since including HR can lead to low specificity in practice (see Fig 1 and its
description in Section Data). As a result, a variable window length was used for feature extrac-
tion that included a fixed number of beats rather than a fixed unit of time. As it is shown in Sec-
tion Model Performance, a window that contains 120 beats is the best choice for the window
size. The results that are presented in the rest of the paper are based on a window of 120 beats,
unless stated otherwise.

Feature Extraction

Peak-Based Features. The first set of peak-based features that were extracted are based on
the normalized time intervals between the peaks. The t,(i), t(i), (), t,(i) and #,(i) are defined
as the time of the P, Q, R, S and T peaks that are contained in the i sliding window, respec-
tively. The feature t,,,, is defined as

1 a) —4,0)
e = 0 2 T = 1) M

i=1

PLOS ONE | DOI:10.1371/journal.pone.0148544 February 12,2016 5/20



@’PLOS ‘ ONE

Detection of Hemodynamic Instability Using Computational System

where t,(i) — t,(i) is the length of the " Q-T segment, and ¢,(i) — t,(i — 1) is the length of the ith
R-R interval. Likewise, all the possible combinations of the ratios of peak intervals were com-
puted and included in the feature set. Note that all the time intervals are normalized by another
interval to remove the effect of HR from the extracted features.

The second set of morphology-based features is computed using the amplitude of the peaks,
denoted by a,(i), a,(), a.(i), a (i) and a,(i). The amplitude features a,, and a,, are computed as

0y =13l — 4,00, @

n

1 n
a, =— al(i)—al(i—1). 3
r n ; r ( ) r( ) ( )
Moreover, the ratio and interaction of the amplitude features are also included in the feature set.

1< a,(i) B aq(i)
aqm:;; al)—al-1)" (4)

n

Ayory = %Z (a,(i) — a,(i))(a,(i) — a,(i - 1)). (5)

i=1

Moreover, several non-typical features were extracted from the HRV signal. This includes
features extracted from the Fourier transform and power spectral density (PSD) of HRV such
as dominant frequency and its amplitude, median frequency and edge frequency. Finally, the
respiratory signal was extracted from the modulations of the ECG signal, using the method
suggested in [13] for single lead ECG, and several respiratory features were extracted. That
includes the spread, dominant frequency and its amplitude, median frequency and edge fre-
quency of the respiratory signal and its derivatives. A total of 839 features were extracted from
the peak based computations alone.

Taut String. Once each of the QRS complexes have been located and the R peaks have
been isolated, the HRV can be computed. If ry, 1y, . . ., 7, are the times of the R-peaks as before,
then the RR signal measures the lengths of the R-R intervals and is computed by

z2=1(2,,2y,,2,) = (r, — 1,1y — 1,1, —1,,) = D(r)

where D is the difference operator and r = (ro, 74, . - ., ).
For a fixed € > 0, let x be the unique function such that

[z—xl, = max{lz;— x|} <e
and
| D(x) I, = Z:: (%41 — xi)Q

is minimal, and set y = z — x. The function x also minimizes

n—1
| D*D(x) ||, = |x, — x| + Z i1 = 22 4 x|+ |, — X,

i=2
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Fig 3. Taut String. X axis is the time in seconds (example shown is 60 seconds), Y axis is epsilon width from
the origin for piecewise linear reconstruction. (a) The black and red waveforms are the taut-string margins, z —
gand z + ¢, and the dotted blue lines is the taut-string estimation; (b) Shows the reconstructed signal based
on the taut-string estimation.

doi:10.1371/journal.pone.0148544.g003

where D* : R"" — R"is dual to D : R" — R"" and is given by

D (wy, Wy, s W, ) = (=W, Wy — wy, W,y — LETRRR

(6)

Wn72 - Wn717 anl)

We can think of D* D(x) as a second derivative of x and ||D* D(x)||; as a measure of how much
the function x bends. The function x can be computed using the Taut String Method, and we
will write x = TS(z, €) [14]. Graphically, the function x can be viewed as a string between z — £
and z + £ that is pulled tight (see Fig 3). The Taut String Method first appeared in statistics and
was used to find a good £,-approximation of a given function by a step function. An efficient
algorithm for computing x = TS(z, £) was described in [15] with a time complexity of O(n).
Typically, x is a piecewise linear function that is smoother than z. We can consider the decom-
position z = x + y as a denoising, where x is the denoised signal, y is the noise with ||y||o. < &
and ¢ is the noise level.

The variable epsilon € is varied through a set range, and for each £ within the range we com-
pute the decomposition z = x* + y©, where x) = TS(z, €).

Through the Taut String computation with different epsilon values, a total of 64 features
were extracted. These are statistical measures such as mean, standard deviation, skewness, kur-
tosis, etc., computed on the Taut String estimation and the estimation error (the difference of
the original signal and the estimation) at each epsilon as well as the inflection points of the
Taut String estimates. After feature selection (Section Feature Selection), only features that
were found to be independent and relevant to the development of the predictive model were
retained. These features are explained in the Results section. (Section Results).
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Dual Tree Complex Wavelet Decomposition. Analysis of certain time series signals,
including ECG, in the time or frequency domain alone becomes insufficient for dynamic model-
ing. Transformations of such signals into the hybrid time-frequency domains can improve target-
ing and extracting of more salient features within the signal. A popular such transformation,
which is often used to capture the signal characteristics in time and frequency domains, is the
Short Time Fourier Transform (STFT) [16, 17]. However, STFT’s dependence on the shape and
size of the window used in this transformation can greatly impact the quality and efficacy of sig-
nal representation [18]. Moreover, the use of sinusoidal basis functions, that span over the inter-
val of [-o0,+00] affects the ability and performance of STFT in extracting short-lived patterns in
signals [18]. Also, the time-frequency precision of STFT is not optimal [19].

To combat this, another popular transformation that is often used is the Discrete Wavelet
Transform (DWT) [20-22]. The wavelet transformation is based on a set of analyzing wavelets,
each of which has its own time duration, time location and frequency band, allowing the
decomposition of ECG signal into a set of coefficients [19]. The wavelet coefficient corresponds
to a measurement of the ECG components in this time segment and frequency band. Despite
DWT’s computational efficiency and sparse representation, the Wavelet transform suffers
from a few fundamental and interrelated disadvantages such as complications during singular-
ity extraction and modeling of signals, shift variance, aliasing, and lack of directionality [23-
26]. So, applying DWT directly on the raw ECG waveform did not yield useful features.

To overcome some of these traditional shortcomings of DWT on ECG waveform, the Dual
Tree Complex Wavelet Transform (DTCWT) technique has been employed for the signal
decomposition and feature extraction [26, 27]. The DTCWT was first introduced by Kingsbury
in 1998 [24]. In DTCWT, two non-complex DWT’s are used simultaneously at each decompo-
sition level. The first DW'T gives the real part of the transform while the second DWT gives the
imaginary part. To perform the two streams of decomposition in the DTCWT framework, two
complimentary filter banks are typically utilized. Detailed descriptions of these filters can be
found in [28, 29]. The boundary issues, also known as shift variance which is typically found in
standard wavelet methods, are mitigated to an extent with the DTCWT. The DTCWT is also
approximately shift invariant, while offering both the magnitude and phase information of
the signal.

Using DTCWT, each ECG window is decomposed to 5 levels with each level producing a
real and imaginary component of the decomposed waveform. A final residual waveform is also
obtained after all the waveform components are removed at each level form the original signal.
In total, 198 features were extracted from each of the real and imaginary components of the 5
levels of decomposition. These features were mainly designed to capture the statistical as well
as morphological variations of each level of the decomposition. After the feature selection steps
(Section Feature Selection), only two features were found to be independent and informative
for predictive model development, which have been described in the Results section.

Traditional HRV features. Several traditional HRV features which are commonly used by
researchers and care-givers have also been extracted from the the signals for comparison [30-
32]. These features have been derived in order to compare and contrast their effectiveness
against the new set of features described in this study for the assessment of hemodynamic con-
ditions of these subjects. These HRV features are extracted both from the time and frequency
domains. From the time domain, the square root of variance of the R-R interval (a.k.a ‘NN
interval’ in the medical community) (SDNN) is extracted which is defined as follows

SDNN = \/n i - Z;’Zl (z—2)°, (7)
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where z; is the value of the i-th R-R interval, and z=2"" | 7, is the average of the R-R intervals
within the window. Since variance is mathematically equal to total power of spectral analysis,
SDNN reflects all the cyclic components responsible for variability in the period of recording.
The standard deviation of the first order differential (SDSD) of the R-R interval is computed

as follows

SDSD = \/ﬁ Z: (|lu)| — ) (8)

where
(uy,ty, - yu, ) =D(2) = (2, = 2,2 — 295+, 2, — 2, )

and u = - S°" ' |u,] is the average. The SDSD quantitatively captures the short-term variabil-
ity within the HRV. Another measure similar to the SDSD is the root mean square of the suc-

cessive differences (RMSSD) given by

RMSSD =

Another feature that is extracted is the pNN50, which is essentially the percentage of adja-
cent R-R intervals differing by 50 ms in the entire window. This is given by
pNN50 = L8 NN50, where

NN50 = #{i|1 <i<n—1 and |y > 50ms}. (10)

is the number of times within the window that two consecutive R-R intervals differ by more
than 50ms.

Some frequency-based features are also captured from the HRV. A power spectral density
(PSD) is first computed for the R-R intervals using FFT based on the periodogram method
[33]. The application is similar to the one used in the popular Kubios HRV analysis tool [34].
Using the computed PSD, powers of the low frequency (LF, 0.004-0.15 Hz) and high frequency
(HF, 0.15-0.4 Hz) bands components are extracted. The HF/LF power ratio is also computed
as an additional feature. Other extracted features include mean, kurtosis and the skewness of
each HRV window.

Feature Selection

Through the several feature extraction techniques mentioned thus far, there were 1117 differ-
ent features that were computed and extracted from each window of the ECG signal. However,
for the sake of brevity, only the features that have passed a feature selection process (described
next) have been explained. Due to the extremely large number of features being extracted from
each window, a feature selection process was required for eliminating those features that were
redundant or not informative towards the machine learning model development.

Ideal feature sets for machine learning problems contain features that are highly correlated
with the output but uncorrelated with each other. With a large, high-dimensional raw feature
set (178 subjects, 1117 features per window of ECG), we applied a two-stage approach to fea-
ture selection. The first stage consisted of a redundancy reduction algorithm to remove multi-
collinearity from the large feature set, so that at the second stage, a stepwise forward selection
method, could accurately reduce the feature set down to those described previously.

PLOS ONE | DOI:10.1371/journal.pone.0148544 February 12,2016 9/20
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Correlation Feature Redundancy Reduction

Multicollinearity, or high correlation between predictor variables, is problematic for linear
regression analysis (and therefore our stepwise model selection method as well) because it
causes regression coefficient estimates to become indeterminate [35]. To reduce feature-to-fea-
ture correlation, we employed an approach based on the correlation matrix. For each subject
within the feature set, a correlation matrix C; was calculated, where the i, jth element was the
correlation between the ith and jth features of subject s, respectively. The mean correlation
matrix C, which represented the average correlation between all features across all subjects was
then calculated. This matrix was then thresholded, with an average correlation above the
threshold being considered a redundancy. Redundancies for each feature were tallied, and
redundant features were then removed from the feature set in greedy fashion, with the feature
with the most redundancies removed first, the feature with the second highest removed second,
and so on. Upon each feature removal, the redundancy counts for each feature were updated,
as removal of a feature decreased redundancy counts for all the features it was correlated with.
This continued until no features with redundancies at the given threshold level remained.

A feature-feature correlation of 0.9 or greater is commonly used as an indicator of multicol-
linearity [36]. We chose this value as our threshold, resulting in the removal of 392 features, for
a remaining total of 725.

Model Selection

The second and final step in reducing the size of the feature set was stepwise model selection.
Choosing the best subset of the features with highest accuracy and lowest redundancy is a non-
linear problem. Several methods have been proposed in the literature that use different criteria
to find this subset [37, 38]. In this paper, sequential F-tests were used to select a small subset of
the features which were highly correlated with the response variable but not with each other.
This was done via a forward selection method with 10-fold subject-wise cross-validation. Start-
ing with an empty model that only included an intercept, the feature that maximized the model
R-squared on the training set was added in each step. The top 10 selected features were used
for machine learning. The resulting model along with the selected features are described in the
Results Section.

Machine Learning

After feature selection, the selected features are then used to develop predictive models which
can assess and predict the level of hemodynamic instability in the subjects, or in this case, the
severity of the LBNP stage. For developing a predictive model, several different machine learn-
ing techniques, including discriminant analysis, nearest neighbors, decision trees, and support
vector machine (SVM) were tested. Out of the ones tested, SVM consistently performed better
than the rest and hence the results of SVM have been described in this section.

Each of the 178 subjects have an average of 12 windows of extracted features at window size
of 120 beats. The feature set, when combined across all subjects, has a sum of 2085 rows across
10 columns. We found that the standard linear-kernel SVM, using the LIBSVM implementa-
tion, performed best [39]. We optimized the cost parameter C by performing 10-fold cross-val-
idation for several different C values and then choosing the C which produced the model with
the highest average area under the receiver operating curve (AUC) across all folds. If run on
the entire dataset, however, this method risks overfitting the C parameter, because the testing
set is used (and therefore exposed before model evaluation) when choosing C. To mitigate this,
we perform an outer 10-fold cross-validation. A validation set is first taken from the dataset
and set aside. The remaining data is then split into training and testing sets according to the

PLOS ONE | DOI:10.1371/journal.pone.0148544 February 12,2016 10/20



i@;"L‘)S;‘ONE

Detection of Hemodynamic Instability Using Computational System

Table 1. Table of selected features.

Index

Fi
F2
F3
F4
F5
F6
F7
F8
F9
F10

Term

Intercept
Kurtosis 3
Mean Coef 6
Taut String 32
tste

8pt*qq

Apt*ss

arr*qq

arttt

HRV Edge F.
Resp Edge F.

cross-validation parameter optimization described above, with the best C for these training and
test sets chosen. Then a new model is trained on the combined training and testing sets and
evaluated on the validation set using the chosen C, producing metrics such as AUC, accuracy,
sensitivity, specificity, etc. This process is repeated for each outer validation fold, and the met-
rics from each validation fold are averaged to produce the final metrics reported in this paper.

Since subjects decompensated at various LBNP stages, we created a 2-class description to
provide more individual specific decompensation information. In this classification, we
declared the beginning of early decompensation to occur half-way through each individual’s
LBNP course. In the first half, individuals were considered adequately compensated. At the
beginning of the second half, individuals were considered to be overtly decompensating. Identi-
fication of individuals at this point would still occur prior to any overt changes in vital signs,
potentially allowing early identification and intervention [9]. Therefore the labels for machine
learning were created using the levels of LBNP, where the overall levels of LBNP for each sub-
ject is divided into two equal parts. The first half of the LBNP stages including the baseline is
labeled as class normal (subject is adequately compensated) and the second half of the data
from the middle of the levels to the last but one level is considered as class abnormal (subject is
becoming hemodynamically compromised). Such a strategy would still allow for recognition
that the patient is becoming compromised prior to any overt changes in typical vital signs (HR
and BP). In this study the recovery stage of the LBNP has been excluded. For the interest of a
comparative study, the traditional HRV features and the new features described in this study
are both used separately for developing independent models. The results are compared in the
following section.

Results

The selected features and their corresponding coefficient estimates and standard errors, t-
ratios, p-values and variance inflation factors (VIF) are shown in Table 1. It is evident that all
the selected terms are highly significant. Moreover, all the VIF values are below 10, indicating
that the correlations between the terms are negligible.

The first feature in Table 1, F1, is the Kurtosis of the residual signal from the 3rd level of
DTCWT decomposition of the ECG signal. Kurtosis is essentially a measure of how outlier-

Estimate Std Error t-Ratio Prob< |t| VIF
0.9299624 0.073524 12.65 <.0001 .
-0.004307 0.000882 -4.88 <.0001 1.42
0.9385273 0.102607 9.15 <.0001 1.19
0.0112771 0.002347 4.8 <.0001 3.43
-0.832286 0.213302 -3.9 0.0001 2.52
0.0003386 6.74E-05 5.03 <.0001 1.55
0.0002625 0.000072 3.64 0.0003 1.86
-0.000166 2.22E-05 -7.45 <.0001 1.16
0.0003911 0.000119 3.28 0.0011 1.70
0.0006793 0.000196 3.46 0.0006 2.63
-0.499431 0.062656 -7.97 <.0001 3.11

The 10 features that are selected by forward sequential cross-validated F-tests and their coefficient estimates, coefficient standard errors, t-ratios, p-

values and variance inflation factors (VIF).

doi:10.1371/journal.pone.0148544.t001
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Fig 4. Top row. the HRV signals and their taut string estimates for a window at baseline, middle stage and final stage. Bottom row: the differences between
the HRV waveforms and their taut string estimates. The figure also shows the value of the Taut String 32 feature at each stage.

doi:10.1371/journal.pone.0148544.g004

prone a distribution is. The kurtosis of the normal distribution is 3. Distributions that are more
outlier-prone than the normal distribution have kurtosis greater than 3; distributions that are
less outlier-prone have kurtosis less than 3. The second feature F2 is the average value of the
residual waveform obtained at the end of the 5 levels of DTCWT decomposition. Feature F3 in
Table 1 is a Taut String feature which essentially is the average of the difference between the
original HRV waveform and the taut string piecewise linear reconstruction of the waveform at
an epsilon of 32ms. The HRV and its taut string estimate are shown in the top row of Fig 4 for
the baseline, the middle LBNP stage and the final LBNP stage before the collapse. The differ-
ences between the HRV and the taut string estimate are shown in the bottom row. The subtrac-
tion removes the trend of the HRV waveform and only maintains the variations in the HRV
that have an amplitude of or smaller than 32ms. The amount of variation seems to be corre-
lated with the hemodynamic status and decreases as the subject approaches the point of col-
lapse. The Taut String 32 feature captures the level of variation by computing the mean
absolute value of the derivative of the differences in the second row. The feature values are
shown above each graph.

In addition, seven peak-based features were also selected. Feature F4 is the ratio of the S-T
segment normalized by the T-T segment. Moreover, features F5-F8 are the amplitude interac-
tion features that were selected. Finally, the edge frequency for the HRV and respiratory sig-
nals, F9 and F10, were added to the model. The edge frequency was computed based on the
95-th percentile of the PSD of the signals.

A similar linear regression model was created using the 10 typical HRV features. The pre-
dicted severity levels are plotted against the actual severity levels for the two models in Fig 5.

PLOS ONE | DOI:10.1371/journal.pone.0148544 February 12,2016
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Fig 5. Predicted versus actual severity levels. The predicted severity levels are computed using multiple linear regression of the 10 selected features
versus the typical HRV features. The bars indicate 95% confidence intervals.

doi:10.1371/journal.pone.0148544.g005

The severity level is defined as an index with a value of 0 at baseline and 1 at the point of col-
lapse. Five severity levels are used from 0 to 0.8 (right before the collapse) and the LBNP stages
are converted into these severity levels. The green horizontal line indicates an ideal model. The
model with the proposed features (blue) is closer to the ideal line which indicates that the pro-
posed features have a higher separation power compared to the typical HRV features (red).
Moreover, the confidence interval bars indicate that the differences between the predicated val-
ues using the two models are statistically significant at all the levels except at 0.4. Notice that
the model output at 0.4 is mainly determined by the intercept. Hence, the output values at 0.4
are expected to be equal while the largest separability occurs at the two extremes.

To account for the fact that both the presented features and the typical HRV features may
be better suited to capturing information from different lengths of ECG, we extracted both fea-
ture sets using window sizes from 30 to 240 beats with increments of 30 beats. The lowest base-
line HR that exists in the dataset is 50 BPM, which prevents us from considering higher
window sizes without losing a full stage. We then fit an SVM model for each specific window
size and feature set combination according to the procedure outlined in the previous section.
The resultant performance metrics are compared in Table 2 and Figs 6, 7 and 8.

PLOS ONE | DOI:10.1371/journal.pone.0148544 February 12,2016 13/20



@'PLOS ‘ ONE

Detection of Hemodynamic Instability Using Computational System

Table 2. Prediction Model Comparison Table—The table compares the AUC, accuracy, sensitivity and specificity of the typical HRV features and
the presented features for different window sizes as well as the 95% confidence intervals for the AUC and accuracy values. Asterisks indicate statis-

tical significance at the a = 0.01 level. Bold indicates best score for that feature set. A non-parametric Mann-Whitney U test was used. The number of
instances is denoted by n for each feature set.

Size
30 Beats
(n = 8689)
60 Beats
(n = 4233)
90 Beats
(n =2779)
120 Beats
(n =2085)
150 Beats
(n = 1655)
180 Beats
(n = 1506)
210 Beats
(n=1321)
240 Beats
(n =1156)

Features

Typ. HRV
Presented
Typ. HRV
Presented
Typ. HRV
Presented
Typ. HRV
Presented
Typ. HRV
Presented
Typ. HRV
Presented
Typ. HRV
Presented
Typ. HRV
Presented

doi:10.1371/journal.pone.0148544.1002

AUC Acc. Sens. Spec.

0.818 £ 0.018 74.866 + 1.701 66.419 82.354
0.868 + 0.014* 79.791 * 2.048* 74.983 84.051
0.806 + 0.019 73.978 + 1.990 66.594 80.657
0.874 + 0.014* 80.760 * 1.760* 74.640 86.305
0.801 £ 0.019 73.347 £ 2.517 67.744 78.233
0.879 + 0.018* 80.922 * 2.507* 75.080 86.081
0.817 £ 0.020 74.258 +2.428 69.879 77.822
0.902 £ 0.018* 83.138 £ 2.741* 77.642 87.696
0.828 + 0.022 75.982 + 2.068 67.905 81.990
0.897 * 0.019* 82.537 * 3.255* 76.770 86.717
0.852 + 0.016 76.953 * 2.521 76.966 76.912
0.900 * 0.020* 82.180 + 2.932* 78.076 86.028
0.848 + 0.022 77.769 £ 2.190 73.425 81.919
0.915 * 0.014* 84.730  2.024* 81.937 87.468
0.829 + 0.022 75.293 £ 2.941 74.740 75.785
0.886 * 0.019* 81.538 + 2.198* 78.759 84.074

In Fig 6, the AUCs and accuracies are plotted for each feature set at each window size with
their respective 95% confidence intervals. One can see that the presented features outperform
the typical HRV features across all window sizes. Additionally, the presented features’ AUC
and accuracy peak at the 210-beats window size. The asterisks indicate the window sizes whose
mean AUCs are significantly different from that of the 210-beats window size according to
pairwise Mann-Whitney U tests. Among the window sizes that are not significantly different
from the maximum, the smallest window size, the 120-beats, is chosen as the best window size
since it leads to the minimum diagnosis delay and has the least computational requirement.
The AUC values at 120-beats and 210-beats windows are 0.902 and 0.915, respectively. On the
other hand, the typical HRV features’ peak is at the 180-beats window size with an AUC of
0.852. The smallest window size with an average AUC that is not significantly different from
the 180-beats is 150-beats with an average AUC of 0.828. The presented features outperform
the typical HRV features with both 150 and 180-beats and all the differences were significant
when tested using Mann-Whitney U tests.

In Table 2, the area under the receiver operating curve (AUC), accuracy, sensitivity, and
specificity for each window size and feature set is provided. For the AUC and accuracy metrics,
a non-parametric Mann-Whitney U-test was used to determine statistical significance for the
presented features when compared to the respective typical HRV set with the same number of
beats. The presented features outperformed the typical HRV features in terms of AUC and
accuracy across all window sizes. Moreover, the selected model for the presented features
(120-beats window) outperforms the best model for the typical HRV features (180-beats win-
dow) in terms of AUC and accuracy by 0.05 and 5.37%, respectively. Fig 7 shows the receiver
operating curves (ROCs) for the presented features at 120-beats as well as the typical HRV fea-
tures at 150- and 180-beats, with the presented features’ curve showing an increased true posi-
tive rate for every false positive rate.
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Fig 6. AUCs and Accuracies for Each Feature Set. (a) Areas under the receiver operating curve (AUCs). For the presented features, pair-wise Mann-
Whitney U tests were used to compare the AUC'’s for different window sizes to the one with the highest AUC (210-beats). The differences that are statistically
significant are denoted by asterisks. The same was done for the typical HRV features and window sizes whose AUC was significantly different from the best
window size (180-beats) are denoted by plus signs; (b) Accuracies averaged across all ten validation folds for each window size. Error bars represent a 95%
confidence interval.

doi:10.1371/journal.pone.0148544.9006
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Fig 7. ROC. Receiver operating curves for each feature set’s highest-performing window size.

doi:10.1371/journal.pone.0148544.9007

0.1

In the interest of evaluating the performance of the models with fewer features, different
models were developed with reduced featuresets based on feature ranking. In Fig 8, the AUCs
calculated using the top-ranked ten, eight, six, four, and two features from the presented feature
set at the 120-beats window size are plotted with 95% confidence intervals along with the AUC
for the typical HRV features at 150- and 180-beats for reference. One can see that even a feature
set consisting of only the top two of the presented features performs better than all the 10 typi-
cal HRV features, with the top four and above performing significantly better. Additionally, the
figure demonstrates that the ten-feature set indeed performs best.
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Fig 8. Featureset Sizes. Area under the curve calculated choosing the top ten, eight, six, four, and two features from the presented features’ best-performing
window size (120-beats). The AUC for the Typical HRV features’ best performing window size (150-beats) is included (in blue) for comparison. The
presented features continue to outperform the entire typical HRV feature set even when reduced to just four of the original ten features. The error bars
indicate 95% confidence intervals.

doi:10.1371/journal.pone.0148544.g008

Discussion

The presented features, coupled with the machine learning based severity categorization
approach in this study, outperform the traditional HRV metrics in determining two classes of
severity levels in subjects undergoing LBNP as a model of central hypovolemia consistent with
hemorrhage. A significant aspect of the findings of this study is that in the final model, perfor-
mance of the algorithm does not require knowledge of baseline patient data in order to accu-
rately identify the subject as decompensating. The AUC and accuracy on our 120-beats
window, for example, are based on using any 120-beats window regardless of what stage of
LBNP the subject is experiencing. This is important since many situations resulting in sudden
critical illness or injury, such as trauma, do not afford care providers an opportunity to trend
vital signs or to know what a vicitm’s baseline vital signs are. Optimally, physiologic data
obtained at any time point would be actionable. Developing such an automated continuous
physiologic signal monitoring system may offer a unique and powerful method to monitor
patients, thereby allowing the opportunity to identify the onset of hemodynamic instability at a
time earlier than it would take to observe an overt and abnormal change in traditional vital
signs.
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This study has some obvious limitations. These include the fact that subjects were not actu-
ally injured or in pain during LBNP. Traumatic hypovolemia is, of course, accompanied by tis-
sue damage and pain. It would be important to consider these factors and their effects on the
ECG features extracted for this study. Whether the ECG features and machine learning algo-
rithms developed for this data set will apply to other critical care states such as sepsis is not
entirely clear but based on prevsious HRV science, our approach is likely to have implications.

In summary, this tool may offer advantages over traditional vital signs-based or current
HRV-based monitors especially in cases where triage decisions need to be made within a very
short period of time. The proposed system may enable high-fidelity analysis of ECG signals
that are readily available under various echelons of care, from pre-hospital settings (i.e. ambu-
lance transport), to the ICU, nursing home and even into the home environment where one of
many popularly available portable ECG monitors can be made available.
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