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Machine learning‑based 
approaches for identifying 
human blood cells harboring 
CRISPR‑mediated fetal chromatin 
domain ablations
Yi Li1,2*, Shadi Zaheri3, Khai Nguyen1,2, Li Liu4, Fatemeh Hassanipour3 & 
Leonidas Bleris1,2,4*

Two common hemoglobinopathies, sickle cell disease (SCD) and β‑thalassemia, arise from genetic 
mutations within the β‑globin gene. In this work, we identified a 500‑bp motif (Fetal Chromatin 
Domain, FCD) upstream of human ϒ‑globin locus and showed that the removal of this motif using 
CRISPR technology reactivates the expression of ϒ‑globin. Next, we present two different cell 
morphology‑based machine learning approaches that can be used identify human blood cells (KU‑
812) that harbor CRISPR‑mediated FCD genetic modifications. Three candidate models from the 
first approach, which uses multilayer perceptron algorithm (MLP 20‑26, MLP26‑18, and MLP 30‑26) 
and flow cytometry‑derived cellular data, yielded 0.83 precision, 0.80 recall, 0.82 accuracy, and 
0.90 area under the ROC (receiver operating characteristic) curve when predicting the edited cells. 
In comparison, the candidate model from the second approach, which uses deep learning (T2D5) 
and DIC microscopy‑derived imaging data, performed with less accuracy (0.80) and ROC AUC (0.87). 
We envision that equivalent machine learning‑based models can complement currently available 
genotyping protocols for specific genetic modifications which result in morphological changes in 
human cells.

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing technology, which is 
adapted from an immune system analog found in archaea and prokaryotes, has been applied to exceedingly broad 
scientific, industrial, and medical domains at an exceptional pace since the first demonstration in  cells1–8. One 
particularly exciting domain is CRISPR-based therapeutics, which as of today, has found applications in several 
areas: blood disorders, diagnostics and therapeutics in cancer, eye diseases, chronic infections, neurodegenera-
tive disorders, and protein-folding  disorders9.

Two most common hemoglobinopathies, sickle cell disease (SCD) and β-thalassemia, arise from genetic 
mutations within the β-globin gene. These mutations result in deficient or absent β-globin synthesis, which in 
turn lead to oxygen being disassociated from the hemoglobin and eventually result to conformational changes 
in red blood  cells10,11. There is no cure available for these disorders except bone marrow transplantation (BMT) 
when a suitable donor is available, and most treatments are mainly aimed at relieving symptoms and preventing 
complications. Recently, the CRISPR technology has been used to reactivate the expression of fetal hemoglobin, 
which can take the place of defective adult hemoglobin, and has shown remarkable results in improving the 
quality of life in  patients12.

Machine learning, which can yield models for pattern recognition, classification, and prediction from acquired 
data, has been widely used in biological studies ranging from protein folding  prediction13 to cancer  prognosis14. 
There are two main types of machine learning methods: (1) supervised learning (e.g. random forest, support vec-
tor machine), which derive the relationship between a set of input variables (features) and a designated depend-
ent variable (label) from training instances and subsequently can be used to predict on new instances, and (2) 

OPEN

1Bioengineering Department, The University of Texas at Dallas, Richardson, TX, USA. 2Center for Systems Biology, 
The University of Texas at Dallas, Richardson, TX, USA. 3Department of Mechanical Engineering, The University 
of Texas at Dallas, Richardson, TX, USA. 4Department of Biological Sciences, University of Texas at Dallas, 
Richardson, TX, USA. *email: yxl121030@utdallas.edu; bleris@utdallas.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-05575-3&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1481  | https://doi.org/10.1038/s41598-022-05575-3

www.nature.com/scientificreports/

unsupervised learning (e.g. clustering), which infer patterns from data without known  labels15. More recently, 
deep learning, a collection of new machine learning techniques extended from classical neural networks, has 
gained popularity due to its better performance compared to existing best-in-class machine learning algorithms 
across several fields including  linguistics16, high-energy  physics17, computational  chemistry18, and  biology19.

One area that has received particular attention in recent years is the classification of different cell types (e.g. 
different blood cell types)20–23, states (apoptotic and healthy cells)24–27, and  genotypes28. In one  study29, Suzuki 
and colleagues developed a convolutional neural network (CNN) that was at least 90% accurate in classifying 
whole blood cells, peripheral blood mononuclear cells, human colon cancer cells, and human T lymphoma 
cells, using imaging flow. Similarly, in our previous  work24, we have shown that machine learning can be an 
efficient and cost-effective approach in identifying live and apoptotic human cells. Suzuki and colleagues also 
demonstrated that, using label-free, brightfield (BF) microscopy images, machine learning models (logistical 
regression) can be used to predict cells harboring ubiquitin–proteasome system-related genetic mutations with 
good performance (ROC AUC = 0.773)28.

This work is motivated by our recent discovery of a 500-bp motif upstream of human ϒ-globin locus (named 
as Fetal Chromatin Domain, FCD, Supplementary Materials/FCD sequence). We show that the removal of this 
motif in human blood cells (i.e., KU-812) reactivates the expression of fetal hemoglobin. Herein, we explore cell 
morphology-based machine learning approaches to classify KU-812 cells with or without the genetic modifica-
tions within the FCD domain.

Materials and methods
Cell culture. The KU-812 parental and derived cells were acquired from the American Type Culture Col-
lection (ATCC, catalog number: CRL-1573) and maintained at 37 °C, 100% humidity and 5%  CO2. The cells 
were grown in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen, catalog number: 11965–1181) sup-
plemented with 10% Fetal Bovine Serum (FBS, Invitrogen, catalog number: 26140), 0.1 mM MEM non-essential 
amino acids (Invitrogen, catalog number: 11140–050), and 0.045 units/mL of Penicillin and 0.045 units/mL of 
Streptomycin (Penicillin–Streptomycin liquid, Invitrogen, catalog number: 15140). To pass the cells, the con-
fluent cell culture was diluted in fresh medium at a ratio of 1:10. When applicable, 2 µg/mL puromycin (Ther-
moFisher Scientific, catalog number: A1113803) was added to the growth medium.

Generation of FCD‑HT monoclonal stable cell line. To generate the FCD-HT monoclonal stable cell 
line, approximately 10 million human KU-812 cells were seeded onto a 10 cm petri dish. 16 h later, the cells were 
transiently transfected with 4.5 μg of PCMV-SpCas9-U6-sgRNA-L, 4.5 μg of PCMV-SpCas9-U6-sgRNA-R, and 
1 μg of the donor plasmid using the JetPEI reagent (Polyplus Transfection). 48 h later, puromycin was added at 
the final concentration of 2 μg/mL. The selection lasted 2 weeks, after which the surviving clones were pooled 
to generate the polyclonal stable cells. Next, to remove the puromycin resistance gene-T2A-mKate cassette, 
approximately 10 million of the polyclonal stable cells were seeded onto a 10 cm petri dish, and after 16 h were 
transfected with 10 μg of EF1-Flpase (unpublished data) using the JetPEI reagent. 48 h later, single cells were 
isolated using flow cytometry. The established monoclonal stable cell line was confirmed to be heterozygous by 
genotyping and further expanded and maintained in the complete growth medium.

Genotyping of FCD‑HT monoclonal stable cell line. The genomic DNAs were isolated from FCD-HT 
monoclonal stable cells using DNeasy Blood&Tissue Kit (Qiagen). The transcripts containing the CRISPR-tar-
geting region was amplified with primers P13 and P14. The PCR products were then subjected to gel electropho-
resis and Sanger sequencing using primers P13 and P14.

Quantitative reverse transcription‑PCR (qRT‑PCR). For measurement of mRNA levels of various 
human globin variants, total RNA was extracted using the RNeasy Mini Kit (Qiagen, #74104). First strand syn-
thesis was performed using the QuantiTect Reverse Transcription Kit (Qiagen, #205311). Quantitative PCR was 
performed using the KAPA SYBR FAST Universal qPCR Kit (KAPABiosystems, #KK4601), with GAPDH levels 
used for normalization. Quantitative analysis was performed using the  2−ΔΔCt method. Fold-change values are 
reported as mean with standard deviation. Primers used for ϒ-globin were (P15) 5′-GGC AAC CTG TCC TCT 
GCC TC-3′ and (P16) 5′-TAG GAA GCC ATT TCT GCC TTG-3′. Primers used for GAPDH were (P17) 5′-AAT 
CCC ATC ACC ATC TTC CA-3′ and (P18) 5′-TGG ACT CCA CGA CGT ACT CA-3′.

Flow cytometry. FCD-WT, FCD-HT, HCT116 and PUF3.1 HCT116 cells from a 10-cm petri dish were 
washed with 5 mL PBS buffer, and subsequently trypsinized with 2 mL 0.25% Trypsin–EDTA at 37 °C for 5 min. 
Trypsin–EDTA was then neutralized by adding 10 mL of complete medium. The cell suspension was centrifuged 
at 1000 rpm for 5 min and after removal of supernatants, the cell pellets were re-suspended in 5 mL PBS buffer. 
The cells were analyzed on a BD Reforest flow analyzer. The voltages (V) for each channel were: 270 for FSC-A, 
270 for FSC-H, 270 for FSC-W, 280 for SSC-A, 280 for SSC-H, and 280 for SSC-W.

Differential interference contrast (DIC) microscopy. Approximately 50,000 FCD-WT or FCD-HT 
cells were seeded on 12-well plates (Greiner Bio-One) in the complete medium. Cells were imaged using an 
Olympus IX81 microscope in a Precision Control environmental chamber. The images were captured using a 
Hamamatsu ORCA-03 Cooled monochrome digital camera. The filter set was Differential Interference Contrast 
(DIC) with magnification at 40×. After obtaining the images, Adobe Photoshop was used to isolate individual 
cells with fixed size at 100 pixels by 100 pixels.
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Machine learning model training and testing. For flow cytometry-derived dataset, a Dell desktop 
computer (Intel Core i7-10700 CPU @ 2.90 GHz, Windows 10 enterprise 64-bit OS and 32 GB RAM) was used 
to conduct the machine learning modeling. Scikit-Learn, a free Python machine learning library, was used to 
conduct all model training and testing procedures. For DIC microscopy-derived dataset, a Lenovo Laptop (Intel 
Core i7-10510 CPU @ 1.80 GHz, Ubuntu 20.04 OS and 16 GB RAM) was used to conduct the deep learning 
modeling. The Keras library in TensorFlow was used to conduct all model training and testing procedures. Other 
Python libraries, including NumPy, Pandas, and Matplotlib, were also included for data analysis and presenta-
tion.

Performance metrics. Performance of different models was evaluated using threshold dependent and 
independent metrics, which include:

1. precision: this parameter measures how accurate a model is when predicting cells being at live state.
  Precision = TP/(TP + FP), where TP refers to correctly predicted live cells and FP refers to falsely predicted 

live cells.
2. recall: this parameter measures the model’s ability to correctly predict live cells from actual live cells.
  Recall = TP/(TP + FN), where TP refers to correctly predicted live cells and FN refers to falsely predicted 

apoptotic cells.
3. true positive rate (TPR): this parameter measures the model’s ability to correctly predict live cells from actual 

live cells.
  TPR = TP/(TP + FN), where TP refers to correctly predicted live cells and FN refers to falsely predicted 

apoptotic cells.
4. false-positive rate (FPR): this parameter measures the model’s level of falsely predicting live cells from actual 

apoptotic cells.
  FPR = FP/(FP + TN), where FP refers to falsely predicted live cells and TN refers to correctly predicted 

apoptotic cells.
5. accuracy: this parameter determines the success of correctly predict live and apoptotic cells from overall 

data.
  Accuracy = (TP + TN)/(TP + FP + TN + FN), where TP refers to correctly predicted live cells, FP refers to 

falsely predicted live cells, FN refers to falsely predicted apoptotic cells, and TN refers to correctly predicted 
apoptotic cells.

Results
Generation and characterization of heterozygous FCD‑deficient KU‑812 cell model 
(FCD‑HT). The CRISPR/SpCas9 technology was used to generate the FCD-deficient model in KU-812 cells, 
which were established from the peripheral blood of a patient with chronic myelogenous  leukemia30. Briefly, 
the parental cells were transiently transfected with CRISPR/SpCas9 complex which targets both left and right 
genomic regions flanking the FCD motif, along with a homologous recombination repair template containing a 
puromycin resistance gene transcript (Fig. 1A). The polyclonal stable cell line was then established after 2 weeks 
of puromycin selection (2 µg/mL). Subsequently, to avoid potential interference with the transcriptional activi-
ties of the globin genes, the puromycin resistance gene transcript (~ 2.2 kb), which was flanked by flippase rec-
ognition target (FRT) sites, was removed using flippase. Finally, monoclonal stable cells were established using 
FACS single cell sorting.

To characterize the stable monoclonal cell line, genomic DNA was isolated using DNeasy Blood&Tissue Kit 
(Qiagen), and subsequently the transcript containing the FCD motif or FRT site was amplified using primers P13 
and P14 (Supplementary Table 1). The PCR products were then subjected to gel electrophoresis and as shown in 
Fig. 1B and Supplementary Fig. 1A, the monoclonal cell line yielded two distinct bands corresponding to both the 
wild type (806 bp) and FCD-knockout (341 bp) alleles, confirming its heterozygous status (named as FCD-HT). 
Both bands were further extracted and subjected to Sanger sequencing, which confirmed that the FCD sequence 
was successfully removed in the FCD-Knockout allele (Supplementary Fig. 1B and Supplementary Materials/
Sanger_FCD_Knockout_Allele.seq). To determine how the FCD-removal affects the ϒ-globin expression, total 
RNAs were extracted using the RNeasy Mini Kit from KU-812 and FCD-HT cells and the relative expression 
of ϒ-globin transcript was determined using quantitative reverse transcription-PCR (qRT-PCR). As shown in 
Fig. 1C, the mRNA level of ϒ-globin significantly increased in FCD-HT cells (2.87-fold compared to its parental 
KU-812, named as FCD-WT), which is consistent with our hypothesis that the removal of the FCD motif may 
reactivate the expression of fetal hemoglobin.

Flow cytometry‑based data collection and visualization for FCD‑WT and FCD‑HT cells. To 
prepare cell morphology-based predictive models differentiating FCD-WT, in which all ϒ-globin alleles contain 
the FCD motif, and FCD-HT cells, which contain both wild-type and FCD-knockout ϒ-globin alleles, we first 
used flow cytometry assay to record 6 features (FSC-A, FSC-H, FSC-W, SSC-A, SSC-H, and SSC-W). Specifi-
cally, FSC (forward scatter) measures the light scatter along the path of the laser (A: area, H: height, and W: 
width), and is dependent on the diameter/size of the cell. In contrast, SSC (side scatter) measures the light scatter 
perpendicular to the path of the laser (A: area, H: height, and W: width), and provides information about the 
internal complexity (granularity) of a cell. In total, 192,772 FCD-WT cells (labeled as 0) and 185,544 FCD-HT 
cells (labeled as 1) were included (the ratio of labels 0 and 1 = 1.04, Supplementary Table 2). Next, this initial 
dataset was randomly split into training and testing datasets at a ratio of 80:20 (size of training dataset: size of 
testing dataset). Specifically, the training dataset contains 302,652 cells (label 0: 154,180 cells, label 1: 148,472 
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cells, Supplementary Fig. 2 and Supplementary Table 3), and the testing dataset contains 75,664 cells (label 0: 
38,592 cells, label 1: 37,072 cells, Supplementary Fig. 3 and Supplementary Table 4).

We first compared the absolute readings among the 6 features using box plotting. As shown in Fig. 2A, 
the means of these features varied significantly with the maximal ratio larger than 2.0-fold  (meanFSC-A/
meanSSC-H = 2.47), indicating that standardization of the original training and testing datasets are required 
(standardized training and testing datasets in Supplementary Tables 5 and 6, respectively). Subsequently, the 
standardized training dataset was subjected to two dimensionality reduction algorithms, principal component 
analysis (PCA) and t-distributed stochastic neighbor embedding t-SNE (t-SNE). As shown in Fig. 2B (PCA) and 
Fig. 2C (t-SNE), the two cell subpopulations (FCD-WT: green, FCD-HT: yellow) overlapped significantly and 
were not linearly separable, which implies that non-linear modeling approaches such as multilayer perceptron 
may be required for classification purposes.

Cell morphology‑based machine learning models using flow cytometry‑derived data. A gen-
eral workflow as described in our previous study was adopted to build and test various cell morphology-based 
machine learning models using flow cytometry-derived  data24. In total, five (5) supervised learning algorithms 

Figure 1.  Generation and characterization of heterozygous FCD-deficient KU-812 cell model (FCD-HT). (A) 
Schematic illustration of the CRISPR/SpCas9 homologous recombination process to remove the FCD motif 
within human globin locus. The polyclonal stable cell line was established using 2 weeks of puromycin selection 
(2 µg/mL). Subsequently, the puromycin resistance gene transcript, which was flanked by flippase recognition 
target (FRT) sites, was removed using flippase. Finally, monoclonal stable cells were established using FACS 
single cell sorting. (B) Genotyping of FCD-HT monoclonal stable cell. Genomic DNAs were harvested from 
FCD-WT and FCD-HT cells and the transcript containing the FCD motif or FRT site was PCR amplified and 
subsequently subjected to gel electrophoresis. The stable cell line yielded two bands corresponding to both the 
wild type (806 bp) and FCD-knockout (341 bp) alleles, confirming its heterozygous status. (C) Quantitative 
reverse transcription-PCR (qRT-PCR) assay showed that compared to FCD-WT cells, the mRNA level of 
ϒ-globin significantly increased in FCD-HT cells (2.87-fold). *** denotes p-value < 0.001.

Figure 2.  General statistics and visualization of the training dataset. (A) Box plot of the training dataset. The 
means of the six features (FSC-A, SSC-A, FSC-H, SSC-H, FSC-W, and SSC-W) varied significantly with the 
maximal ratio larger than 2.0-fold  (meanFSC-A/meanSSC-H = 2.47), indicating that standardization of the original 
training and testing datasets are required. (B) Visualization of the standardized training dataset using PCA 
(green: FCD-WT, yellow: FCD-HT). (C) Visualization of the standardized training dataset using t-SNE (green: 
FCD-WT, yellow: FCD-HT).
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(logistical regression, random forest, k-nearest neighbor, support-vector machine, and multilayer perceptron) 
were included (model hyperparameters in Supplementary Table 7). Briefly, logistical regression is a statistical 
model which uses a logistic function to model a binary dependent variable. The model itself is non-linear but 
can be transformed into a linear regression via link functions. Random forest algorithm is an ensemble learning 
method which constructs “an ensemble” of decision trees at the training step. K-nearest neighbor algorithm for 
classification assumes that data points with same classification labels tend to be in proximity. Support-vector 
machine (SVM) relies on constructing one or a set of hyperplanes in high-dimensional space and remains one 
of the most robust supervised classification methods. Multilayer perceptron (MLP) belongs to the family of feed-
forward artificial neural network (ANN), and typically consist of three layers of nodes: an input layer, a hidden 
layer, and an output layer.

First, using tenfold cross-validation, we screened all models with the standardized training dataset, and 
adopted the filtering conditions as (1) the mean accuracy > 0.80, and (2) the standard deviation of accuracy < 0.10, 
which were derived from our previous study using the same 6 flow cytometry-based features to predict mam-
malian cell  states24. In total, one (1) logistic regression model (Supplementary Table 8), 94 random forest models 
(Supplementary Table 9), 96 k-nearest neighbor models (Supplementary Table 10), two (2) SVM models with 
linear kernel (Supplementary Table 11), 25 SVM models with Gaussian kernel (Supplementary Table 12), and 
893 MLP models (Supplementary Table 13) were selected.

Next, all selected models (1111) were trained using the training dataset, and subsequently applied to the 
standardized testing dataset and subjected to secondary filtering conditions as (1) precision when predicting 
FCD-HT cells > 0.80, and (2) recall when predicting FCD-HT cells > 0.80. As shown in Supplementary Table 14, 
only 533 MLP models survived this additional filter.

Finally, we chose three MLP models with largest AUC values (Table 1, MLP 20-26: number of nodes in the 
first layer: 20/number of nodes in the second layer: 26, MLP 26-18: number of nodes in the first layer: 26/number 
of nodes in the second layer: 18, and MLP 30-26: number of nodes in the first layer: 30/number of nodes in the 
second layer: 26), and plotted both the receiver operating characteristics (ROC, Fig. 3A) and precision-recall 
curves (Fig. 3B). The three models displayed essentially identical performance when predicting FCD-HT cells 
(precision: 0.83, recall: 0.80, accuracy: 0.82, and AUC: 0.90).

Cell morphology‑based machine learning models using microscopy‑derived data. In addition 
to flow cytometry, cell morphology information can also be directly assessed using  imaging28. Using a Differ-
ential Interference Contrast (DIC) microscopy, we prepared 1594 images of individual FCD-WT cells and 1695 

Table 1.  Predictive performances of the three candidate learning models using flow cytometry-derived data.

Number 
of nodes 
in 1st 
layer

Number 
of nodes 
in 2nd 
layer m00 m01 m10 m11

FCD-HT 
precision

FCD-HT 
recall

FCD-HT 
f-value

KU-812 
precision

KU-812 
recall

KU-812 
f-value accuracy AUC 

20 26 32,503 6089 7306 29,766 0.830177102 0.80292404 0.816323172 0.816473662 0.842221186 0.829147587 0.822967329 0.903213032

26 18 32,499 6093 7281 29,791 0.830202876 0.803598403 0.816684029 0.816968326 0.842117537 0.82935232 0.823244872 0.9031964

30 26 32,279 6313 7141 29,931 0.825819446 0.807374838 0.816492989 0.8188483 0.836416874 0.827539353 0.822187566 0.903233927

Figure 3.  Predictive performances of the three candidate MLP models on FCD-HT cells. Both (A) ROC curve 
and (B) Precision-Recall curve showed that the three MLP models (MLP 20-26, MLP 26-18, and MLP 30-26) 
can predict the FCD-HT cells with relatively high precisions and recalls (precision: 0.83, recall: 0.80, accuracy: 
0.82, and AUC: 0.90).
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images of FCD-HT cells (Supplementary Fig. 4), the ratio of FCD-WT and FCD-HT = 0.94). Next, this starting 
dataset was randomly split into the training and testing datasets at a ratio of 90:10 (size of training dataset: size 
of testing dataset). The final training dataset contains 2956 images (FCD-WT: 1433 images, FCD-HT: 1523 
images), and the testing dataset contains 333 images (FCD-WT: 161 images, FCD-HT: 172 images).

Next, deep learning-based convolutional neural networks (CNNs) were used to construct genotype-predictive 
models. Two general CNN architectures were explored: (1) Type 1 (T1): (Conv-Conv-Pool)n, which was based 
on the VGG  design31, and (2) Type 2 (T2): (Conv-Pool)n, which contained a single convolution layer for each 
repeat. For each type, different number of convolution numbers were tested (two, four and six layers for T1, 
and two, three, four, five layers for T2) until the final feature map reaches a dimension of zero. Since our image 
inputs have a relatively small size (100 pixels by 100 pixels), we fixed the filter size at 3 and when applicable, the 
Maxpooling pool size at 2. The detailed architectural designs were included in Supplementary Table 15.

As an example, for Type 2/5 layers (T2D5, Fig. 4), the numbers of layers at the feature extraction step were 32, 
64, 92, 100 and 128 for each successive layer, and rectified linear unit (ReLU) was used as the activation function. 
Additionally, a Maxpooling layer was included after each convolution layer. Next, the outputs from convolutional 
layers were subjected to global average pooling and converted into a 1-dimensional vector (Flatten) for a fully 
connected layer (dense, 1028 nodes). Finally, a Softmax classifier, which applies a categorical cross-entropy loss 
function, was used, together with the adaptive moment estimation (ADAM) optimization algorithm.

First, all 7 candidate architectures were subjected to tenfold cross-validation using the training dataset. As 
shown in Supplementary Table 16, models from Type 2 showed better performance compared to those from 
Type 1. Specifically, the best-performing model of Type 2 (T2D5) showed a mean of accuracies from 10 cross-
validation tests at 67.3% (Supplementary Fig. 5), while the best-performing model of Type 1 (T1D4) yielded a 
mean of accuracies at 58.3%.

We further trained models using all candidate architectures and the training dataset, and subsequently applied 
them to the testing dataset. As shown in Table 2, the architectures T2D5 displayed the best predictive outcome. 
Specifically, for FCD-HT cells, precision was 0.84, recall was 0.76, accuracy was 0.80 and AUC was 0.87 (Fig. 5).

Discussion
In this study, we have investigated two alternative approaches in predicting cell genotypes: (1) numeric data 
based on flow cytometry assay, and (2) imaging data based on DIC microscopy. Our analysis showed that the 
best performing models from approach 1 (MLP 20-26, MLP 26-18, and MLP 30-26) yielded better prediction 
results compared to the best model from approach 2 (T2D5) (Tables 1 and 2, ROC AUC values for MLP 20-26, 
MLP 26-18, and MLP 30-26: 0.90, for T2D5: 0.87). Multiple factors maybe impact the classification performance 
of the two approaches. For example, the resolution of our images was relatively low (100 pixels by 100 pixels). 
Additionally, compared to the training dataset from flow cytometry (302,652 cells), the size of imaging dataset 
was vastly smaller (3289 images). To overcome this challenge, we resorted to data augmentation techniques by 
applying zooming (range: 0.5–1.5x), rotation (range: 90°), width shifting (range: − 10 to 10 pixels), and height 
shifting (range: − 10 to 10 pixels) to the original training dataset (Supplementary Fig. 8)32. Together with original 
samples, the augmented training dataset contained 26,604 images (FCD-WT: 12,897 images, FCD-HT: 13,707 
images), which was subsequently subjected to deep learning modeling using the T2D5 architecture. As shown in 
Supplementary Table 17, the newly acquired model did not yield better predictive performance. As an example, 
for FCD-HT cells, precision was 0.77, recall was 0.74, accuracy was 0.75, and ROC AUC was 0.75, which were 
lower than those of the original model (precision: 0.84, recall: 0.76, accuracy: 0.80, ROC AUC: 0.87). These results 
showed that synthetic samples do not always enhance the model performance in deep learning.

Lastly, for our default T2D5 model, while the accuracy approached 1.0 for the training dataset with the pro-
gression of epochs, the accuracy of the testing dataset plateaued at a much lower value (~ 0.8). This discrepancy 
indicated a potential overfitting (Supplementary Fig. 9). Consequently, we investigated additional tunings on 
overfitting/underfitting-controlling hyperparameters: L2 regularization (Ridge regression) weights (parameter: 
kernel_regularizer), and dropout  values33. As shown in Supplementary Table 18, of the parameter space that 
we have scanned (L2 regularization weight: [0.000001, 0.00001, 0.0001, 0.01], dropout value: [0, 0.15, 0.2, 0.25, 
0.3, 0.35, 0.4, 0.45]), none of the adjusted models (25) yielded better predictive performance compared to the 
original model (L2 regularization weight = 0, dropout value = 0), which indicated that additional factors may be 
involved in the divergency of accuracies between training and testing datasets.

It should be noted that data collected from our flow cytometry assay were based on fixed voltage values for 
each channel (“Materials and methods”/“Flow cytometry”, 270 for FSC-A, 270 for FSC-H, 270 for FSC-W, 280 
for SSC-A, 280 for SSC-H, and 280 for SSC-W). In future studies, we will explore a wide range of voltage settings 
for all channels and systematically study how these modifications affect the modeling results. To compare the 
predictive performances between supervised and unsupervised learning algorithms, we additionally subjected 
our flow cytometry-derived dataset (the standardized training dataset) to two unsupervised clustering algorithms 
(k-means clustering and Gaussian mixture clustering) in  parallel34. As shown in Supplementary Fig. 6 (SSC-A 
vs. FSC-A), the predicted distributive pattern for two subpopulations from k-means algorithm differed drasti-
cally from real genotype labels (Supplementary Fig. 2), which implied low accuracies on predicting FCD-WT 
and FCD-HT cells. Specifically, even with the best-performing labeling schema (green: FCD-WT, red: FCD-
HT), the model yielded poor predictive performance when predicting FCD-HT cells (precision: 0.52, recall: 
0.66, accuracy: 0.53). Similarly, as shown in Supplementary Fig. 7, the predictive model derived from Gaussian 
mixture clustering performed poorly, with precision at 0.61, recall at 0.25 and accuracy at 0.55 when predicting 
FCD-HT cells (green: FCD-WT, red: FCD-HT). It is interesting to note that in our previous study, which focused 
on predicting cell states using cell morphological information, supervised learning also performed significantly 
better than unsupervised learning. These results may be because compared to supervised learning, unsupervised 
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Figure 4.  The T2D5 deep learning architecture. The model contained five convolutional layers (the numbers 
of each layer: 32, 64, 92, 100 and 128). Additionally, a Maxpooling layer was included after each convolution 
layer. Next, the outputs from convolutional layers were subjected to global average pooling and flattened for a 
fully connected layer (1028 nodes). Finally, a Softmax classifier, which applies a categorical cross-entropy loss 
function, was used.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1481  | https://doi.org/10.1038/s41598-022-05575-3

www.nature.com/scientificreports/

learning uses less information (unknown outputs/labels), and thus may be less accurate when applied to data 
from complex systems such as human cells.

Although the MLP models provided better predictive performance compared to that of CNN, both methods 
could be useful for future studies. As shown in Supplementary Table 19, the instrumentation requirements for 
both approaches (regular flow cytometer and DIC microscope) are relatively affordable and typically available 
to university labs and research centers. The main advantages of our MLP approach include: (a) feasibility of 
collecting large number of training data (several millions in a typical experimental run), (b) relatively simple 
network architecture, and (c) in general faster convergency and shorter time required for the model training 
process. In contrast, the CNN approach may be more advantageous in (a) analyzing imaging-based dataset, 
which may contain more cell morphology information compared to the six FSC/SSC features extracted from 
our flow cytometry assay, (b) skipping feature identification/extraction step, which often requires deep domain 
knowledge, and (c) solving complicated classification problems due to its more extensive architectural design. 
Indeed, the latest flow cytometry platform, imaging flow  cytometer22, can provide both FSC/SSC measurements 
and DIC images for each cell, which in theory allows the combination of both approaches.

It should be emphasized that since our training dataset contained only a specific cell type (i.e., KU-812) 
subjected to a specific CRISPR editing (CRISPR-mediated knockout of the FCD motif), the resulting models 
should not be used to differentiate any two cell types, or any cells with or without any CRISPR treatments. To 
demonstrate this scenario, we applied the candidate MLP 20-26 model to (1) a different human cancer cell type 
(HCT116, Supplementary Table 20), and (2) a human cancer cell line which was subjected to CRISPR-mediated 
knock-in (HCT116mut, Supplementary Table 21)35, both of which do not contain any mutations within the 
FCD motif (i.e., a correct model would classify both as FCD-WT genotype). Our results showed that the model 
yielded poor predictive performance on both cell lines (52.7% of HCT116 cells predicted as FCD-WT genotype, 

Table 2.  Predictive performances of the seven candidate learning models using microscopy-derived data.

Architecture m00 m01 m10 m11
FCD-HT 
precision

FCD-HT 
recall

FCD-HT 
f-value

KU-812 
precision KU-812 recall

KU-812 
f-value Accuracy AUC 

Type 1 Depth 2 
(T1D2) 79 82 68 104 0.559139785 0.604651163 0.581005587 0.537414966 0.49068323 0.512987013 0.54954955 0.553933

Type 1 Depth 4 
(T1D4) 97 64 45 127 0.664921466 0.738372093 0.699724518 0.683098592 0.602484472 0.640264026 0.672672673 0.697783

Type 1 Depth 6 
(T1D6) 76 85 94 78 0.478527607 0.453488372 0.465671642 0.447058824 0.472049689 0.459214502 0.462462462 0.500469

Type 2 Depth 2 
(T2D2) 94 67 55 117 0.635869565 0.680232558 0.657303371 0.630872483 0.583850932 0.606451613 0.633633634 0.529684

Type 2 Depth 3 
(T2D3) 103 58 53 119 0.672316384 0.691860465 0.681948424 0.66025641 0.639751553 0.649842271 0.666666667 0.642514

Type 2 Depth 4 
(T2D4) 106 55 35 137 0.713541667 0.796511628 0.752747253 0.75177305 0.658385093 0.701986755 0.72972973 0.73653

Type 2 Depth 5 
(T2D5) 136 25 42 130 0.838709677 0.755813953 0.795107034 0.764044944 0.844720497 0.802359882 0.798798799 0.874621

Figure 5.  The ROC (Receiver Operating Characteristic) curve of the candidate deep learning model T2D5. 
The model showed relatively good performance when predicting FCD-HT cells (precision: 0.84, recall: 0.76, 
accuracy: 0.80, and AUC: 0.87).
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and 50.2% of HCT116mut as FCD-WT genotype), which confirmed that for each specific cell line and CRISPR 
editing event, the modeling process needs to be separately executed.

Typically, to establish and confirm a human stable cell line with desirable CRISPR-mediated genetic modifica-
tions, polyclonal cells need to be sorted into single cells, commonly on 96-well plates. Next, the single cells are 
allowed to propagate until sufficient genomic material can be extracted and subjected to PCR-based genotyping 
assays (Fig. 1). While the protocol is well established, the full pipeline can become time-consuming (up to sev-
eral weeks for cell propagation step dependent on the cell proliferation rates) and labor-intensive (hundreds of 
monoclones may be needed for acquiring desirable genotypes). On the other hand, sophisticated imaging flow 
cytometry techniques, which record extensive physically measurable quantities (features) of the cells, have been 
used to identify cell subpopulations with specific traits (e.g. cell types, apoptotic states)26,29,36,37.

As an example, using next generation cell sorting and time-stretch imaging technologies, Jalali et al. achieved 
high accuracy (95%) when classifying OT-II white blood cells and SW-480 epithelial  cells38. However, the required 
instrumentation (time-stretch imaging and customized microfluidic chip devices) may not be available to many 
research labs. In comparison, our flow cytometry and DIC microscopy-based machine learning approaches 
provide a unique balance between efficacy and availability, and theoretically can be applied to any engineered 
cells with genetic modifications known to introduce cell morphological changes.

In summary, we demonstrated the feasibility of using flow cytometry-based cellular information (FSC-A, 
FSC-H, FSC-W, SSC-A, SSC-H, and SSC-W) to predict specific cell genotypes using multilayer perceptron algo-
rithms. Specifically, the three candidate MLP models, MLP 20-26, MLP 26-18, and MLP 30-26, achieved good 
predictive performance for predicting FCD-HT cells (AUC: 0.90). Additionally, we showed that deep learning 
framework (T2D5), when applied to DIC microscopy images, can also be indicative for certain genotyping 
purposes. We envision that both assays can be valuable and complementary to currently available genotyping 
protocols for engineered cell lines.
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