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Alternative promoter usage generates long and short isoforms (DCLK1-L and DCLK1-S) of doublecortin-like kinase-1 (DCLK1). Tight
control of Notch signaling is important to prevent and restitute inflammation in the intestine. Our aim was to investigate whether
Notch1–DCLK1 axis regulates the mucosal immune responses to infection and whether this is phenocopied in human models of
colitis. In the FFPE (formalin-fixed paraffin-embedded) sections prepared from the colons of ulcerative colitis (UC) and immune-
mediated colitis (IRAEC) patients, expression of DCLK1 isoforms correlated positively with Notch1 and negatively with a
transcriptional repressor, FoxD3 (Forkhead Box D3). DCLK1 protein staining in these sections was predominantly sub-epithelial
(stromal) wherein DCLK1 co-localized with NICD, CD68, CD11c, and neutrophil elastase (NE). NE also co-stained with Citrullinated-
H3 indicating the presence of neutrophil extracellular traps. In human neutrophils, elevated levels of DCLK1-S, CXCL-10, Ly6G, MPO,
NE, and Notch1/2 in LPS-treated cells were inhibited when LPS was added in conjunction with Notch blocker dibenzazepine (DBZ;
LPS+ DBZ group). In CR-infected Rag1−/− mice, higher levels of DCLK1 in the colonic crypts were inhibited when mice received
DBZ for 10 days coincident with significant dysbiosis, barrier disruption, and colitis. Concurrently, DCLK1 immunoreactivity shifted
toward the stroma in CR+ DBZ mice with predominance of DCLK1-S that coincided with higher Notch1 levels. Upon antibiotic
treatment, partial restoration of crypt DCLK1, reduction in MPO activity, and increased survival followed. When intestinal epithelial
cell-specific Dclk1-knockout (Dclk1ΔIEC) or Dclk1ΔIEC;Rag1−/− double knockout (DKO) mice were infected with CR and given a single
dose of DBZ, they developed barrier defect and severe colitis with higher levels of stromal DCLK1-S, Ly6G, NE, and Notch1. We
therefore propose that, by regulating the mucosal immune responses, the Notch–DCLK1 axis may be integral to the development
of murine or human colitis.
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INTRODUCTION
Inflammatory bowel disease (IBD) is a polygenic disease. An
abnormal immune response mounted toward the luminal
microbiota in a genetically susceptible host may lead to the
onset and perpetuation of the disease [1, 2]. Tuft cells in
the intestine that exhibit strong expression of doublecortin-like
kinase 1 (DCLK1) [3] interact closely with cells of the immune
system [4–7] and their ablation impairs epithelial proliferation
and tissue regeneration after injury [8]. DCLK1 exists in long and
short isoforms (DCLK1-L and DCLK1-S) generated by two
alternative promoter usage with important differences between
the isoforms in both human and mouse tissues. During human
neoplasia, hypermethylation of DCLK1-L appears to cause a
predominant switch to the short isoform, which confers a more
invasive tumor phenotype [9] suggesting that DCLK1 isoforms
likely have distinct functions [10]. Indeed, DCLK1+ tuft cells
have recently been identified as new players in colitis [11]. Yet,
the mechanisms regulating the biology of the two isoforms
in murine or human models of colitis have not been clearly
elucidated.

Notch signaling plays a critical role in the maintenance of
epithelial integrity by regulating the balance of secretory and
absorptive cell lineages and also by facilitating epithelial cell
proliferation. In murine models of colitis, Notch is activated in
the inflamed mucosa to stimulate cellular proliferation and
regeneration of the tissue [12]. A recently published study clearly
demonstrated that inhibition of Notch signaling decreases
DCLK1+ cells following radiation injury [13] suggesting that
Notch–DCLK1 axis may be an important signaling mechanism for
crypt regeneration. Despite recent advances, many fundamental
questions remain about the biology of the DCLK1 isoforms and
whether Notch–DCLK1 axis regulates the mucosal immune
responses to infection.
Models of infectious colitis are crucial for defining the

potentially pathogenic host responses to enteric bacteria. Infec-
tion with Citrobacter rodentium (CR), a noninvasive mouse
pathogen that belongs to the group of attaching and effacing
(A/E) bacteria, is one of the few available models of infectious
colitis [14, 15]. CR infection is used to model several important
human intestinal disorders, including Crohn’s disease, ulcerative
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colitis (UC), and more recently, colon tumorigenesis [16, 17].
Following CR infection, mice develop colitis [18], and this causes a
pronounced dysbiosis that is characterized by an overgrowth of
CR and a consequent reduction in the abundance and overall
diversity of the resident microbiota [19]. CR has become a model
microorganism to study how enteric A/E pathogens subvert
normal host cell functions, such as innate immunity, intestinal cell
shedding, and apoptosis, to colonize the host [14].
Employing this well-credentialed model of infectious colitis, we

previously demonstrated that chronic inhibition of Notch signal-
ing coupled with decreases in DCLK1+ cells result in severe
inflammation, morbidity, and mortality in an outbred strain that
otherwise exhibits a self-limiting disease [20, 21]. These studies,
however, did not elaborate on the effect of DCLK1 deletion on
mucosal immune responses that regulate the outcome of
infectious colitis [10]. We therefore hypothesized that mice lacking
epithelial DCLK1 when challenged with CR infection may be highly
susceptible to epithelial Notch inhibition and develop severe
inflammation and colitis. Using both murine and human models of
colitis, we demonstrate that loss of epithelial but not stromal
DCLK1 synergizes with stromal Notch1 to regulate inflammatory
processes in the colon.

RESULTS
Differential expression of DCLK1 isoforms correlate positively
with Notch1 and negatively with Forkhead Box D3 (FoxD3)
expression
To understand the relationship between DCLK1 isoforms and
Notch signaling, we isolated total RNA from the formalin-fixed
paraffin-embedded (FFPE) sections of either control subjects or
patients with UC or immune-related adverse events—colitis
(IRAEC) and discovered distinct changes in the expression of
DCLK1-L and DCLK1-S isoforms along with Notch1 and FoxD3,
respectively. As is depicted in Fig. 1Ai–iii, while we observed
elevated expression levels of both isoforms of DCLK1, DCLK1-S
was particularly expressed at higher levels in both UC and IRAEC
patients compared to control. These changes correlated with
Notch1 upregulation, and a dramatic decrease in the expression of
FoxD3 (Fig. 1A), a potent repressor of DCLK1-S expression in
normal cells [22]. To corroborate changes in RNA levels with
protein, we next stained 5 μm sections with antibodies against
DCLK1 and Notch intracellular domain (NICD) that transduces
Notch signaling initiated at the plasma membrane. As is depicted
in Fig. 1B, compared to control (Fig. 1Bi), DCLK1 and NICD co-
localization increased in UC and IRAEC samples wherein the
protein staining was not only sub-epithelial (stromal) but
predominantly nuclear consistent with NICD’s role in nuclear
signaling (Fig. 1Bii, iii). Since DCLK1-L is a plasma membrane
protein [23], these findings suggest that DCLK1-S may be
predominantly co-localizing with NICD. As a corollary to this,
membrane-bound DCLK1 did not co-localize with NICD (Fig. S1A).
When sections were stained with antibody for Hes-1, the
downstream target of Notch signaling, we observed significantly
more staining for Hes-1 both within the crypts and the sub-
epithelial of colons from UC patients compared to control (Fig. 1C)
suggesting an active Notch signaling within the immune
compartment.
Next, we looked at DCLK1’s co-localization with markers of

macrophages and dendritic cells (DCs) in the sections from IBD
patients. Antibodies for epithelial cell adhesion molecule or CD45
were used to identify epithelial and immune cells, respectively
(Fig. S1B). In control sections, we detected sub-epithelial DCLK1
co-localization with both CD68 and CD11c, respectively (Fig. 2A,
B). In colonic sections from UC or IRAEC patients, there was weak
staining recorded for epithelial DCLK1 while sub-epithelial regions
exhibited significant co-localization of DCLK1 with both CD68
and CD11c, respectively (Fig. 2A, B). Not all DCLK1+ cells however,

co-stained with markers of immune cells suggesting that these
DCLK1+ cells may have specialized roles and may synergize with
aberrant Notch signaling to influence stromal immune responses.

CR infection increases the expression of DCLK1, a tuft cell
marker, in the colons of immune-incompetent mice
To begin to understand the mechanistic basis of DCLK1–Notch
axis in vivo, we utilized a well-established model of infectious
colitis [18–20]. Rag-1−/− mice compared to either FVB/N or C3H/
HeN strains, when infected with CR, develop transient colitis and
crypt hyperplasia [24]. In response to CR infection, the distal
colons of Rag1−/− mice had crypt hyperplasia, as was evidenced
by hematoxylin and eosin (H&E) and Ki-67 staining (Fig. 3A, B).
Intriguingly, we discovered a significant increase in DCLK1 staining
in the distal colons of these mice compared to uninfected controls
(Fig. 3C). This was confirmed through flow cytometry that revealed
an ~4-fold (1.85 vs. 7.17%) increase in DCLK1+ cells in the colonic
crypts isolated from CR-infected colon (Fig. 3D). In the immune-
competent Rag-1+/+ mice, however, we did not see any increase
in DCLK1 levels in response to CR infection compared to
uninfected controls (2.57 vs. 2.44%) (data not shown). We next
compared the extent of immune cell recruitment in the colons of
CR-infected wild-type (WT) and Rag-1−/− mice. As is depicted in
Fig. 3E, Gr1(Ly6G)+ cells representing granulocytes increased from
7.95% in uninfected controls to 13.3% in CR-infected mouse
colons from WT mice. In Rag-1−/− mice, this increase was modest
(8.57 vs. 10.1%; explained in 5C). Thus, CR infection upregulates
DCLK1 in Rag-1−/− vs. Rag-1+/+ controls in the colon that is not
necessarily overtly inflamed.

Blocking Notch signaling in vivo impairs CR’s proliferative
capacity by promoting goblet cell hyperplasia
Combining CR infection with Notch signaling blockade results
in disruption of the intestinal barrier and exacerbation of colitis
[20]. We replicated this experiment in Rag1−/− mice wherein CR
infection coupled with Notch inhibition with a γ-secretase
inhibitor dibenzazepine (DBZ) for 10 days revealed mucosal
inflammation and crypt abscess along with goblet cell hyperpla-
sia in the CR+ DBZ-treated colons compared to CR alone (Fig. 4A,
B). At the same time, the Ki-67 staining decreased significantly in
the CR+ DBZ-treated colons (Fig. 4C) compared to CR alone
despite no change in crypt lengths. Since DBZ is a Notch blocker,
we next investigated the effect of DBZ on components of Notch
signaling. Of the four Notch receptors, we discovered a significant
increase in Notch1 mRNA (Fig. 4D) and NICD generation (Fig. 4E)
in the CR-infected crypts compared to uninfected controls that
led to an increase in relative abundance for Hes-1 (Fig. 4F). CR+
DBZ treatment decreased Notch1 mRNA, NICD, and Hes-1 levels
(Fig. 4D–F, respectively). These data suggest that inhibition of
epithelial Notch signaling that coincides with loss of crypt DCLK1
worsens CR-induced inflammation and suppresses proliferation in
Rag-1−/− mice.

Notch inhibition impairs barrier function and promotes
bacterial dissemination and neutrophil recruitment
To examine the consequence of Notch blockade in Rag-1−/− mice
on barrier function and bacterial dissemination, we performed
fluorescein isothiocyanate (FITC) dextran assay and electron
microscopy on colonic tissues in groups of mice indicated in
Fig. 5. We observed a significant increase in serum FITC dextran
levels in CR+ DBZ colons compared to CR alone, indicating
increases in paracellular permeability (Fig. S1C). CR infection
disrupted the microvilli compared to uninfected controls
(Fig. 5Ai). When CR infection was coupled with Notch inhibition
by DBZ for 10 days, we discovered significant bacterial invasion
toward the sub-epithelial regions some of which were associated
with immune cells (Fig. 5Aii). To confirm whether these bacterial
populations belonged to Citrobacter, we stained the sections with
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antibody to CR. As is depicted in Fig. 5B, sections from the
uninfected colon were negative for CR, while significant CR
staining was recorded in the lumen of CR-infected colons. In
response to CR+DBZ, the CR staining extended into the crypts

(Figs. 5B and S1D) and was associated with bacterial dissemination
to the liver (Fig. S1E). These changes were associated with a
significant increase in C-X-C chemokine motif ligand 1 (CXCL1)/
keratinocyte (in mice) levels in both crypt and crypt-denuded

Fig. 1 Correlation of DCLK1 isoforms with components of Notch signaling in the colons of UC and IRAEC patients. A Total RNA from the
10 μm FFPE sections was isolated followed by real-time RT-qPCR of the indicated markers. The values were normalized to GAPDH and data are
presented as fold change. P values for Ai based on significance (IRAEC): 0.0029 (DCLK1-S), 0.0004 (FoxD3), 0.00016 (Notch1). P values for Ai
based on significance (UC): 0.0042 (DCLK1-L), 0.0011 (DCLK1-S), 0.0003 (FoxD3), 0.00003 (Notch1). P values for Aii based on significance
(IRAEC): 0.014 (FoxD3), 00004 (Notch1). P values for Aii based on significance (UC): 0.00013 (DCLK1-S), 0.000053 (FoxD3). P values for Aiii based
on significance (IRAEC): 0.0015 (DCLK1-L), 0.000008 (DCLK1-S), 0.00044 (Notch1). P values for Aiii based on significance (UC): 0049 (DCLK1-L),
0.00019 (DCLK1-S), 0.043 (FoxD3), 0.000029 (Notch1); n= 3 independent experiments. B Paraffin-embedded sections from control or immune-
mediated colitis (IRAEC) and ulcerative colitis (UC) patients were co-stained with antibodies for DCLK1 and NICD, respectively. Significant co-
localization of DCLK1 with NICD was recorded in the sub-mucosal (stromal) regions in the colons of IRAEC (Bii) or UC (Biii) patients compared
to control (Bi), shown as merged images (insets represent higher magnification of nuclear staining) while a subset of DCLK1+ cells did not co-
localize with NICD (green staining). Scale bar= 100 μm; n= 2 independent experiments. C Representative images showing immunohisto-
chemical staining of Hes-1, a downstream target of NICD. Scale bar, 80 μm; n= 2 independent experiments.
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lamina propria (CLP) in response to CR and CR+DBZ while
changes in CXCL9/10 expression were less significant (Fig. S1F, G).
When CR+DBZ mice were subjected to a cocktail of antibiotics, no
such staining was observed (Fig. 5B). Since CXCL1 recruits
neutrophils to the inflamed site [25], we isolated the CLP from
the colons, and single cells were labeled with anti-Ly6G followed
by flow cytometry. As is depicted in Fig. 5C, we discovered

increases in Gr1(Ly6G)+ myeloid cells in the CR+DBZ group,
which led to a significant increase in myeloperoxidase (MPO)
activity compared to either CR or uninfected controls (Fig. 5D).
In response to antibiotics, a decrease in MPO activity (Fig. 5D)
and increased survival (data not shown) was observed in the CR+
DBZ+ Abx colons. Thus, barrier disruptions and bacterial dissemi-
nation accompany neutrophil recruitment/degranulation when

Fig. 2 Immune cells associate with DCLK1 in the colons of UC and IRAEC patients. Paraffin-embedded sections from control or immune-
mediated colitis (IRAEC) and ulcerative colitis (UC) patients were co-stained with antibodies for DCLK1/CD68 and DCLK1/CD11c, respectively.
Nuclei were stained with DAPI (blue). Significant co-localization of DCLK1 with both CD68 and CD11c representing macrophages and
dendritic cells, respectively, was recorded in the sub-mucosal (stromal) regions in the colons of IRAEC or UC patients compared to control (red
arrows) while a subset of DCLK1+ cells did not co-localize with either cell type (white arrows). Scale bar= 100 μm; n= 2 independent
experiments.
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CR infection is coupled with inhibition of epithelial Notch signaling
in Rag-1−/− mice.

Chronic notch inhibition induces gut dysbiosis concomitant
with alterations in crypt DCLK1
In the stools collected from the CR-infected or CR+ DBZ-
treated groups, we observed significant dysbiosis with reduced
levels of Bacteroidetes (15 and 18% compared to 57%) and
Firmicutes (32 and 13% compared to 36%) accompanied by
dramatic increases in Proteobacteria phyla (43 and 68%
compared to 2%) (Fig. 6A). In particular, we discovered the
Enterobacteriaceae family to be overrepresented in the CR+
DBZ group (Fig. 6A). Principal coordinate analysis revealed a
significant separation of microbial communities in fecal
samples from CR+ DBZ mice when compared to either
uninfected or CR-infected mice (P value= 0.001; Fig. 6B).
Interestingly, a controlled regimen of antibiotics cocktail
(CR+ DBZ+ Abx) mitigated dysbiosis in CR+ DBZ-treated
Rag1−/− mice, with increases in Bacteroidetes (31 vs. 16%)

and Firmicutes (26 vs. 12%) and decreases in Proteobacteria (41
vs. 72%) (Fig. S2A). We next performed fluorescence in situ
hybridization (ISH) analysis using a ubiquitous eubacterial
probe EUB338. Results revealed only a small number of
bacteria invading the colonic crypts in the CR group (Fig. 6C).
In the CR+ DBZ group, increases in bacterial invasion into the
crypts were significantly reduced in the CR+ DBZ+ Abx group
(Fig. 6C). Immunohistochemistry performed on tissue sections
prepared from CR-infected mouse colon revealed a significant
increase in DCLK1 staining compared to uninfected control
(Fig. 6D) consistent with data shown in Fig. 3C, D. In the CR+
DBZ group, significant reduction in DCLK1 expression was
observed in the colonic crypts (Fig. 6D) as was also confirmed
via flow sorting wherein the number of DCLK1+ cells in the
crypts decreased from 10.5% in the CR group to 5.42% in the
CR+ DBZ group (Fig. 6E). In addition to DCLK1, CR infection
also promoted Lgr5 expression, and the expression was
attenuated in the CR+ DBZ group (Fig. S2B). Thus, a loss of
both crypt DCLK1-L and Lgr5 in the CR+ DBZ group suggests

Un CR Un CR
A. B.

C. D.

Un CR

Uninfected +CR
E.

Fig. 3 Citrobacter rodentium (CR) induced changes in gross morphology and DCLK1 expression. Representative H&E (A), Ki-67 (B), and
DCLK1 (C) immunostaining of distal colons from uninfected (N) or CR-infected Rag1−/− mice (scale bar 100 μm; 7–8 mice/group; n= 3
independent experiments). D Representative flow cytometry performed in crypt epithelial cells isolated from uninfected or CR-infected Rag1-/-

mouse colons for DCLK1 (lower panel represents the gating strategy). E Representative flow cytometry performed in the colons of uninfected
or CR-infected wild-type C57BI/6j for Gr1(Ly6G).
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that the mucosal regenerative capacity may be significantly
compromised [26]. Interestingly, antibiotic treatment led to a
decrease in Proteobacteria while both Firmicutes and Bacter-
oidetes showed an improvement, and these changes correlated
with partial restoration of DCLK1+ cells compared to the CR+
DBZ group (Fig. 6E). Thus, loss of crypt DCLK1 following
inhibition of epithelial Notch signaling coincides with bacterial
dysbiosis and severity of colitis.

Crypt vs. stromal DCLK1 and changes in immune profile in
response to CR infection and/or acute Notch inhibition
To investigate whether the expression of DCLK1 is critical in
maintaining crypt integrity, we bred DCLK1fl/fl mice with CDX2-
Cre/ERT2 to generate DCLK1ΔIEC mice upon tamoxifen-induced
Cre recombination (Fig. S3A). Since DCLK1 was significantly
overexpressed in Rag-1−/− mice in response to CR infection, we
further bred DCLK1fl/fl;CDX2-Cre/ERT2 mice with Rag1−/− to

Fig. 4 Effect of Notch blockade on signaling parameters. Representative H&E (A), Alcian blue (B), and Ki-67 (C) staining of uninfected (N), CR-
infected (CR), or CR+DBZ-treated (CR+DBZ) Rag1−/− mice (scale bar 100 μm; 7–8 mice/group; n= 3 independent experiments). D Total crypt
RNA from the same group of mice was isolated and Notch1 expression was investigated via real-time RT-qPCR. The values were normalized to
GAPDH and data presented as fold change. P values= 0.000004 (Notch1), 0.000091 (Hes1); n= 3 independent experiments. E Western blot
analysis of NICD in the isolated crypts in the indicated group. β-Actin was used as the loading control. Lower panel. Densitometry showing
relative abundance. *,**P < 0.05; n= 3 independent experiments. F Real-time RT-qPCR of Notch downstream target Hes-1 in the isolated crypts
from the indicated groups. P values= 0.000091 (Hes1); n= 3 independent experiments. Lower panel showing western blot of Hes-1 and Math-
1 in the crypts isolated from the indicated groups. Lamin B was used as the loading control (n= 3 independent experiments).
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generate double knockout (DKO) mice to see whether the DKOs
are more susceptible to infectious colitis. Figure S3B–E depict
the genotypes of various crosses and a representative image of
the DCLK1 staining in DCLK1fl/fl and DCLK1ΔIEC mice, respectively.
In response to CR infection, both DCLK1ΔIEC and DKO mice had
significant gross thickening of the colon (Fig. 7Ai, Bi), elongated
crypts showing elevated Ki-67 labeling, and goblet cell
hypoplasia associated with loss of Muc-2 (Fig. 7Aii, Bii). We also
detected significant CR staining in the lumen of CR-infected
colons compared to the uninfected colon with some penetra-
tion into the crypts. When CR-infected mice were given a single
dose of DBZ, more severe phenotypes were observed (Fig. 7Aii,
Bii) that paralleled changes recorded in Rag1−/− mice after 10
consecutive days of DBZ (see Figs. 6 and S1) indicating that loss

of crypt DCLK1 severely impacts the disease process. In the
absence of CR infection, however, DBZ alone did not have any
associated pathology (data not shown) [19]. Interestingly, loss
of crypt DCLK1 did not impact Lgr5 expression in
CR-infected crypts (Fig. S4A); CR+ DBZ treatment, however,
led to a severe reduction in Lgr5 expression (Fig. S4A) as was
reported elsewhere (see Fig. S2B). This was further corroborated
in an organoid assay wherein the CR+ DBZ group exhibited
degeneration of the enteroids compared to the CR group
(Fig. S4B).
Despite the loss of crypt DCLK1 in DCLK1ΔIEC mice, we

discovered stromal presence of DCLK1+ cells in CD11c+;MHCII+
DCs, F4/80+;MHCII+ macrophages, and Gr-1(Ly6G)+ neutrophils
wherein there was a predominance of DCLK1-S in the sorted cells,

Fig. 5 Effect of Notch blockade on bacterial colonization, neutrophil recruitment, and myeloperoxidase (MPO) activity. Ai Electron
microscopy of distal colons isolated from uninfected (N), CR-infected (CR), CR+DBZ-treated (CR+DBZ), or CR+DBZ plus antibiotics (CR+
DBZ+ Abx)-treated Rag-1−/− mice. Loss of microvilli structure in response to CR infection was exacerbated following Notch inhibition in the
CR+DBZ group with clear bacterial invasion into the sub-mucosa. Antibiotics (Abx) treatment restored the microvilli. Aii represents the EM of
distal colon from the CR+DBZ group showing interaction of bacteria with immune cells (6 mice/group; n= 3 independent experiments).
B Representative images showing bacterial staining by anti-CR antibody (αCR). C Flow cytometry for Gr1(Ly6G)+ cells was performed in the
colon tissues of uninfected (N), CR-infected (CR), or CR+DBZ-treated (CR+DBZ) Rag-1−/− mice. D MPO activity was measured in the colonic
homogenates of the indicated groups using a Fluoro MPO Detection Kit (6 mice/group; n= 3 independent experiments).
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particularly in Ly6G+ neutrophils (Fig. 7C). Interestingly, in vitro
studies in cultured bone marrow-derived cells (BMDCs; Fig. S5A)
only detected DCLK1-S in CR-infected cells, and the levels declined
in response to CR+ DBZ (Fig. S5B). In CLP, although we detected
both the isoforms, only the DCLK1-S levels were induced by CR
infection with an ~40% reduction in the levels after CR+ DBZ

treatment (Fig. S5B) paralleling those recorded in vivo (see Fig. 6).
Since stromal DCLK1-L was not affected by either treatment, these
findings suggest that DCLK1-S may be the target of Notch
dysregulation within the stromal region. In DKO mice, DCLK1-S
was consistently upregulated in CD11c+ and Ly6G+ cells
(Fig. 7D). Intriguingly, we also observed the expression of

Fig. 6 Microbial dysbiosis coincides with downregulation of crypt DCLK1 following Notch blockade. A Fecal samples from uninfected (N),
CR-infected (CR), and CR+DBZ-treated mice were subjected to 16S rDNA sequencing and relative abundance of phyla and families were
compared. Each chart represents the taxonomic composition in the indicated groups (n= 10 mice/group). B Principal coordinate analysis
(PCoA) based on weighted UniFrac distances between bacterial communities. Please note significant separation of microbial communities in
fecal samples from CR+DBZ mice when compared to either uninfected (N) or CR-infected (CR) mice (P < 0.05). C The bacteria in the colonic
tissues of N, CR, CR+DBZ, and CR+DBZ+ Abx-treated mice were detected by FISH using a general bacterial 16S probe (red, TexasRed-
Eub338; bar= 100 μm; n= 3 independent experiments). DAPI was used as counterstain. D Representative images of DCLK1 staining in the
distal colons of the indicated groups (n= 10 mice/group). E Flow cytometry showing percentages of DCLK1+ cells isolated from the groups of
mice indicated (n= 10 mice/group).
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Fig. 7 Effect of DCLK1 deletion on mucosal inflammation and colitis. Control (floxed) or intestinal epithelial cell-specific DCLK1-KO
(DCLK1ΔIEC) or DCLK1Δ IEC;Rag-1−/− double KO (DKO) mice were infected with CR and given single doses of DBZ. Ai, Bi Gross thickening
and ulceration of the colon in the two transgenic lines. Aii, Bii Representative histology (H&E) or immunostaining in the paraffin-embedded
sections prepared from the distal colons of the indicated mouse groups. Alcian blue and Ki-67 labeling represents goblet and proliferating
cells, respectively. Anti-CR- and α-Muc2-stained Citrobacter rodentium and Muc-2, respectively (n= 6 mice/group; Scale bar: 100 μm).
C, D Immune cells were FACS-sorted with antibodies against CD11c, F4/80, and Ly6G from the crypt-denuded lamina propria of the indicated
groups of mice and the expression of the two isoforms of DCLK1 were measured by RT-qPCR. The values were normalized to GAPDH, and data
are presented as fold change. P values for C based on significance: 0.000033 (CD11c: DCLK1-S), 0.000057 (F4/80: DCLK1-S), 0.013 (Ly6G: DCLK1-
L), 0.0081 (Ly6G: DCLK1-S). P values for D based on significance: 0.000035 (CD11c: DCLK1-S), 0.016 (F4/80: DCLK1-S), <0.000001 (Ly6G: DCLK1-
S); n= 3 independent experiments.
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DCLK1-L isoform (Fig. 7D), particularly in the Ly6G+ cells in the CR
group, and its expression was not affected by DBZ (Fig. 7D). To
see whether the two isoforms can also be regulated by
proinflammatory cytokines, we next performed an in vitro assay

wherein we observed interleukin-6-induced increases in both
DCLK1-L and DCLK1-S promoter reporter activities, respectively
(Fig. S5C). Taken together, CDX2-Cre-dependent KO of epithelial
DCLK1 does not preclude accumulation of the two isoforms within

Fig. 8 Evidence of neutrophil extracellular trap formation in vivo. A–C Human neutrophils were cultured in the presence or absence of LPS
or LPS+DBZ for 8 h and the expression of indicated markers was determined by RT-qPCR and the data are presented as fold change after
normalizing values to GAPDH. P values for A based on significance (LPS vs. control): 0.000734 (DCLK1-L), 0.023915 (DCLK1-S), 0.004097
(FoxD3); LPS+DBZ vs. LPS: 0.000525 (DCLK1-L), 0.057920 (DCLK1-S), 0.000035 (FoxD3). P values for B based on significance (LPS vs. Control):
0.000024 (NE), 0.000115 (Notch1); LPS+DBZ: 0.000083 (NE), 0.000075 (Notch1). P values for C based on significance (LPS vs. Control): 0.003059
(CXCL9), 0.000883 (CXCL10); LPS+DBZ vs. LPS: 0.007031 (MPO), 0.000315 (Notch2). D–I Paraffin-embedded sections from control or UC and
immune-related adverse event—colitis (IRAEC) patients were co-stained with antibodies for DCLK1/NE or NE/Cit-H3, respectively. Solid arrows
provide evidence of co-localization; open arrows point to DCLK1+ cells that did not co-localize with NE (Scale bar= 150 μm; n= 2
independent experiments).

B.C. Roy et al.

10

Cell Death Discovery           (2021) 7:169 



the sub-epithelial region at least at the RNA level and that this
may be influenced by immune cell recruitment.
Since Ly6G+ neutrophils had the highest levels of DCLK1-S,

we next corroborated these findings in vitro wherein we treated
human neutrophils with lipopolysaccharide (LPS) and DBZ and
analyzed the expression profiles of the two DCLK1 isoforms and
other relevant genes. As is depicted in Fig. 8A, LPS significantly
increased both DCLK1-L and DCLK1-S isoforms along with 51-
and 76-fold increases in neutrophil elastase (NE) and Notch1,
respectively (Fig. 8B). In addition, we observed significant
increases in CXCL10, Ly6G, MPO, and Notch2 in response to
LPS (Fig. 8C). When LPS was combined with DBZ, DCLK1-L
expression was not affected by DBZ (Fig. 8A). DCLK1-S levels,
however, were mildly reduced upon DBZ treatment along with a
reduction in NE, Notch1 and 2, CXCL10, Ly6G, and MPO
expression, respectively (Fig. 8A–C) suggesting that these genes
may be regulated by Notch signaling. In contrast, we saw
significant downregulation of FoxD3 in LPS-treated samples and
the expression was further reduced in the LPS+ DBZ group
(Fig. 8A). These results are in complete contrast to our findings in
colonic crypts wherein we showed that membrane-bound
DCLK1 is reduced upon DBZ treatment (Fig. 6D, E) suggesting
that the two isoforms may be regulated differently in the
epithelial vs. non-epithelial/stromal compartments. Since neu-
trophils besides providing a front line of defense against
bacterial infection also act as mediators of inflammation [27],
we next studied co-localization of NE with DCLK1 and
Citrullinated-H3 (Cit-H3) to detect neutrophil extracellular trap
(NET) formation in the FFPE sections. As is depicted in Fig. 8D–F,
compared to control, we saw significant co-localization of NE
with DCLK1 in both UC and IRAEC. NE also co-localized with Cit-
H3 in both UC and IRAEC (Fig. 8G, H) consistent with neutrophilic
inflammation seen in immune-mediated colitis patients [28].
These results provide an insight into which neutrophils’
recruitment into the colons may contribute toward tissue
damage and severity of colitis.

DISCUSSION
Tuft cells interact closely with cells of the immune system and
expand during chronic inflammation [29]. Yet, neither their
biology nor the mechanism of their action is clearly understood.
Recent studies have speculated that these cells, marked by DCLK1,
may serve as a source of Notch signaling for Lgr5+ stem cells
following removal of Paneth cells [30]; yet, the signaling
mechanisms remain underexplored.
Employing human and murine models of colitis, we discovered

that the two isoforms of DCLK1 are expressed differently in the
epithelial vs. sub-epithelial regions of the inflamed mucosa. We
also provide evidence that microbial imbalance induced by an
enteric pathogen synergizes with loss of crypt DCLK1 and Notch
dysregulation to promote deviant or aberrant immune activation
that accompanies development of colitis. In response to CR
infection, there was an expansion of the DCLK1+ cells reminiscent
of tuft cell hyperplasia seen in the small intestine in response to
parasitic infection [3, 5]. The increase in crypt DCLK1 was
significantly inhibited when CR-infected mice were given ten
doses of Notch blocker DBZ and coincided with microbial
dysbiosis, barrier disruption, and release of proinflammatory
mediators suggesting that Notch signaling is a critical intermedi-
ary pathway in gut dysbiosis regulation of DCLK1 expression. This
is consistent with a recent report wherein DCLK1 was shown to
mitigate mucosal barrier dysfunction by promoting intestinal
repair to counter chronic inflammation [11]. Moreover, the
observation that both DCLK1ΔIEC mice and DKOs became
hypersensitive to single doses of DBZ further portends that tight
control of Notch signaling is important to prevent or restitute
inflammation in the gut.

Notch signaling has recently been implicated in the control of
several innate cell populations [31]. In the current study, we
observed various immune cell populations, including macro-
phages, DCs, and particularly neutrophils to express DCLK1-S
isoform. In vitro studies in neutrophils further provided evidence
that LPS-induced increases in DCLK1-S isoform but not the
DCLK1-L variant was reduced in cells treated with LPS+ DBZ.
This is in contrast to the downregulation of DCLK1 in the crypt
epithelial cells isolated from CR+ DBZ-treated mice (see Fig. 6D,
E). Interestingly, expression of several genes, including FoxD3,
CXCL10, Ly6G, MPO, NE, and Notch1/2, were reduced when the
Notch pathway was blocked, thereby indicating that they may be
involved in DCLK1-S regulation. FoxD3 in particular has recently
been reported to inhibit the transcriptional activity of the
DCLK1’s β-promoter thereby repressing DCLK1-S expression [22].
While available data indicate that loss of FoxD3 due to epigenetic
silencing promotes overexpression of the DCLK1-S variant in
human colon cancer cells [22], no such data exist in non-cancer
models. Thus, although a limitation of our study, it is nonetheless
tempting to speculate that increases in DCLK1-S seen in the
current study may be a result of epigenetic silencing of the
FoxD3 gene.
Neutrophils play both protective and detrimental roles in

mucosal homeostasis. Antimicrobial activity of neutrophils is
mediated by phagocytosis, the release of reactive oxygen species,
and lytic enzymes, as well as the formation of NETs composed of
DNA, histones, and granular proteins, such as NE [32]. This is
consistent with recent reports describing excessive NE activity
associated with tissue damage in a murine model of colitis [33]
and intraepithelial infiltration of human NE (HNE)+ cells in UC
patients [34]. Along these lines, NE not only co-localized with
DCLK1 in the colons of both UC and IRAEC patients but also
exhibited co-localization with Cit-H3 consistent with neutrophilic
inflammation seen particularly during IRAEC [35]. Whether Notch
signaling is definitively involved in NET formation in these colons
remains to be determined. Our discovery that DCLK1 co-localized
with NICD in the colons of both UC and IRAEC patients does,
however, provide a clue to the possibility that it may facilitate NET
formation in a Notch-dependent manner to regulate mucosal
inflammation. A recent study supporting this notion elegantly
demonstrated that macrophage-specific deletion of RBP-J, a
transcription factor that signals through Notch receptors, leads
to impaired innate and adaptive immune responses, thereby
impacting bacterial clearance [36].
Since gut bacteria are critical for the development of colitis as

their depletion leads to attenuation of the inflammatory
processes, we acknowledge the limitation of our study to fully
implicate gut microbiome changes associated with aberrant
Notch signaling in either the development or progression of
colitis in transgenic mouse lines. To this end, we did, however,
see moderate increase in DCLK1+ cells in Rag-1−/− mice treated
with antibiotics (see Fig. 6E) suggesting that restoring crypt
DCLK1 may help attenuate infectious colitis. Our findings also
indicate that stromal Notch activity fueled by immune cell
recruitment, particularly neutrophils, may synergize with DCLK1-
S to regulate the severity of infectious colitis. We corroborated
some of these findings in the colons of UC and IRAEC patients to
further establish the translational nature of our study. In
conclusion, while DCLK1 has mostly been studied as a marker
of tuft cells [3–8], our findings indicate that DCLK1 isoforms likely
have distinct functions, and the expression of these isoforms may
occur in different cellular compartments that may not all
represent tuft cells. Thus, while more studies are needed to
characterize the role of DCLK1 isoforms as immune sentinel to
connect intestinal lumen with immune cells in the underlying
tissue, we posit that loss of epithelial but not stromal
DCLK1 synergizes with stromal Notch1 to regulate inflammatory
processes in the colon.
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MATERIALS/SUBJECTS AND METHODS
Mouse models and procedures
This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. All protocols were
approved by the University of Kansas Medical Center Animal Care
and Use Committee. All efforts were made to minimize suffering.
WT C57Bl/6j and B6.129S7-Rag1tm1Mom/J (Rag-1−/−) mice were
procured from Jackson Laboratory, Bar Harbor, ME, USA. The
DCLK1-floxed mice (DCLK1tm.2Jgg; stock#013170) surrounding
exon 3 of the DCLK1 gene were crossed with CDX2-Cre/ERT2 (B6.
Cg-Tg; CDX2-Cre/ERT2)752ERF/J) mice to obtain colon-specific KO
of DCLK1 (DCLK1ΔIEC). Further, we bred DCLK1fl/fl;CDX2-Cre mice
with Rag1−/− to generate DCLK1fl/fl;CDX2-Cre;Rag1−/− DKO mice.
The progeny was genotyped for both the presence of floxed site
and CDX2-Cre recombinase by tail-tip biopsies using the set of
primers described in Table 1. WT littermates or transgenic mice
(C57BL/6J background; 5–6 weeks old) received sterile culture
medium or were infected by oral inoculation with a 16-h culture of
CR (biotype 4280, ATCC, 108 colony-forming units), identified as
pink colonies on MacConkey agar, as previously described [17–
21, 27, 28] coupled with tamoxifen injection (intraperitoneally (i.p.;
(75 mg/Kg; 2 doses, alternately at postinfection days 3 and 5) for
conditional gene KO. To block Notch signaling in vivo, WT, Rag1−/

− mice (10 doses; beginning at 2 days post-CR infection), or
transgenic lines (single dose; postinfection day 6) were treated
with cell-permeable γ-secretase inhibitor, DBZ (EMD Chemicals,
Inc.) [37] i.p. at 10 μmol/Kg of body weight suspended in 0.5% (wt/
vol) hydroxypropyl-methylcellulose and 0.1% Tween-80 in water
(wt./vol.).

Bacterial DNA extraction and microbiota analysis using
genomic DNA
Total genomic bacterial DNA from fresh feces was extracted
using the QIAmp DNA Stool Kit (Qiagen, Valencia, CA). DNA

solutions were stored at −80 °C until further processing. Using
gDNA, the V4 region of the 16S rRNA encoding gene was
amplified with barcoded universal bacterial primers followed
by sequencing on Ion Torrent platform [19]. The resulting raw
sequence files (.fastq.gz) are being submitted to the NCBI
Sequence Read Archive (SRA) database. The raw sequences
were analyzed using Quantitative Insights Into Microbial
Ecology (QIIME)-2 pipeline [38].

EUB338 staining and ISH
For EUB338 staining, paraffin sections were dewaxed and
rehydrated in an ethanol to water gradient. The tissue sections
were incubated with 5 μg/ml Texas Red-conjugated EUB338 (5′-
GCTGCCTCCCGTAGGAGT-3′, Sigma-Aldrich) in hybridization buffer
(0.1 M Tris-HCl, 0.9 M NaCl, 0.1% SDS, and 10% formamide, pH 7.2)
at 40 °C overnight. The sections were rinsed in washing buffer
(20 mM Tris-HCl, 0.9 M NaCl, pH 7.4) at 40 °C for 15 min, stained
with 1 μg/ml 4,6-diamidino-2-phenylindole and mounted with
Prolong Gold mounting medium (Invitrogen) [21]. ISH analysis was
performed as described [21]. Images were obtained and analyzed
with a Nikon i80 microscope.

Electron microscopy
Samples of the distal colon from various regimens were minced
into small cubes, fixed in 4% paraformaldehyde and 2%
glutaraldehyde in cacodylate buffer (0.1 M sodium cacodylate,
pH 7.6) overnight at room temperature, postfixed in 1%
osmium tetroxide for 90 min, dehydrated through a graded
series of ethanol, embedded in epon-araldite resin, and
maintained for 48 h at 60 °C to polymerize. Ultra-thin
(100 nm) sections cut on a Leica UC-6 ultramicrotome were
put on glow discharged 300 mesh copper grids and stained
with uranyl acetate and Sato’s lead to enhance contrast. Ultra-
thin sections were examined with a JEOL JEM-1400 electron
microscope.

Table 1. List of primers used in the study.

Genes Forward primers Reverse primers

Human Dclk1-L aaacggctcattcctttgag agtcctgaaggcacatcacc

Mouse Dclk1-S gtcagccttacgcaggaaaa tgggaagcagttggattagc

Human Dclk1-S aggcatctgctgatgaatcc tctcagcactaagccaagca

Mouse NE gcactggcctcagagattgt cagaaatgacctccacgcct

Human NE aacgtctgcactctcgtgag gaaggaggcaattccgtgga

Mouse FoxD3 tgcagctacagctcaacacc tgttctcgatgctgaacgac

Human FoxD3 caaccgcttcccctactaca gggatcttgacgaagcagtc

Mouse Cxcl-1 cttgaaggtgttgccctcag tggggacaccttttagcatc

Mouse Cxcl-9 acggagatcaaacctgccta tttttccccctcttttgct

Human Cxcl-9 gagtgcaaggaaccccagta ttggggcaaattgtttaagg

Mouse Cxcl-10 gctgcaactgcatccatatc cgtggcaatgatctcaacac

Human Cxcl-10 ccccacgttttctgagacat aaggcagcaaatcagaatgg

Mouse MPO tacccccgagactttgtcag atagcacaggaaggccaatg

Human MPO aggacaaataccgcaccatc gaagagagaagccgtcctca

Mouse Notch2 cctgaacgggcagtacattt gcgtagcccttcagacactc

Human Notch2 tatatttgcacctgcccaca ttttcctgcatgctcacaag

Mouse GAPDH aactttggcattgtggaagg acacattgggggtaggaaca

Human GAPDH aggctggggctcatttgcagg tgaccttggccaggggtgct

For genotyping

Cdx2 transgene acatgtccatcaggttcttgc aggagccagcggagcac

Dclk1 cttcccactgatatgttcattc (Mutant) agtgagatggtttacaggcaag (Common)

Rag1 tggatgtggaatgtgtgcgag (Mutant) cattccatcgcaagactcct (Common)
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Crypt and CLP isolation, flow cytometry and organoid assay
Crypts representing epithelial cells were isolated from distal colons as
described [17–21, 27, 28]. Following crypt removal, the CLP was
extracted, and both isolated crypts and CLPs were processed for
biochemical and molecular assays [18]. For flow cytometry or
organoid assay, isolated crypts were either stained with appropriate
antibodies and data were analyzed on FACS Aria III flow cytometer
(BD Biosciences) using the FlowJo software (BD Biosciences) or
cultured in organoid culture media (STEMCELL Technologies Inc.) [21].

BMDC isolation and culture and experiments with human
neutrophils
To obtain BMDCs, bone marrow was isolated by flushing with
RPMI with a syringe from mouse femur, cultured in RPMI-1640
media with 10% fetal bovine serum and penicillin–streptomycin,
and supplemented with 20 ng/ml of granulocyte macrophages
colony-stimulating factor (R&D System) for 7 days [39, 40]. Cells
were infected with CR for 3 h, washed and treated with DBZ
(50 nM) for 24 h, and washed, and cellular extracts were subjected
to western blotting. Human neutrophils were treated with LPS
(10 μg/ml) or LPS+ DBZ (50 nM) for 8 h before RNA isolation and
quantitative PCR (qPCR) [21].

Histology, immunohistochemistry, and immunocytochemistry
For histology, tissues were fixed in 10% neutral buffered formalin or
Carnoy’s fixative (60% methanol, 30% chloroform, and 10% acetic
acid) before paraffin embedding. Images were obtained with an
Eclipse i80 microscope (Nikon Instruments, Melville, NY, USA).
Paraffin-embedded 5-μm-thick sections were stained with H&E for
gross morphology and with Alcian blue to detect goblet cells.
Immunohistochemistry and immunocytochemistry were performed
with appropriate antibodies on paraffin-embedded sections
[18, 21]. Antibodies used were rabbit anti-DCLK1 (1:200, ab31704)
and Anti-CR (1:250, ab37056) from Abcam, Cambridge, UK; mouse
anti-Notch1 NICD (1:200, clone OTI3E12) from Origene, Rockville,
MD; rabbit anti-Hes1 (1:200, #11988) and mouse anti-Ki-67 (1:200,
#9449) from Cell Signaling Technology, Danvers, MA; anti-CD68
(1:200, NB600-985) from Novus Biologicals (Littleton, CO, USA), Anti-
Muc2 and anti-NE (1:200) Santa Cruz, Dallas, TX; Anti-CD11c and
anti-F4/80 (Thermo Fisher), and anti-Ly6G (R&D, Minneapolis, MN).
Antibody controls included omission of the primary antibody or
detection of endogenous IgG staining with goat anti-mouse or anti-
rabbit IgG (Calbiochem, San Diego, CA, USA).

Measurement of MPO activity
MPO activity was measured in whole-colon tissue homogenates
by a modification of the method of Grisham et al. [41]. Briefly,
colon homogenate was sonicated in 1% hexadecyltrimethylam-
monium bromide buffer and centrifuged at 12,000 rpm at 4 °C for
20min. MPO activity in the homogenates was measured in
triplicate using a Fluorescent MPO Detection Kit (Fluoro MPO, Cell
Technology) according to the manufacturer’s instructions.

Patient samples
De-identified tissue sections from UC patients were procured from
Children’s Mercy Hospital, Kansas City, MO through an approved
Institutional Review Board according to institutional guidelines. FFPE
de-identified sections (5 and 10 μm) from UC and IRAE patients that
developed immune-mediated colitis (IRAEC), respectively, were
obtained from The University of Kansas’ Biospecimen Repository
Core Facility. For isolating RNA from the FFPE sections, we employed
PureLink FFPE RNA Isolation Kit (Cat# K156002; ThermoFisher
Scientific), according to the manufacturer’s instructions and the
RNAs were subjected to reverse transcriptase-qPCR as described [21].

Statistical analysis
The values are expressed as mean ± SD. Statistical analyses of all
studies were performed using unpaired, two-sided Student’s t tests

[18] or one-way analysis of variance (ANOVA) models for multiple-
group comparisons. Linear contrasts with Bonferroni corrections for
multiple testing were for pairwise comparisons of groups based on
parameter estimates from one-way ANOVA model fits. The
D’Agostino and Pearson omnibus K2 tests were used to assess the
assumption of normality. P < 0.05 was considered statistically
significant. Sample size was determined based on the results from
pilot studies with similar mouse numbers. All experiments used n=
5 mice per group unless otherwise indicated in the figure legends
and are representative of 2–3 independent experiments. For in vivo
studies, reported sample number per experiment represent biologic
replicates (comparison of animals of one genotype with littermates
of another genotype). Both male and female mice were used in the
study. All analyses were performed using GraphPad, version 9.
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