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Robust endocrine cell function, particularly β cell function, is required to maintain blood
glucose homeostasis. Diabetes can result from the loss or dysfunction of β cells. Despite
decades of clinical and basic research, the precise regulation of β cell function and
pathogenesis in diabetes remains incompletely understood. In this review, we highlight
RNA processing of mRNAs as a rapidly emerging mechanism regulating β cell function
and survival. RNA-binding proteins (RBPs) and RNA modifications are primed to be the
next frontier to explain many of the poorly understood molecular processes that regulate
β cell formation and function, and provide an exciting potential for the development
of novel therapeutics. Here we outline the current understanding of β cell specific
functions of several characterized RBPs, alternative splicing events, and transcriptome
wide changes in RNA methylation. We also highlight several RBPs that are dysregulated
in both Type 1 and Type 2 diabetes, and discuss remaining knowledge gaps in the field.
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INTRODUCTION

The highly specialized insulin-producing β cell population is located within the pancreatic islet of
Langerhans (Figure 1). In humans and other vertebrates, β cells respond to changes in circulating
blood glucose levels by secreting insulin. Coupled with the function of the other islet endocrine
cell types, β cells help to maintain blood glucose homeostasis; loss or dysfunction of the β cell
population results in diabetes. Over the last several decades, substantial research efforts have
been directed toward understanding the gene regulatory networks required for the formation and
function of the islet cell populations. This has included developmental studies in model organisms
that have identified the key transcription factors required to make and maintain functional β cell
populations. In addition, translational research approaches in human subjects, including Genome
Wide Association Studies (GWAS) and other large sequencing efforts, have identified numerous
alleles and mutations associated with increased risk of developing either Type 1 (T1D) or Type 2
(T2D) diabetes, many of which cause β cell dysfunction. Despite these efforts, there remain many
gaps in our understanding of the mechanisms that regulate β cells and the pathways that contribute
to their pathogenesis in diabetes.

Although much of the research to date has been focused on transcriptional regulation, β cell
identity and function are also regulated at the level of mRNA, similar to many other cell types
and organ systems. Throughout their life cycle, mRNA molecules undergo extensive processing
events to transition from a pre-mRNA molecule to a mature mRNA. These events not only include
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addition of a 5′-cap and 3′-poly-A tail, but also splicing
of introns, nucleotide modification, stability, and subcellular
localization (Licatalosi and Darnell, 2010; Figure 1). RNA-
binding proteins (RBPs) are responsible for coordinating the
events in the lifecycle of an mRNA. Over the past few years,
several groups have begun to probe the function of specific
RBPs in organogenesis and disease. Many studies have focused
on the mis-regulation of mRNAs and RBP function in the
context of diabetic complications (adipose, liver, muscle, retina,
etc.), rather than specific changes in the β cells (Nutter and
Kuyumcu-Martinez, 2018). In the pancreas, only a few groups
have delved into the world of RNA regulation, often focusing
on a single splicing target or RBP. In this review, we will
highlight these studies describing RBP functions, transcriptome
wide changes in RBP expression, alternative splicing, and RNA
methylation, with a specific focus on regulation of mRNAs in
the pancreatic islet population. This is a rapidly emerging field
that will undoubtedly provide a unique perspective on a complex
disease and will ultimately push the boundaries of therapeutic
treatments for diabetes.

RNA-Binding Proteins in the β Cell
Several hundred RBPs have been identified (Hentze et al.,
2018), each with the potential of having hundreds of targets
within a cell (Keene, 2007; Hogan et al., 2008; Lukong
et al., 2008; Blanchette et al., 2009; Li et al., 2014). Some
RBPs have ubiquitous expression, while others are transiently
expressed during development or restricted to a specific cell
type (Gerstberger et al., 2014). Like many other proteins, RBPs
are categorized by several modular domains. RBPs recognize
RNA targets through a binding domain, in the form of an RNA
recognition motif (RRM), K-homology (KH) domain, and RNA-
binding zinc-finger (ZnF) domains, or can bind independent
of sequence through a double-stranded RNA module (dsRBD)
(Lunde et al., 2007). Additionally, RBPs have a variety of
enzymatic and/or signaling domains that allow for functional
activity (Lunde et al., 2007).

The role of RBPs in the formation and function of pancreatic
endocrine cells is only beginning to be appreciated. Only a
small number of known RBPs have been studied in the β cell,
but as new transcriptomics data becomes available from both
healthy and diseased islets, their role in β cell biology will
become more apparent. Recently, several studies have identified
RBPs that are enriched in pancreatic islet cells and become
dysregulated under stress (Juan-Mateu et al., 2017; Jeffery et al.,
2019; Ramos-Rodriguez et al., 2019). Stressors including chronic
hyperglycemia (Puri and Hebrok, 2012; Brereton et al., 2014),
exposure to pro-inflammatory cytokines (Ortis et al., 2010),
and palmitate (saturated fatty acid) (Cnop et al., 2014) can
result in changes in cellular and molecular identity. In a model
of human β cells (EndoC-βH1), treatment with cell stressors
(including cytokines, hypoxia, altered lipids, and high and low
levels of glucose) also induced dysregulation of many RBPs
(Jeffery et al., 2019).

Islet endocrine cells have a specific assemblage of RBPs
that perform a variety of functions. Re-analysis of whole
transcriptomic RNA-Sequencing (RNA-Seq) data from several

human tissues (Eizirik et al., 2012) revealed that human islets
share a notable number of RBPs with the brain, and β cells in
particular are enriched for many “neuron specific” RBPs (Juan-
Mateu et al., 2017; Alvelos et al., 2018). This is not surprising
since, despite their disparate developmental origins, neurons
and β cells share a large number of transcriptional networks
(van Arensbergen et al., 2010). While it is clear that there are
a whole host of RBPs expressed in mature insulin-secreting β

cells (summarized in Table 1), there remains poor understanding
about the role of RBP regulation in the developing pancreas
(Baralle and Giudice, 2017). Additionally, the majority of these
studies to date are limited to in vitro analysis of RBP requirements
and molecular function. RBPs regulate several classes of RNAs,
including both coding (mRNA) and non-coding (ncRNA) RNAs.
A recent comprehensive review has discussed the critical role of
RBPs Dicer and Argonaut in the regulation of miRNAs for β cell
function and in T2D (Eliasson and Esguerra, 2020). Here we will
provide a brief survey of the expression and function of several
prominent RBP families that regulate mRNAs in pancreatic
β cells.

Hu and Embryonic Lethal Abnormal Vision-Like
Protein Family (HuD/ELAVL4)
The Hu/ELAV family of RBPs bind to AU-rich elements (AREs)
in the 3′UTR of mRNAs and can modulate transcript stability and
translation (Hinman and Lou, 2008). Hu/ELAV proteins bind
to the AREs through three RRMs (Okano and Darnell, 1997).
HuR/ELAVL1 is ubiquitously expressed, while the other three
family members (HuB/ELAVL2, HuC/ELAVL3, HuD/ELAVL4)
are most highly expressed in neurons (Hinman and Lou, 2008).
However, a few recent studies have identified roles for one
of these family members, HuD/ELAVL4, in the β cell (Lee
et al., 2012; Kim et al., 2014; Hong et al., 2020). Normally,
HuD expression is (1) glucose dependent; (2) regulated through
insulin receptor (INSR) signaling; and (3) acts as a feedback
mechanism that regulates translation of the Preproinsulin2 (Ins2)
mRNA (Lee et al., 2012). Rodents encode two prepronsulin (Ins)
genes; however, interaction between HuD and the preproinsulin1
(Ins1) transcript was not reported. Insulin is secreted from β

cells in response to high levels of glucose. Circulating insulin
can then bind the insulin receptor (INSR) on the surface of β

cells and, through the PI3K/AKT pathway, the transcriptional
repressor FOXO1 is phosphorylated. Phosphorylation of FOXO1
de-represses transcription of HuD. The HuD protein then
binds the 5′UTR of Ins2 mRNA and decreases Ins2 translation,
maintaining plasma insulin homeostasis. Consistently, HuD−/−
mice displayed higher insulin levels and improved glucose
tolerance, whereas transgenic mice overexpressing HuD had
lower insulin levels and were glucose intolerant, reportedly due
to less readily releasable insulin pools (Kim et al., 2014). It has
also been demonstrated that nuclear HuD is increased under ER
stress resulting in decreased intracellular insulin biosynthesis and
decreased plasma insulin homeostasis (Yoo, 2013). In addition
to regulating Ins2 translation, HuD also regulates the translation
of two genes encoding proteins important for β cell survival in
stress conditions. Autophagy-related Gene 5 (ATG5) is a protein
that can mediate stress induced β cell death (Fujimoto et al.,

Frontiers in Genetics | www.frontiersin.org 2 September 2020 | Volume 11 | Article 983

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00983 August 30, 2020 Time: 9:59 # 3

Moss and Sussel RNA Processing in β Cells

FIGURE 1 | RNA-binding protein (RBP) mediated RNA regulation in the pancreatic β cell. Insulin-secreting β cells reside in the islets of the pancreas along with
several other endocrine cell types (α, δ, and PP cells). RBPs (green) are present in both the nucleus and the cytoplasm of cells and bind to RNA (blue) to perform a
variety of functions. RBPs binding to introns and exons of pre-mRNAs contribute to alternative splicing. RBPs can also write, read, and erase methylation
modification on mRNAs in RNA methylation. RBPs can also facilitate the transport of RNAs between the nucleus and cytoplasm and throughout the cell. RBP
binding to the UTRs can alter mRNA stability and translation. Illustration created with BioRender.

2009). HuD binds to AREs in the 3′UTR of Atg5 and enhances
the assembly of polysomes to increase ATG5 protein levels. HuD
also modulates β cell function through mitochondrial dynamics
and stabilizing the mitochondrial gene Mitofusin2 (Mfn2), which
encodes a protein which mediates mitochondrial fusion and
metabolism, and is an inhibitor of apoptosis in β cells (Baltrusch,
2016; Hong et al., 2020). Taken together, it is clear that RNA
regulation by HuD is required for proper function and survival
of pancreatic β cells through multiple mechanisms and pathways.

Polypyrimidine-Tract-Binding Protein
(hnRNP1/PTB/PTBP1)
The polypyrimidine-tract-binding proteins (PTBs) are a group
of RBPs that function through binding-mediated modifications
in target mRNA (Wollerton et al., 2001; Mitchell et al., 2003;
Auweter et al., 2007) to either recruit or block other trans-acting
factors. PTB has four RRM domains each with specific consensus
binding sequences that all bind stretches of pyrimidines (Sawicka

et al., 2008). Additionally, PTBs can shuttle between the nucleus
and the cytoplasm (Perez et al., 1997; Kamath et al., 2001; Li and
Yen, 2002). PTB proteins have been implicated in the regulation
of several RNA metabolism events including alternative splicing
(Garcia-Blanco et al., 1989), polyadenylation (Lou et al., 1999;
Castelo-Branco et al., 2004), mRNA stability (Wollerton et al.,
2004), and translation (Jang and Wimmer, 1990). In the pancreas,
PTB proteins have been shown to regulate insulin mRNA (human
INS and rodent Ins1 and Ins2) (Tillmar et al., 2002; Tillmar and
Welsh, 2002; Fred et al., 2010, 2011, 2016) and insulin secretory
granule biogenesis (Knoch et al., 2004, 2006). Specifically, the
binding of PTB to INS/Ins mRNA increases in response to
increased glucose and hypoxia (Tillmar et al., 2002; Tillmar
and Welsh, 2002; Fred et al., 2011). Mutations in the INS/Ins
3′UTR or decreases in PTB expression by RNAi both result in
decreased insulin and reporter expression respectively (Tillmar
et al., 2002; Fred et al., 2016). Furthermore, binding of PTB
to the 5′UTR of INS mRNA correspond to cap-independent
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TABLE 1 | RNA-Binding Proteins (RBPs) in the Pancreatic β Cell.

RBP Dysregulated condition β cell specific function References

AKAP17A Dysregulated under cytokine treatment NA Jeffery et al., 2019

AUF1 (hnRNP-D) Cytokine treatment reduces nuclear
AUF1 without decreases in total AUF1

Increased AUF1 promotes apoptosis Roggli et al., 2012; Vanzela and
Cardozo, 2012; Magro and Solimena,
2013

CELF1/CUGBP1 Increased expression in diabetic models Decreased GSIS by stabilizing PDE3B
mRNA which mediates cAMP
hydrolysis

Zhai et al., 2016; Nutter and
Kuyumcu-Martinez, 2018; Good and
Stoffers, 2020

DDX1 Decreased function under lipotoxicity Regulates alternative splicing of voltage
gaited Ca2+ channels and increases
insulin translation through interactions
translation initiation factors

Li et al., 2018; Zhong et al., 2018;
Good and Stoffers, 2020

FTO Decreased expression in T2D islets Controversial regulation of insulin
secretion

Kirkpatrick et al., 2010; Russell and
Morgan, 2011; Dayeh et al., 2014; Fan
et al., 2015; Taneera et al., 2015, 2018

hnRNPA2B1 Dysregulated under both high and low
glucose conditions, hypoxia, and
cytokine treatment

NA Jeffery et al., 2019

hnRNPK/DDX3X hnRNPK is phosphorylated and
activated under metabolic stress

Binds to JUND 3′UTR to regulate
translation

Good et al., 2019; Good and Stoffers,
2020

HuD (ELAVL4) ER stress increases expression, HuD
expression is glucose responsive and
reduced in diabetes

Increased nuclear HuD results in
decreased insulin biosynthesis, binds
the 5′UTR of Ins2 mRNA and
decreases Ins2 translation, regulates
ATG5 translation and Mnf2 stability

Lee et al., 2012; Magro and Solimena,
2013; Yoo, 2013; Kim et al., 2014;
Juan-Mateu et al., 2017; Hong et al.,
2020

IMP IMP3 dysregulated under lipotoxicity,
IMP2 SNPs associated with moderately
increased risk of T2D

NA Christiansen et al., 2009; Nutter and
Kuyumcu-Martinez, 2018; Jeffery et al.,
2019

LSM14A Dysregulated expression under low
glucose and cytokine treatment

NA Jeffery et al., 2019

Mushashi 1/2 ER stress increases expression of Msi1
and Msi2 and lipotoxicity increases
expression of Msi2

Musashi 1 regulates ββ cell proliferation
and both Musashi 1 and 2 decrease
insulin gene expression

Szabat et al., 2011; Magro and
Solimena, 2013

Nova 1/2 Decreased expression in cytokine
treated cells

Loss of NOVA1 results in decreased
insulin secretion and loss of either
NOVA1 or NOVA2 results in decreased
apoptosis

Villate et al., 2014; Juan-Mateu et al.,
2017

PDI/PABP NA PDI binds the 5′UTR of insulin mRNA to
promote insulin biosynthesis through
interactions with PABP, PDI/PABP
associate with insulin, PC1/3, and PC2
5′UTR to regulate translation, PABP
can also interact with HuD to suppress
insulin translation

Kulkarni et al., 2011; Magro and
Solimena, 2013; Sarwade et al., 2020

PNISR Dysregulated expression under low
glucose, hypoxia, and cytokine
treatment

NA Jeffery et al., 2019

PTBP1 (hnRNP1/PTB) hypoxia and prolonged high glucose
leads to decreased PTB1 expression

PTB binds both insulin mRNA and
insulin granule proteins to regulate
stability and translation

Tillmar et al., 2002; Tillmar and Welsh,
2002; Knoch et al., 2004; Knoch et al.,
2006; Fred et al., 2010, 2011, 2016;
Magro and Solimena, 2013

Rbfox NA Rbfox1 and Rbfox2 modulate insulin
secretion by regulating actin modifying
proteins

Juan-Mateu et al., 2017; Good and
Stoffers, 2020

RBM4 NA Regulates alternative splicing of key β

cell transcription factors (Isl1, Pax4,
Pax6, Glut2)

Lin et al., 2013; Magro and Solimena,
2013

SRSF 1/2/3/6 SRSF1/3/6 are dysregulated under low
glucose, SRSF3/6 are dysregulated
under hypoxia, SRSF1/2/3
dysregulated in response to cytokine
treatment

NA Jeffery et al., 2019
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translation of insulin mRNA (Fred et al., 2011). In addition to
changes in PTB binding, T-cell restricted intracellular antigen
1-related protein (TIAR) also increases binding to INS mRNA
during glucose stimulation (Fred et al., 2010). These proteins
cooperate to regulate INS mRNA stability and biosynthesis (Fred
et al., 2010). While cap-independent INS mRNA translation only
accounts for a small portion of total translation, it can contribute
40–100% of insulin biosynthesis during stress conditions (Fred
et al., 2011). In healthy β cells, transient increase in glucose levels
increases PTB binding to 3′UTR promoting mRNA stability and
5′UTR promoting modest levels of cap-independent translation.
However, prolonged high glucose exposure results in decreased
PTB protein and ultimately decreased insulin biosynthesis (Fred
et al., 2010). This is in part due to increased levels of miR-133a
which targets PTB mRNA and could explain the mechanism for
hyperglycemia-induced β cell dysfunction (Fred et al., 2010).

In addition to binding INS/Ins mRNA directly, PTB has been
shown to bind and regulate components of the insulin secretory
granules in response to changes in blood glucose levels. During
glucose stimulated insulin secretion (GSIS), newly synthesized
insulin granules preferentially undergo exocytosis (Gold et al.,
1982; Halban, 1982) and this 2010process is impaired in T2D.
New secretory granules are synthesized in response to glucose
stimulation in the β cell, partially through regulation of PTB.
Upon β cell stimulation (glucose or GLP-1), PTB is translocated
from the nucleus to the cytoplasm (Knoch et al., 2004, 2006),
where this process not only promotes stability of insulin mRNA
(as described above), but also increases the stability of several
insulin secretory granule proteins (Knoch et al., 2004). PTB
translocation results from phosphorylation by PKA downstream
of GLP-1 receptor and is cAMP-dependent (Knoch et al.,
2006). The activated and cytosolic PTB is then able to bind
and stabilize mRNAs that code for secretory granule proteins
with putative PTB binding sites in the 3′UTR. Furthermore,
knockdown of PTB by RNAi results in decreased expression of
target mRNAs and secretory granules (Knoch et al., 2004). Taken
together, glucose/GPL-1 dependent stimulation of β cells results
in cytoplasmic translocation of PTB where it can act to stabilize
insulin mRNA and components of the insulin secretory granule.
In light of these findings, it is evident that PTB expression and
activation represents a critical component in regulating GSIS.

Neuro-Oncological Ventral Antigens (NOVA1, NOVA2)
The Neuro-oncological ventral antigens (NOVA) are a family of
two RBPs (NOVA1 and NOVA2) that account for approximately
700 alternative splicing events in neurons (Ule et al., 2005,
2006; Licatalosi et al., 2008; Zhang et al., 2010) and have been
implicated in regulating alternative polyadenylation (Licatalosi
et al., 2008). Both NOVA proteins bind to YCAY consensus
sequences in target mRNAs through three hnRNPK-homology
(KH)-type RNA binding motifs (Buckanovich and Darnell, 1997;
Yang et al., 1998; Jensen et al., 2000). The positions of NOVA
binding relative to the alternative splice site determines exon
inclusion versus exclusion; exon inclusion is correlated with
NOVA downstream binding (Ule et al., 2006; Zhang et al., 2010).
Both NOVA1 and NOVA2 are expressed in the pancreatic β cell
(Villate et al., 2014; Juan-Mateu et al., 2017) and in vitro studies

suggest they contribute to alternative splicing (Eizirik et al., 2012;
Villate et al., 2014; Juan-Mateu et al., 2017). Knockdown of Nova1
by RNAi in FACS-purified rat β cells resulted in changes in
alternative splicing of 4961 isoforms and impaired GSIS (Villate
et al., 2014). In INS-1E cells and MIN6 cells, knockdown of Nova1
disrupts insulin secretion through changes in alternative splicing
of key exocytosis factors PLCβ1 and Snap25, and decreases in
voltage-dependent Ca2+ current (Villate et al., 2014). NOVA1
has also been shown to regulate alternative splicing of the
insulin receptor (INSR), suggesting that NOVA1 is required to
promote exon 11 inclusion and expression of the INSR-B form
of the receptor (Villate et al., 2014). Additionally, NOVA1 has
been implicated in T1D and cytokine-induced apoptosis (Eizirik
et al., 2012; Villate et al., 2014). In both cytokine-treated β

cells and Nova1 knockdown β cells, apoptosis increases through
the upregulation of pro-apoptotic protein, Bim (Barthson et al.,
2011; Villate et al., 2014). Similarly, Nova1 is decreased in
β cells treated with cytokines (Villate et al., 2014). Bim is
regulated by FOXO3a, however phosphorylation of FOXO3a
inhibits it’s function (Sunters et al., 2003; Zhang et al., 2011).
In Nova1 knockdown β cells, FoxO3a expression is increased
but phosphorylation is decreased, allowing for the subsequent
upregulation of Bim. Similarly, NOVA2 has been shown to
regulate β cell survival. NOVA2/Nova2 knockdown in INS-1E,
EndoC-βH1, and sorted rat β cells resulted in increased apoptosis
(Juan-Mateu et al., 2017). Together these studies have identified
several roles for NOVA RBPs in the function and survival of
pancreatic β cells.

RNA Binding FOX Homologue (RBFOX1, RBFOX2,
RBFOX3)
The RBFOX family of RBPs contains three highly conserved
members – RBFOX1, RBFOX2, and RBFOX3. RBFOX RBPs
all contain an RRM that recognizes the specific (U)GCAUG
sequence in target mRNAs to promote alterative splicing and
other RNA metabolic functions (Jin et al., 2003; Ponthier
et al., 2006). Rbfox2 is nearly ubiquitously expressed across
cell types and throughout development, whereas Rbfox1 and
Rbfox3 are considerably more cell type specific or only transiently
expressed. The functions of the RBFOX proteins have been
studied primarily in neurons and muscle tissue, and their activity
is often required for development and maturation of these cell
types (Gehman et al., 2012; Wei et al., 2015; Jacko et al., 2018).
During pancreas development, scRNA-Seq reveals that Rbfox2 is
detectable throughout the embryonic (E15.5 and E18.5) mouse
pancreas and hESC-derived pancreatic endocrine cells (Krentz
et al., 2018). This dataset also shows that Rbfox3 appears to be
transiently expressed specifically within the Neurog3+ endocrine
progenitor population at E15.5 (Krentz et al., 2018). Rbfox1 is
not detectable in embryonic E15.5 or E18.5 mouse pancreas
or within the hESC-derived endocrine cells (Krentz et al.,
2018). Similarly in the adult pancreas, RNA-Seq on intact islets
revealed high expression of Rbfox2; whereas Rbfox1 and Rbfox3
were barely detectable. Further analysis of the individual sorted
mouse endocrine cells determined that Rbfox2 is expressed in
α, β, and δ cells; with its highest expression in the β cell
population (DiGruccio et al., 2016). Within this dataset, Rbfox1
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is undetectable in any of the endocrine populations, whereas
Rbfox3 expression can be found in δ cells. Consistently, scRNA-
Seq in adult islets show that the majority of endocrine cells
express Rbfox2, whereas Rbfox3 is predominantly restricted to
δ cells and Rbfox1 is undetectable (DiGruccio et al., 2016; The
Tabula Muris Consortium et al., 2018). Consistent with the mouse
studies, bulk sequencing of human islets and other human tissues
identified expression of both RBFOX2 and RBFOX3, but not
RBFOX1 in whole islets (Juan-Mateu et al., 2017). Paradoxically,
this group proceeded to knockdown Rbfox2 and Rbfox1 in rat
INS1-E cells and suggested that both proteins regulate insulin
content and insulin secretion through the alternative splicing
of genes involved in actin regulation (Juan-Mateu et al., 2017).
It is possible that there will be redundant functions of the
highly conserved Rbfox family of RBPs in endocrine cells;
however, it remains to be determined how their coordinated,
transient and/or compensatory expression impacts endocrine cell
development and function in disease states.

Serine/Arginine (SR)-Rich Proteins (SRSF1, SRSF3,
SRSF6)
The serine/arginine (SR)-rich proteins are a large family of RBPs
characterized by their serine/arginine rich domain and an RRM
(Shepard and Hertel, 2009). SR proteins are involved in several
aspects of RNA metabolism including both constitutive and
alternative splicing events (Zhou and Fu, 2013). SR proteins can
interact with core components of the spliceosome (U1 and U2
snRNPs) to promote or inhibit splice site usage. Additionally, SR
proteins function in regulating mRNA transport and translation
(Zhong et al., 2009). While the function of SR proteins in other
cell types and systems have been reviewed extensively (Shepard
and Hertel, 2009; Zhong et al., 2009; Zhou and Fu, 2013),
relatively little is known about their role in β cells.

Nearly all members of the SR protein family are expressed
in the mouse pancreas (The Tabula Muris Consortium et al.,
2018) and several of these SR proteins become dysregulated
in diabetes (Jeffery et al., 2019). In pancreatic endocrine cells,
several SRSF proteins interact with the long non-coding RNA
Paupar to influence the alternative splicing of Pax6 to confer
differential genomic binding of the PAX6 transcription factor
(Kiselev et al., 2012; Singer et al., 2019). β cells express a higher
ratio of the shorter PAX6 isoform lacking the 5a exon while α

cells predominantly express the longer PAX6 5a isoform (Singer
et al., 2019). Together, the differential expression in healthy vs.
diabetic endocrine cells and function of SR proteins in mediating
transcription factor function make SR proteins an interesting
candidate for evaluating the role of RBPs in the onset of diabetes.
Of note, the only functional studies of this family of RBPs have
been on SRSF3 and many of the SR proteins themselves undergo
cell type specific and stress induced alternative splicing, leaving
extensive opportunity to evaluate their β cell specific functions in
healthy and diabetic states.

Changes in RNA Regulation During
Diabetes
Until recently, attempts to identify the genetic causes of T1D
and T2D have predominantly relied on GWAS to identify

single nucleotide polymorphisms (SNPs) and associated gene
expression changes that could contribute to disease. Although
these approaches have successfully identified a number of
causative candidate alleles, they overlook altered splicing events
that may affect gene function rather than expression levels.
Furthermore, it is now apparent that differences in co- and
posttranscriptional processing such as alternative splicing and
N6-methyladenosine (m6A) modifications, can more effectively
differentiate between T2D β cells than transcriptomics alone
(De Jesus et al., 2019).

Alternative Splicing
Messenger RNA splicing occurs co-transcriptionally to remove
introns from the pre-mRNA. This process is carried out by
the spliceosome and is coordinated by a series of RBPs. In
addition to removing introns, splicing machinery can also vary
mRNAs through alternative exon and splice site usage, referred
to as alternative splicing. Over 90% of human genes undergo
alternative splicing, which more than quadruples the number
of potential gene products (Fairbrother et al., 2002; Johnson
et al., 2003). Recent work comparing transcriptomes of T2D
diabetic and healthy donors identified dysregulation of 26%
of alternative splicing events (Jeffery et al., 2019). The highest
proportion of alternatively spliced genes in this study function in
gene regulation. For example, the authors observed dysregulation
of the alternative splicing regulators such as SRSF RBPs, which
could each regulate hundreds of splicing events within the β cell.
Stress induction of the EndoC-βH1 β cell line supported findings
from human diabetic islets, showing a decrease in splicing
regulators. Moreover, removal of the stress restored splicing
factor expression and changes in transcriptome wide splicing
events. Additionally, in a model of T1D, cytokine exposure of
FAC sorted rat β cells resulted in differential expression of more
than 20 RBPs involved in alternative splicing and changes in
alternative splicing of cytokine regulated genes (Ortis et al., 2010).
These groups all suggest that changes in the splicing landscape
as well as changes in β cell differentiation markers, may be a
mechanism of stress response to avoid apoptosis during the onset
of diabetes, making the study of alternative splicing regulation in
the β cell critical for not only understanding the pathogenesis of
the disease but also in designing innovative treatment plans.

The onset of T2D and accelerated dysfunction of β cells has
also been attributed to many environmental factors, including
the disruption of circadian sleep/wake cycles (Gale et al.,
2011). Although the disruption of circadian sleep/wake cycles
has traditionally been associated with mRNA oscillations, a
recent study implicates the RBP Thyroid Hormone Receptor-
Associated Protein3 (THRAP3) as a regulator of alternative-
splicing. This study demonstrated that THRAP3 regulated
circadian clock-dependent alternative splicing by binding to
and regulating alternative splicing of key exocytosis factors
(Marcheva et al., 2020).

In addition to transcriptome wide changes in alternative
splicing, several groups have explored the alternative splicing
of specific genes involved in β cell development, function,
and survival. Of note, several Maturity Diabetes of the Youth
(MODY) and T2D associated genes such as HNF-1α, GCK, and
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TCF7L2 have splicing variants (Prokunina-Olsson et al., 2009).
While TCF7L2 isoforms are not significantly altered in T2D
(Prokunina-Olsson et al., 2009), both HNF-1α and GCK diabetes
associated alleles result in alternative splicing variation (Cappelli
et al., 2009; Lorini and D’Annunzio, 2009), and isoforms of
HNF-1α are associated with differential efficiency in insulin
gene regulation (Harries et al., 2006; Cappelli et al., 2009).
T2D associated alterations in alternative splicing of HNF-1α and
several other β cell genes are also reviewed by Dlamini et al.
(2017). Based on recent findings in large transcriptomic analyses,
this field is likely to grow dramatically.

m6A RNA Methylation
N6-methyladenosine (m6A) methylation is one of the most
prevalent post-transcriptional RNA modifications and is
regulated by a set of RNA-binding proteins – writers, readers,
and erasers (Figure 1; Zhang et al., 2019). These modifications
are introduced by a group of specialized methyltransferases
(“writers”) including METTL3 and METTL14. The m6A
modifications can confer differential stability, changes in
alternative splicing, subcellular localization, and translation
efficiency (Zhang et al., 2019). The m6A modifications are
often bound by a group of RBPs called readers to perform these
differential functions. Finally, a third group of RBPs, including
FTO (Fat Mass and Obesity-associated gene), are referred to as
erasers and can remove m6A marks. A recent review by Zhang
et al. (2019) details the current knowledge on mechanism and
function of m6A methylation.

With respect to the β cell, a recent publication by De Jesus
et al. (2019) describes the differential m6A methylation observed
in T2D. RNA-Seq analysis and fluorescent labeling of human
T2D islets compared to healthy controls revealed differential
expression of key m6A modulators (METTL3, METTL14,
ALKBH5, and YTHDF1). This finding was supported by an
independent study showing decreased Mettl3/14 expression in
diabetic db/db mice and type 2 diabetes patients (Wang et al.,
2020). The decreased expression of m6A writers (METTL3 and
METTL14) resulted in differential methylation of 6,078 sites in
4,155 genes (FDR < 0.05). The hypomethylation of genes in
the T2D islets are associated with cell-cycle progression, insulin
secretion, and the insulin/IGF-AKT-PDX1 pathway. This study
also replicated T2D phenotypes and the m6A methylome in
METTL3 or METTL14 deficient EndoC-βH1 cells and Mettl14
β-cell-specific knockout mice. Another group generated a similar
β cell specific knockout of Mettl14 in mice and observed that
these mice display glucose intolerance, decreased GSIS and
decreased β cell mass due to β cell death under normal conditions
(Liu et al., 2019). These phenotypes are exaggerated in mice fed
a high fat diet (Liu et al., 2019). Together these studies indicate
a role for METTL14 and m6A modifications in the function and
survival of β cells.

In the context of pancreas development, m6A writers
(METTL3/14) are critical for β cell expansion and maturation but
appear to be dispensable for the differentiation and maturation
of other endocrine cell types (Wang et al., 2020). Wang et al.
(2020) also showed that in the developing pancreas loss of
Mettl3 or Mettl14 from endocrine progenitors independently
results in hyperglycemia around weaning, but that loss of both

methyltransferases results in significant hyperglycemia and hypo-
insulinemia by 2-weeks of age. This functional defect is in part
due to decreased proliferation and increased cell death, similar to
what had been observed in the previously described β cell specific
knockout mice. Additionally, using RNA-Seq and m6A Me-RIP-
Seq, the authors concluded that Mettl3/14 directly regulates the β

cell maturation factor, MAFA, to promote stability. Other groups
have also studied the effects of m6A modifications, particularly
in adipogenesis, that could contribute to the pathogenesis of T2D
(Gerken et al., 2007; Chu et al., 2008; Ben-Haim et al., 2015; Shen
et al., 2015; Wood et al., 2016).

As a counterpoint to the m6A writers METTL3/14, FTO
is an m6A eraser. FTO is expressed in a variety of cell
and tissue types including endocrine cells (Taneera et al.,
2015; DiGruccio et al., 2016; The Tabula Muris Consortium
et al., 2018). Whole body knockouts and nervous system
specific knockouts of Fto in mice result in postnatal growth
deficiencies (Gao et al., 2010), however, its specific function
in β cells is debated. In T2D human islets, FTO expression
is reduced (Kirkpatrick et al., 2010; Taneera et al., 2018)
and the FTO gene has decreased DNA methylation (Dayeh
et al., 2014). Several groups have investigated the functional
role of FTO in pancreatic islets using different experimental
models. Overexpression of FTO in rat INS-1 cells appeared to
affect first wave insulin secretion (Russell and Morgan, 2011),
whereas overexpression in mouse MIN6 cells resulted in the
inhibition of GSIS without changes in insulin gene expression
(Fan et al., 2015). Given the discrepant results of these studies,
in addition to the caveats associated with overexpression studies,
perhaps the more relevant functional assessment was the use
of siRNA knockdown to deplete FTO in an engineered human
insulin secretion reporter rat β cell line (GRINCH) (Taneera
et al., 2018). In these experiments, depletion of FTO resulted
in decreased insulin mRNA expression and insulin secretion
(Taneera et al., 2018).

While these emerging studies are beginning to highlight
the relevance of m6A RNA methylation in β cell function,
and the potential contribution of alterations in this RNA
modification to the onset of diabetes, the underlying mechanism
and direct targets of m6A methylation and demethylation that
contribute to the observed functional changes have yet to be
determined. Future studies of the islet cell-specific changes in
RNA modifications that result from defects in the m6A pathway
will provide critical new information about the regulation of islet
function in normal and disease conditions.

DISCUSSION

Traditionally, endocrine cells have been molecularly defined
by their cell-specific transcriptomes. Furthermore, validation
of human diabetes GWAS studies have relied primarily on
gene expression changes associated with disease. More recently,
however, large scale high-throughput sequencing efforts have
revealed the previously unappreciated importance of co- and
post-transcriptional RNA regulation in the specification and
function of differentiated cells. These high-resolution sequencing
technologies have not only identified changes in expression
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levels, they have unveiled numerous RNA modifications and
alternative splicing events within each of the islet endocrine
cell populations and in individual β cells. This discovery
has prompted investigation into the many RBPs that are
expressed in the pancreatic islet and those that become
dysregulated in β cells undergoing stress conditions that mimic
diabetes (Table 1). Each of these RBPs can have hundreds
of targets and affect multiple pathways within a cell in both
physiological and pathophysiological conditions (Keene, 2007;
Hogan et al., 2008; Lukong et al., 2008; Blanchette et al.,
2009; Li et al., 2014), making their potential impact on
cellular identity and function pervasive. This also implies
that there are many more layers of regulation in the β cell,
particularly mediated by RBPs, that have yet to be explored.
The knowledge gained from understanding regulation of
β cell development and function at the level of mRNA
modifications could be immensely useful to optimize protocols
to generate insulin-secreting β-like cells from human stem
cells (Hrvatin et al., 2014), which is currently a promising
method of replacing β cell loss in T1D. Furthermore,
characterization of dysregulated splicing events could open
therapeutic opportunities to correct specific mRNAs using
antisense oligonucleotide (ASO) technologies. ASOs are
small synthetic nucleotide sequences that can target specific
mRNA transcripts to target and eliminate anomalous splice
variants (Schoch and Miller, 2017). Treatment with ASOs has
become increasingly promising for treating neurodegenerative

diseases (Schoch and Miller, 2017) and could be an innovative
mechanism to correct aberrant splicing defects occurring in
T2D β cells. Overall, the study of RBPs and RNA modifications
are primed to be the next frontier of mechanisms that
regulate β cell formation, function, and in the development of
novel therapeutics.
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