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Abstract

Purpose: To investigate the effect of an intravitreally administered CCR2 antagonist, INCB3344, on a mouse model of
choroidal neovascularization (CNV).

Methods: CNV was induced by laser photocoagulation on Day 0 in wild type mice. INCB3344 or vehicle was administered
intravitreally immediately after laser application. On Day 14, CNV areas were measured on retinal pigment epithelium (RPE)-
choroid flat mounts and histopathologic examination was performed on 7 mm-thick sections. Macrophage infiltration was
evaluated by immunohistochemistry on RPE-choroid flat mounts and quantified by flow cytometry on Day 3. Expression of
vascular endothelial growth factor (VEGF) protein in RPE-choroid tissue was examined by immunohistochemistry and ELISA,
VEGF mRNA in sorted macrophages in RPE-choroid tissue was examine by real-time PCR and expression of phosphorylated
extracellular signal-regulated kinase (p-ERK 1/2) in RPE-choroid tissue was measured by Western blot analysis on Day 3. We
also evaluated the efficacy of intravitreal INCB3344 to spontaneous CNV detected in Cu, Zn-superoxide dismutase (SOD1)
deficient mice. Changes in CNV size were assessed between pre- and 1week post-INCB3344 or vehicle administration in
fundus photography and fluorescence angiography (FA).

Results: The mean CNV area in INCB3344-treated mice decreased by 42.4% compared with the vehicle-treated control mice
(p,0.001). INCB3344 treatment significantly inhibited macrophage infiltration into the laser-irradiated area (p,0.001), and
suppressed the expression of VEGF protein (p = 0.012), VEGF mRNA in infiltrating macrophages (p,0.001) and the
phosphorylation of ERK1/2 (p,0.001). The area of spontaneous CNV in Sod12/2 mice regressed by 70.35% in INCB3344-
treated animals while no change was detected in vehicle-treated control mice (p,0.001).

Conclusions: INCB3344 both inhibits newly forming CNV and regresses established CNV. Controlling inflammation by
suppressing macrophage infiltration and angiogenic ability via the CCR-2/MCP-1 signal may be a useful therapeutic strategy
for treating CNV associated with age-related macular degeneration.
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Introduction

Age-related macular degeneration (AMD) is the leading cause of

legal blindness among elderly people in developed countries [1].

The majority of these patients with severe vision loss have retinal

damage by choroidal neovascularization (CNV) [2], which is the

hallmark of wet AMD and is defined as new blood vessels arising

from choriocapillaris and extending into the sub-retinal pigment

epithelium (sub-RPE) [3], sub-retinal space, or both. Although the

pathogenesis of CNV is not completely understood, inflammatory

processes, especially the infiltration of inflammatory cells, are

recognized as an important mediator of CNV formation [4].

Macrophage accumulation in the CNV area and expression of

angiogenic cytokines, such as vascular endothelial growth factor

(VEGF) are involved in CNV formation [5–10]. Moreover, in

mice depleted of macrophages, CNV is reduced and VEGF

production is decreased [11], [12], which suggests a role for

macrophages as producers and regulators of angiogenic factors in

the pathogenesis of CNV.

The chemokine receptor CCR2 and its ligand, monocyte

chemoattractant protein-1 (MCP-1; also known as CCL2)

represent a critical signaling pathway responsible for the

recruitment of monocyte-macrophages [13–16]. MCP-1 expres-

sion is not detectable [2], [17] or very low [18] in healthy young

adult mice, but is found in high concentrations in the eyes of CNV

bearing mice with the infiltration of macrophages [2], [17], [19],

[20]. Recent studies also demonstrate an association between

elevated urinary MCP-1 level and AMD [21], and the intraocular
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elevation of MCP-1 in AMD patients with CNV [22]. Mice

deficient in CCR2 or MCP-1, have a marked impairment in

macrophage influx into sites of inflammation [23–25] and are

protected from inflammatory diseases in a range of animal models

[26]–[][][29]. The reduction in the number of infiltrating

macrophages and the following amelioration of CNV formation

also occurs in CCR2 KO mice [16] or MCP-1 KO mice [30].

Therefore, the inhibition of macrophages by blockage of the

CCR2/MCP-1 signal has emerged as a novel therapeutic target

for CNV treatment.

Recently, INCB3344, a potent and selective small molecule

antagonist of CCR2, was discovered and was demonstrated to

have a high ability to compete with MCP-1 [26]. INCB3344

rapidly binds both rodent [26] and human CCR2 [27] with a high

affinity, inhibits CCR2 binding to MCP-1, and blocks MCP-1-

induced signaling and functioning in CCR2-expressing cells.

Blocking the CCR2/MCP-1 signal by INCB3344 suppresses

macrophage recruitment and attenuates the signs and symptoms

of a variety of inflammatory diseases such as peritonitis, delayed-

type hypersensitivity, experimental autoimmune encephalomyeli-

tis, atherosclerosis, arthritis and thermal hyperalgesia in animal

models [26], [28], [29]. All of these lines of evidence suggest that

INCB3344 acts as an effective and ideal tool for treating

inflammatory diseases. Given the close relationship between

inflammation and neovascularization, we hypothesized that

INCB3344 might be of therapeutic value in treating CNV. In

this study, we administered INCB3344 to mouse models with

different phases of CNV to determine whether this compound has

the ability to suppress and regress CNV. We also investigated the

possible molecular mechanism of INCB3344 involved in CNV

formation.

Materials and Methods

Animals
Male wild-type C57BL/6 mice (Charles River, Japan) 8 weeks

of age were used as the laser induced CNV mouse model. Cu, Zn-

superoxide dismutase (SOD1)-deficient mice with a C57BL/6

background (Jackson Laboratory, U.S.A.) were generated as

described [24] and used as an established CNV model. Anesthesia

was induced by peritoneal injection of 50 mg/kg ketamine HCl

(Sankyo, Tokyo, Japan) and 10 mg/kg xylazine (Bayer, Tokyo,

Japan), and the pupils were dilated with topical 1% tropicamide

(Santen, Osaka, Japan). The animals were cared for in accordance

with the Association for Research in Vision and Ophthalmology

(ARVO) Statement for the Use of Animals in Ophthalmic and

Vision Research. All animal experiments were carried out in

accordance with a protocol approved by the Institutional Animal

Care and Use Committee of Osaka University (#20–094-0).

Laser induced CNV and drug treatment
Laser photocoagulation (514 nm Argon laser, 130 mW, 100 ms

duration, 75 mm spot size; Ultima 2000 SE, Lumenis/Coherent,

Palo Alto, CA, USA) was performed bilaterally in each wild-type

C57BL/6 mouse. Laser spots were applied in a standard fashion

around the optic nerve using a slit lamp delivery system (Carl

Zeiss, Germany) and using a handheld cover slip as a contact lens.

Only burns that produced a bubble, indicating rupture of the

Bruch membrane, were included in the study.

INCB3344 (PF-418725, MW577.6) was supplied by Pfizer (New

York, USA) and shown to be safe to the mouse retina at

concentrations of zero-1800 nM in previous toxicity experiments

(Data not be shown here). Here, we selected the highest dose of

INCB3344 (1800 nM) in the safe range in our experiment.

Immediately after laser photocoagulation, mice were randomized

into two groups and received intravitreal injections of 1 ml

INCB3344 (1800 nM) or 1 ml vehicle (dimethyl sulfoxide dissolved

in phosphate buffered saline, PBS). Intravitreal injection was

performed with the FemtoJet Microinjector System (Eppendorf,

Germany) under a high magnification stereomicroscope (Leica

MS5, Germany).

Histological examination
For histological examination, 3 mice in each group were

sacrificed on Day 14 after the treatments. The eyes were

enucleated and fixed with 4% PFA for 1 hour at 4uC. After

removing the anterior segment, the eyecups were fixed again in

4% PFA overnight, dehydrated in 30% sucrose for 6 hours, and

then embedded in Tissue-TekH O.C.T. Compound (Sakura

Finetek, Japan). The eyecups were sectioned into 7 mm-thick

slices and stained with haematoxylin and eosin. Sections were

examined using an Olympus BX50 microscope (Olympus, Japan),

and images were digitalized using an Axiocam HRc camera and

Axiovision version 3.1 image capture software (Carl Zeiss,

Germany).

Measurement of laser-induced CNV size
On Day 14 after laser photocoagulation, the sizes of CNV

lesions were measured on RPE-choroid flat mounts by a similar

method to that described previously [31]. In brief, mice were

deeply anaesthetized and perfused with 1 ml of phosphate-

buffered saline containing 50 mg/ml fluorescein-labelled dextran

(#FD2000S-1G, Sigma, MO, USA). Then mice were sacrificed

humanely, and the eyes were enucleated and fixed in 4%

paraformaldehyde (PFA) for 1 hour. The anterior segment of the

eye was cut off, and the vitreous and the entire retina were

carefully removed from the eyecups. Four or five radial cuts in the

remaining RPE-choroid-sclera were made from the edge to the

equator, and the eyecups were flat-mounted in PermaFluorTM

Aqueous Mounting Medium (Thermo, USA) with the retinal

pigment epithelium (RPE) layer facing up. Those flat mounts were

examined and recorded by the same microscope as before. 78

spots from 14 vehicle treated mice and 81 spots from 14

INCB3344 treated mice were examined, excluding eyes with

hemorrhages. Image J for Windows (NIH, Bethesda, Maryland)

analysis software was used to measure the area of CNV, with the

operator blinded with respect to treatment groups.

Immunohistochemistry of macrophages and VEGF
To investigate possible cellular and molecular responses to

INCB3344 administration to the CNV model, we examined the

status of macrophages and related angiogenic cytokines. After laser

photocoagulation, 3 mice in each group were sacrificed and eyes

were enucleated on Day 3, and 7 mm cryosections were prepared

for immunohistochemistry. The protocols for preparing the

cryosections here were almost the same as those mentioned

previously, except that the fixation time was shortened to 6 hours.

The cryosections were blocked with 5% bovine serum albumin

(BSA) for 1 hour at room temperature. Primary antibodies against

mouse F4/80 (1:500, Catalog No. BM40075, Monoclonal Anti-

body to Mouse Macrophages: F4/80, Acris, Germany) and mouse

VEGF (1:200, Catalog No. ab46154, Rabbit polyclonal to VEGF,

Abcam, USA) were incubated overnight at 4uC. Those slides

omitting primary antibodies were used as negative control. After

three washes in PBS, the slides were incubated with fluorescent–

tagged secondary antibodies (Alexa-Fluor 488 and Alexa-Fluor

546; Invitrogen, Carlsbad, CA) and DAPI for 1 hour at room
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temperature. Sections were washed again and mounted in

mounting medium and coverslipped.

Macrophages were also detected by F4/80 antibody in the

choroid-RPE flat mounts on Day 3. All the procedures were

performed at 4uC. In brief, 3 mice in each group were sacrificed

and the eyes were enucleated and fixed with 4% paraformalde-

hyde for 30 minutes. Then washed three times in PBS, followed by

dehydration and rehydration through a methanol series (40%,

80%, 100%, 80%, 40%). Washing again, eye cups were obtained

by removing the anterior segments. After blocking with 5% BSA

for 1 hour, eye cups were incubated 48 hours with F4/80

antibody. After five washings with PBS (1 hour each time), the

eyecups were incubated with Alexa 546–tagged secondary

antibodies and DAPI overnight. The eyecups were washed again

and flat-mounted as previously mentioned. These slides were

examined under a fluorescence microscope (AX80; Olympus,

Tokyo, Japan).

Flow cytometry of macrophages
In order to quantify the number of macrophages, eyes were

enucleated on Day 3. The RPE-choroid complexes were separated

and disrupted with a sharp micro-scissor into small pieces. Then

they were treated with collagenase D (2 mg/mL, Roche,

Germany) on a Bio-shaker at 37uC for 1 hour. After that, they

were filtered, and the single-cell suspensions were incubated in Fc

block (1:100, Catalog No. 14-0161, eBiosciences, USA) for

15 minutes on ice, then stained with FITC-conjugated anti-mouse

F4/80 (1:30, Catalog No. 11-4801, eBiosciences, USA) or FITC-

conjugated isotype (1:100, Catalog No. 11-4321, eBiosciences,

USA). Live cells were detected by gating on forward versus side

scatter [4], followed by analysis of F4/80 in the fluorescence

channel (FACSCalibur; BD Biosciences, USA). At least 50,000

viable cells were analyzed per condition. Data were analyzed by

the system software (Cellquest software; BD Biosciences, USA). A

total of 5 mice were examined per group. The number of ocular-

infiltrating macrophages was calculated from the percent of each

population in the gate of the precounted, total number of viable

cells using trypan blue dye exclusion.

Macrophage sorting and quantitative real-time PCR
analysis (qPCR) of VEGF

For macrophage sorting, eyes were enucleated on Day 3. Single

cells were isolated and stained as the described above. Cells

showing FITC-F4/80 signals were collected by a FACSAria flow

cytometer (BD Biosciences, USA) with FlowJo software (Tree Star.

OR, USA).

Total RNA was extracted from sorted macrophages in each

group using the RNeasy Plus Mini kit (Catalog No. 74134 Qiagen,

Valencia, CA) and transcribed into cDNA using ExScript RT

reagent kit (Takara Bio, Otsu, Shiga, Japan) according to the

manufacturer’s protocol. Real-time PCR analysis was performed

by Platinum SYBR Green qPCR SuperMix-UDG (Catalog

No. 11733-038, Invitrogen, Carlsbad, CA). The reaction was

carried out for 40 cycles of 15 seconds at 95uC and 1 minute at

60uC after an initial incubation at 95uC for 10 minutes. The levels

of PCR products were monitored with the Mx3000P QPCR

System (Stratagene, USA). The baseline and threshold were

adjusted according to the manufacturer’s instructions. The relative

abundance of transcripts was normalized using either the

expression level of GAPDH mRNA or VEGF-A mRNA by DDCt

method. Three individual gene-specific values thus calculated were

averaged. The primers used in this experiment are as follows-

Mouse VEGF-A: sense 59-AGCCGAGCTCATGGACGGGT-39

and antisense 59-AGTAGCTTCGCTGGTAGACATC-39; Mouse

GAPDH: sense 59-TGGCAAAGTGGAGATTGTTGCC-39 and

antisense 59-AAGATGGTGATGGGCTTCCCG-39. At least 8

eyes were needed to obtain a sufficient number of enriched

macrophages for qPCR analysis in the above process.

Enzyme-linked immunosorbent assay (ELISA) of VEGF
To quantify VEGF protein levels, the RPE-choroid complexes

were micro-surgically isolated from the eyes on Day 3, and placed

immediately into 100 ml RIPA buffer (R0278, Sigma) supple-

mented with 1% Protease inhibitor cocktail (P8340, Sigma) at 4uC.

After mechanical disruption, lysates were placed on ice for

15 minutes, and centrifuged at 14,000 rpm for 10 minutes at

4uC. The supernatants were collected and preserved at 270uC.

Protein concentrations were determined by Coomassie Bradford

Protein Assay Kit (Catalog No. 23200, Pierce, USA). The VEGF

levels in the supernatant were determined by mouse VEGF ELISA

kit (Quantikine; R&D Systems) at 450 nm to 570 nm, with an

absorption spectrophotometer (ARVOTM MX 1420 multilabel

counter, PerkinElmer, Kanagawa, Japan), and normalized to total

protein, according to the manufacturer’s protocols. Two eyes were

needed to extract one protein sample, and eight mice in each

group were examined.

Western blot analysis of ERK phosphorylation
To determine whether INCB3344 treatment affected the MAPK

signaling pathway in the laser-induced CNV model, the activation

of ERK1/2 was assayed by ERK1/2 phosphorylation in the

choroid-RPE complex using western blot analysis on Day 3. The

protein extraction and the calculation of protein concentration were

the same as the ELISA protocols. Eight mg of the total protein per

sample was diluted with Laemmli Sample Buffer (Catalog No. 161-

0737, Bio-Rad, CA), heated at 95uC for 5 min, separated by SDS-

PAGE (Multigel?Mini, Cosmo Bio, Tokyo, JP), and electroblotted

onto polyvinylidene fluoride membrane (PVDF, GE Healthcare,

Buckinghamshire, UK). After blocking with 2.5% skim milk for

1 hour at room temperature, the membranes were incubated with a

rabbit polyclonal anti-phospho-ERK antibody (1:2000, Catalog

No. 4370, Cell Signaling, Danvers, Massachusetts), a rabbit

polyclonal anti-ERK to detect total ERK protein (1:1000, Catalog

No. 4695, Cell Signaling), or anti-GAPDH (14C10) (1:1000,

Catalog No. 2118, Cell Signaling) over night at 4uC. After washing

with 0.1% Tris-buffered saline (TBS)-Tween, blots were incubated

with horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG

(1:2500, Catalog No. 7074, Cell Signaling) for 1 h at room

temperature. The blots were then washed three times with 0.1%

TBS-Tween and the signals were visualized by an ECL kit (GE

Healthcare, Buckinghamshire, UK) according to the manufactur-

er’s protocol. The densities of immunoreactive bands were

measured using Image J for Windows (NIH, Bethesda, Maryland).

Eight mice in each group were examined.

Effects on established CNV
We also evaluated the effect of INCB3344 on already

established CNV as well as laser-induced, newly formed CNV.

Spontaneous CNV was detected in 10–14 months old Sod12/2

mice by fundus photography and fluorescence angiography (FA)

using a digital camera (CCD Color Video Camera, Sony, Japan)

and recorded by IMAGEnet 2000 Digital Image System (Topcon,

Japan). The fluorescein sodium solution (10%; 0.1 ml/kg;

Fluorescite; Alcon, Fort Worth, TX) was injected into the

intraperitoneal cavity of the mice. CNV was defined as present

when early hyperfluorescence with late leakage was present at the

site of dyed lesion during fundus examination. To evaluate drug

treatment, 6 Sod12/2 mice with CNV received intravitreal

CCR2 Blocker Inhibits Choroidal Neovascularization
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Figure 1. Effect of INCB3344 on CNV formation. (A) Haematoxylin–eosin-stained light micrograph of CNV lesions on Day 14 after laser
photocoagulation. Each photograph shows the central area of CNV lesions in vehicle-treated or INCB3344-treated mice. Scale bar = 100 mm. (ILM:
internal limiting membrane; NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer plexiform
layer; ONL: outer nuclear layer; IS: inner segment; OS: outer segment; RPE: retinal pigment epithelium; C: choroid; S: sclera). (B) Representative
micrographs of CNV lesions in the choroid-RPE flat mounts from laser-induced CNV in mice treated with vehicle or INCB3344. CNV areas were

CCR2 Blocker Inhibits Choroidal Neovascularization
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injections of 1 ml INCB3344 (1800 nM), and 7 Sod12/2 mice with

CNV received intravitreal injections of 1 ml vehicle. Fundus

photography and FA were performed pre- and 1-week-post-

treatment. Angiograms were obtained 5 min after the injection of

fluorescein sodium solution, and the area of the CNV lesion was

measured three times and averaged using Image J for Windows

(NIH, Bethesda, Maryland).

Statistical analysis
Results are expressed as the mean 6 SE with n as indicated.

Student’s t test and one-way ANOVA was used for statistical

comparison between two or three groups. Differences between

the means were considered statistically significant at values of

P,0.05.

Results

Histological evaluation and quantitative assessment of
laser-induced CNV

Histopathologic analysis showed that the CNV lesions in

INCB3344-treated mice were smaller in diameter compared with

those in vehicle-treated mice. Both groups had areas of fibro-

Figure 2. Macrophages detected by immunohistochemistry of choroid-RPE flat mounts and flow cytometry. (A) Immunohistochem-
istry of macrophages in choroid-RPE flat mounts on Day 3. After photocoagulation, a large number of macrophages accumulated at the laser injury
sites. INCB3344 suppressed this increase. Scale bar = 100 mm. (B) Left: Overlay histogram of flow cytometric results. Right: Flow cytometric analysis
data with F4/80 staining of the macrophages in choroid-RPE on Day 3 after laser photocoagulation (Macrophage numbers per choroid-RPE complex).
After photocoagulation, the number of macrophages significantly increased compared with no laser photocoagulation controls (relative to normal
control, *P,0.001 n = 5, **P,0.001 n = 5). INCB3344 treatment significantly reduced the number of macrophages compared to the vehicle-treated
group (***P,0.001, n = 5).
doi:10.1371/journal.pone.0028933.g002

perfused with fluorescein isothiocyanate-dextran in flat-mount choroid-RPE complex. Scale bar = 100 mm. (C) Quantitative analysis of CNV size. Values
are mean 6 SE, vehicle, n = 78 spots, INCB3344, n = 81 spots. *P,0.001.
doi:10.1371/journal.pone.0028933.g001
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Figure 3. VEGF expression. (A) Immunohistochemistry of macrophages (green) and VEGF (red) in cryosections on Day 3. Significantly higher levels
of VEGF were expressed in macrophages at the photocoagulated sites. VEGF localized mainly in infiltrating macrophages at the laser injury sites.
INCB3344 apparently decreased VEGF immunoreactivity compared to vehicle treatment. The negative control omitting the primary antibody (second
antibody only) had detectable auto-fluorescence in RPE. Scale bar = 100 mm. (B) VEGF protein levels in the choroid-RPE were quantitatively measured
by ELISA. VEGF levels on Day 3 were significantly suppressed by INCB3344 treatment. (n = 8, *P = 0.012). (C) The expression of VEGF mRNA derived
from macrophages isolated from choroid-RPE complexes was detected by real-time PCR on Day 3 after photocoagulation. The increased VEGF mRNA
expression in infiltrating macrophages was significantly suppressed by INCB3344 treatment (**,***P,0.001, n = 3).
doi:10.1371/journal.pone.0028933.g003
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vascular tissue comprising the vessel lumen, but the INCB3344-

treated mice had smaller lesion areas comprising fibro-vascular

tissue, disturbed RPE and pigment clumps compared with the

vehicle-treated mice (Fig. 1A).

Choroid-RPE flat mounts confirmed the distinct reduction in

CNV area by the INCB3344 treatment (Fig. 1 B). At Day 14 after

photocoagulation, the mean CNV area was 19,759.56861.1 mm2

in vehicle- treated mice (n = 78 spots), which significantly

decreased in INCB3344-treated mice (11,392.26468.8 mm2,

n = 81 spots). This translated into a 42.4% decrease in CNV area

by INCB3344 treatment (P,0.001) (Fig. 1C).

Inhibition of macrophage infiltration by INCB3344
treatment

The number of F4/80 positive cells was substantially lower in

INCB3344-treated mice than in vehicle-treated mice in both

choroid- RPE flat mounts (Fig. 2A) and sections (Fig. 3A).

In the flow cytometry quantitative analyses, we detected only a

few macrophages in normal mice (without laser treatment). On

Day 3 after laser treatment, the number of macrophages

dramatically increased in both vehicle- and INCB3344-treated

mice, but INCB3344 treatment significantly suppressed the

number of macrophages compared to vehicle treatment (Fig. 2B.

n = 5, P,0.001).

Decrease of VEGF expression by INCB3344 treatment
Strong VEGF-positive immunoreactivity was detected in the

laser injury sites. The immunoreactivity was mainly localized to

infiltrating macrophages (F4/80 positive cells) at the laser injury

site. INCB3344 treatment decreased the VEGF immunostaining

compared to vehicle treatment (Fig. 3A).

ELISA showed that VEGF protein levels in the choroid-RPE

complex in INCB3344-treated mice were significantly lower

(199.168.2 pg/mg) compared with vehicle-treated mice

(289.3627.8 pg/mg, P = 0.012, n = 8) (Fig. 3B).

Real-time PCR analysis on sorted macrophages from choroid-

RPE complexes showed that VEGF mRNA expression signifi-

cantly increased in those infiltrating macrophages after photoco-

agulation (P,0.001, n = 3), but it was markedly suppressed by

INCB3344 treatment (P,0.001, n = 3) (Fig. 3C).

Suppression of phosphorylated ERK1/2 (p-ERK1/2) by
INCB3344 treatment

Phosphorylation of ERK1/2 is considered a measure of MAPK

activation, which regulates a variety of angiogenic factors

including VEGF. The inhibitory effects of INCB3344 on

ERK1/2 phosphorylation in response to MCP-1 stimulation via

CCR2 have been shown in vitro [26] [27]. Here, we further

investigate the effect of INCB3344 on ERK1/2 phosphorylation

in a CNV animal model.

On Day 3 after photocoagulation, the p-ERK1/2 expression

level increased relative to that of total ERK1/2 in the choroid-

RPE complex in both vehicle- and INCB3344-treated mice

compared with baseline levels (untreated normal mice), while the

relative expression of p-ERK1/2 was significantly reduced in the

INCB3344-treated mice compared with the vehicle-treated mice

(n = 8, P,0.001) (Fig. 4).

Regression of established CNV by INCB3344 treatment
As previously reported, senescent Sod12/2 mice have many

features in common with patients with AMD, such as sub-RPE

deposits, thickened Bruch’s membrane and CNV [32]. Spontaneous

CNVs were detected in 13 Sod12/2 mice by both fundus

examination and fluorescein angiography. INCB3344 treatment

caused a regression in established CNV (Fig. 5A). The size of CNV

significantly decreased from 2971.861976.3 mm2 (range from

172.469.2 mm2 to 12661.0669.2 mm2, n = 6) before treatment to

1267.96861.2 mm2 (range from 0 to 5452.3674.4 mm2) at 1 week

after treatment (P,0.001). Among them, two CNVs with the

minimum sizes (172.469.2 mm2 and 219.769.8 mm2) were com-

pletely abolished by the INCB3344 treatment, which was confirmed

by histological examinations in serial cryo-sections (Data not shown).

On the other hand, in vehicle-treated mice, no significant

CNV regression was detected. CNV size was 1876.76709.3 mm2

(range from 260.68615.22 mm2 to 5466.466.44 mm2, n = 7)

before treatment and 1872.26707.6 mm2 (range from 249.606

7.19 mm2 to 5450.16632.17 mm2) after treatment.

Paired pre-and post-comparison of CNV size showed that

INCB3344 treatment caused a 70.3569.86% decrease (n = 6) in

CNV size (Fig. 5B), which was significantly higher than that in

vehicle treatment (161%, n = 7, P,0.001).

Figure 4. Phosphorylated extracellular signal-regulated kinase (p-ERK1/2) expression in Western blot. (A) A representative blot. p-ERK
expression in the choroid-RPE complex from vehicle-treated mice and INCB3344-treated mice on Day 3 after laser photocoagulation, and normal
mice (without photocoagulation). Western blot analysis revealed that p-ERK expression increased after laser photocoagulation and was suppressed
by INCB3344 treatment. (B) Semi-quantitative analysis of the band intensity showed an increase in relative p-ERK expression (values normalized to
total ERK expression) in the eyes of photocoagulated mice compared with untreated mice(n = 8, *P,0.001; n = 8, **P,0.001), and INCB3344
suppressed this increase (n = 8, ***P,0.001).
doi:10.1371/journal.pone.0028933.g004
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Discussion

In the present study, we evaluated the therapeutic value of

INCB3344, a CCR2 antagonist, on a mouse model of age-related

macular degeneration and demonstrated that INCB3344 treat-

ment markedly suppressed new CNV formation and shrank

established CNVs.

To investigate the possible cellular mechanism of INCB3344

suppression of CNV, we evaluated the infiltration of macrophag-

es in the early phase of laser induced CNV and revealed that

macrophage infiltration was significantly suppressed by INCB

3344 treatment. In this study, we evaluated the macrophage

infiltration on Day 3, the day of peak macrophage response [2],

[13], [33]. We delivered INCB3344 to the vitreous cavity

immediately after photocoagulation. After photocoagulation,

local MCP-1 increases quickly [33], and recruits monocytes

[34], [35] to laser injury sites, where they become inflammatory

macrophages [36], [37]. Acting as a CCR2 antagonist,

INCB3344 has displayed a high ability to inhibit monocyte

chemotaxis in vitro and suppress macrophage influx in a variety

of preclinical animal models of inflammatory diseases [26], [27].

Moreover, recent research reports that topical treatment of a

CCR2 antagonist leads to the blocking of CCR2/MCP-1

interaction and reduces monocyte infiltration into the cornea in

the dry eye disease mouse model [38]. These data are consistent

with our results, which demonstrate that the suppression of

monocyte/macrophage infiltration acts as an important cellular

mechanism for INCB3344 treatment in the current model.

To determine the impact of INCB3344 on the downstream

signaling of macrophages in CNV formation, we detected VEGF

on the peak response day of macrophages. Our results demon-

strated that VEGF significantly decreased with the suppression of

infiltrating macrophages by INCB3344 treatment. After photoco-

agulation, VEGF is up-regulated [10], [11], [33] and acts as a

promoting mediator in the development of CNV [11], [39], [40].

The variation of VEGF levels correlates highly to that of

macrophages after laser injury [25], and their peak responses are

reported to coincide with each other [13], [33]. While in

pharmacologically macrophage-depleted mice [12], VEGF pro-

duction is reduced in proportion to the decrease in the number of

macrophages. Moreover, enriched ocular-infiltrating macrophages

from laser-induced model mice have shown angiogenic ability in a

dorsal air sac assay, and express activation-surface markers (class

II, CD40, B7-1 and B7-2 molecules) and the mRNA for potential

angiogenic factors including VEGF [16], which indicates that the

infiltrating macrophages are a rich source of VEGF. Our results

agree with these data and reveal that macrophages play an

important role in the variation of intro-ocular VEGF after laser

injury. Further more, our results demonstrate that elevated VEGF

expression in infiltrating macrophages is suppressed by

INCB3344. We reveal that INCB3344 can not only inhibit

macrophage infiltration but also suppress the angiogenic ability of

infiltrating macrophages, which results in the reduction of VEGF,

and finally in suppression of CNV.

In this study, we revealed that INCB3344 treatment inhibited

CNV formation via the suppression of macrophage infiltration.

Our study focused on CCR2, macrophages, and VEGF, although

several other cytokines such as tumor necrosis factor-alpha (TNF-

a) [41]–[][43], interleukin -1beta (IL-1b) [41], [43], hypoxia

inducible factors (HIF-1a and HIF-2a) [44], IL-6 [35] and tissue

factor (TF) [5] are reported to be involved in CNV formation. We

cannot rule out a potential link between macrophages and other

cytokines, however, VEGF is crucial in the pathogenesis of CNV

formation because anti-VEGF drug therapy, for example,

Figure 5. Effect of INCB3344 on established CNV. (A) Fundus
photographs (1st and 3rd rows) and fluorescent angiography (2nd and
4th rows) pre-treatment (1st column) and post-treatment (2nd column)
with vehicle (top 2 rows) or INCB3344 (bottom 2 rows). Established CNV
in Sod12/2 mice were markedly regressed by INCB3344 treatment
(bottom), while no significant regression of established CNV was
detected in vehicle treatment (top). Scale bar = 20 mm. (B) INCB3344
treatment caused a 70.3569.86% decrease (n = 6) in established CNV
size, which was significantly higher than that in vehicle treatment
(1.061.0%, n = 7, *P,0.001).
doi:10.1371/journal.pone.0028933.g005
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bevacizumab and ranibizumab have achieved an obvious effect in

CNV due to age-related macular degeneration.

We demonstrated that the ERK1/2 phosphorylation induced by

laser treatment was significantly suppressed by INCB3344. We

examined the phosphorylation of ERK 1/2 because the activation

of ERK1/2 in macrophages can be induced through the CCR2

[45] and their activation is thought to be a key component in the

cellular events leading to the infiltration and activation of

macrophages [46]–[][48]. Our results are consistent with the results

in vitro [20], [21] and the previous reports that blockage of CCR2 by

anti-CCR2 monoclonal antibodies inhibits phosphorylation of

ERK1/2 in peritoneal macrophages [45]. Our results on the

inhibitory effect on VEGF secretion are also compatible with the

data that ERK1/2 activation in macrophages [49] or monocytes

[34] is reported to be responsible for VEGF production in these

cells. We can conclude that INCB3344 inhibits the activation of

ERK1/2 in macrophages by blocking CCR2, which results in the

reduction of macrophage infiltration and VEGF production.

We further evaluated the therapeutic effect of INCB3344 on

established CNV in Sod12/2 mice. SOD1 is a component of the

antioxidant defense system of the retina, and it has been

demonstrated that SOD1 deficiency leads to retinal dysfunction

and progressive, degenerative changes of retinal cell layers [50].

Senescent Sod12/2 mice have many features in common with

patients with AMD, such as age-related accumulation of sub-RPE

deposits, thickened Bruch’s membrane, and spontaneous CNV,

which recapitulates the key elements of the human pathology [32].

In this study, we detected the established spontaneous CNV by

screening senescent Sod12/2 mice, and then investigated the

therapeutic effect of INCB3344 on this CNV model. This process

can closely mimic the diagnosis and treatment of an AMD patient

with CNV. Although the size of these CNV varied in the Sod12/2

mice, by paired pre- and post-comparison, we demonstrated that

INCB3344 treatment caused marked regression of established

CNV. In our results, fluorescence leakage in CNV area

significantly reduced or disappeared in FA by the treatment of

INCB3344, whereas the lesion area did not show much

amelioration in fundus photographs. This discrepancy may be

due to the accumulation of irreversible histological damage in the

CNV area including sub-RPE deposits or fibrosis, and future

investigations with more samples for longer duration, and

evaluation with optical coherence tomography may be helpful.

In this study, we showed that blockage of the CCR2/MCP-

1(CCL2) signal pathway by INCB3344 suppressed the develop-

ment of CNV in laser induced model. However, there is some

controversy over the issue of CNV formation associated with the

CCR2/MCP-1 signal pathway. Ambati et al. [51] detected

spontaneous CNV in senescent Ccl-2 (MCP-1) KO mice and

Ccr-2 KO mice, while Luhmann et al. [30] were unable to detect

any spontaneous CNV in similarly aged Ccl-2 KO mice and

revealed that the AMD-like features in MCP-1 KO mice described

by Ambati et al. might be the result of aging alone. Although these

discrepancies need further investigation, the size of laser induced

CNV was reduced in MCP-1 KO mice [30] and Ccr-2 KO mice

[16] with fewer macrophages compared with wild type mice. The

results of these reports are consistent with our conclusion that

suppression of macrophage migration via blockage of CCL-2/

CCR-2 with INCB3344 inhibits CNV formation in a laser-

induced CNV model.

In summary, we demonstrated that local administration of the

CCR2 antagonist, INCB3344, effectively inhibited laser-induced

CNV formation in mice through the suppression of macrophage

infiltration and VEGF expression of infiltrating macrophages. In

addition to this preventive effect, INCB3344 caused marked

regression of established CNV. Therefore, we propose that

INCB3344 may act as an attractive therapeutic approach for the

treatment of CNV in AMD.
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