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Simple Summary: The microevolutionary dynamics of soil bacteria under microclimatic differences
are largely unexplored in contrast to our improving knowledge of their vast diversity. In this study,
we performed a comparative metagenomic analysis of two sharply divergent rocks and soil types
at the Evolution Plateau (EP) in eastern Upper Galilee, Israel. We have identified the significant
differences in bacterial taxonomic diversity, functions, and patterns of RNA-based gene regulation
between the bacteria from two different soil types. Furthermore, we have identified several species
with a significant genetic divergence of the same species between the two soil types, highlighting the
soil bacteria’s incipient sympatric speciation.

Abstract: Soil bacteria respond rapidly to changes in new environmental conditions. For adaptation
to the new environment, they could mutate their genome, which impacts the alternation of the
functional and regulatory landscape. Sometimes, these genetic and ecological changes may drive the
bacterial evolution and sympatric speciation. Although sympatric speciation has been controversial
since Darwin suggested it in 1859, there are several strong theoretical or empirical evidences to
support it. Sympatric speciation associated with soil bacteria remains largely unexplored. Here, we
provide potential evidence of sympatric speciation of soil bacteria by comparison of metagenomics
from two sharply contrasting abutting divergence rock and soil types (Senonian chalk and its rendzina
soil, and abutting Pleistocene basalt rock and basalt soil). We identified several bacterial species
with significant genetic differences in the same species between the two soil types and ecologies. We
show that the bacterial community composition has significantly diverged between the two soils;
correspondingly, their functions were differentiated in order to adapt to the local ecological stresses.
The ecologies, such as water availability and pH value, shaped the adaptation and speciation of soil
bacteria revealed by the clear-cut genetic divergence. Furthermore, by a novel analysis scheme of
riboswitches, we highlight significant differences in structured non-coding RNAs between the soil
bacteria from two divergence soil types, which could be an important driver for functional adaptation.
Our study provides new insight into the evolutionary divergence and incipient sympatric speciation
of soil bacteria under microclimatic ecological differences.
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1. Introduction

Diverse microbiome populations play a critical role in the environments ranging from
soil to human and animal guts [1,2]. The soil microbiome plays a functional role in carbon
cycling, decomposition of organic matter, nutrient transformation, maintenance of ecosys-
tem sustainability [3], and supporting plant growth while providing vital ecosystems [2,4].
Vice versa, the microbiome could be affected by their depending environments [5]. Corre-
spondingly, different strains of the same species can be significantly distinct in their gene
content and single-nucleotide polymorphisms (SNPs) [6,7]. These strain-level differences
have shed light on understanding adaptation, evolution, and sympatric speciation of the
microbiomes. For example, differentiated ecologies drove the population subdivision of
ocean bacteria [8] and also the presence of subpopulations in ancient marine bacteria [9].
Emerging shreds of evidence support that changes in ecology and environmental patterns
drive the evolution of microbial species [10–13]. A recent study demonstrated the rapid
strain level evolution of soil bacteria in response to climate changes [14]. To quickly adapt to
the new environment, bacteria rapidly mutate their gene sequences [15,16] and non-coding
RNAs [17], which can generate new functionality and regulatory mechanisms. This mech-
anism could promote the continuous emergence of new strains [18,19]. The continuous
genetic changes and fitness stress associated with the new ecology may generate new
bacterial species.

However, the origin of species has been controversial since first suggested by Dar-
win [20]. The allopatric speciation common model hypothesized that populations evolve
into new species when geographically isolated, unaffected by the homogenizing process of
gene flow, and thus, they can accumulate sufficient genetic divergence and reproductive
isolation to evolve into new species. By contrast, the sympatric speciation (SS) model
hypothesized that a new species might originate as a local variety [20], and in general,
one species splits into two sister species without any physical barriers to block gene flow
between the two populations. In modern terminology, a new species can evolve within a
smaller space characterized by free breeding meta-populations with gene flow, provided
there are divergent ecologies in the speciation theater [21]. The SS model was and is con-
troversial since suggested and still considered rare by most biologists, though mounting
evidence in eukaryotes, both theoretical and empirical [22–25], does indicate that new
species indeed can originate despite ongoing gene flow (Table S1). The SS model becomes
even more enigmatic in bacteria whose systematics is still problematic. We proposed a new
paradigm shift to incorporate ecology and divergent genetics in bacterial systematics [26]
based on our two microsite evolution models, the microclimatic microsite model [27–30],
and the geological-edaphic microsite model [24,25,31]. In the first model designated “Evolu-
tion Canyon” (EC), a tropical, hot and dry, savannoid biome abuts with temperate, cool and
humid, forested biome across a few hundred meters. In the second model, two different
rocks and soil types abut at “Evolution Plateau” (EP) in eastern Upper Galilee: Senonian
chalk abuts with Pleistocene volcanic basalt. Both models, the microclimatic and edaphic,
demonstrated hotspots of SS, primarily unfolded in eukaryotes from bacteria to mammals,
with only one case of prokaryotes, in the soil bacterium Bacillus simplex [32]. Here, we asked
whether SS is relevant in prokaryotes, as we and others (Table S1) highlighted in eukaryotes.
Our criterion of identifying sympatric speciation is based on our new ecological paradigm
linked with little to medium genetic change between the progenitor and derivative species
speciating sympatrically in the new ecology. Shotgun metagenomic sequencing and bio-
computing are widely applied to study the genetic diversity of the uncultured microbial
communities in diverse environments [1]. Recently, strain-level analysis of metagenomes
has shown that shotgun metagenomic sequencing has the potential to understand strain-
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level heterogeneity within bacterial genomes and between microbiome communities in
contrast to only the sequencing of 16S ribosomal RNA [33]. All these current approaches to
detect strain-level variations are dependent on the availability of a collection of microbial
reference genomes to identify SNPs and quantify gene content in microbial species [33,34].

To study the bacterial evolution, including the SS within the microbiomes of different
soils, we compared the metagenomes from two sharply divergent rocks and soil types
(chalk weathering into rendzina soil and volcanic basalt into basalt soil) at the EP, in the
eastern Upper Galilee Israel (Figure 1A). The basalt is clayey, wetter, and muddy with low
permeability (Figure 1B); in contrast, the chalk is drier and barren with better ventilation
(Figure 1C). Ca2+ is the most abundant element in the chalk soil (Figure 1D), followed
by Si4+, Al3+, Fe3+, and Mg2+, and Si4+ is the most abundant chemical in the abutting
contrasting basalt soil, followed by Al3+, Fe3+, and Ca2+. Al3+, Fe3+, and Ca2+ contents are
significantly different between the two soils [35]. Thus, basalt is generally acidic, while
chalk is slightly alkaline [36]. Such contrasting ecologies without any physical barriers
lead to population divergences with gene flow, including bacteria [32], wild barley [37],
and blind mole rat [24,25,31,38–41]. This present study demonstrated that the bacterial
community composition has significantly diverged between the chalk and basalt soil types.
Furthermore, we observed that the bacteria from two different soil types have significant
differences in functions and preferences of structured non-coding RNAs, highlighting the
evolution of functional diversity to adapt locally to new ecological stresses. Moreover,
remarkably, we identified the incipient sympatric speciation in soil bacteria as we identified
in eukaryotes across life in our evolution microsites, based on divergent ecologies, with
ongoing gene flow, suggesting that natural selection can overrule the homogenizing effect
of gene flow in both eukaryotes and prokaryotes [42].
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Figure 1. Geological map and ecological differences. (A) Geological map including the senonian
chalk soil and the abutting derivative Plio-Pleistocence basalt soil, which is like reddish basaltic
islands in pale chalk ocean. (B) The contrasting plants with only 28% of the same plant species in the
different abutting soils. (C) The clayey wetter and milder basalt soil, and (D) the drier and stressful
chalk soil, with a mound of the mole rat Spalax galili chalk.
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2. Materials and Methods
2.1. Sampling, DNA Isolation, and Sequencing

A total of 12 soil samples were collected for chalk (6 samples) and abutting derivative
basalt (6 samples) from “Evolution Plateau” (EP) in the eastern Upper Galilee Israel in January
2016 and emerged into liquid nitrogen immediately in the field. The samples were from one
line and one sample every 50 meter. All the samples were transported to a company for
DNA isolation and sequencing. DNA was isolated from each soil sample by using QIAmp
DNA stool mini kit (Qiagen, Hilden, Germany). Qualified DNAs were sonicated to about
350 bp fragments; after purification, end-repair, A-tailing, and adaptor ligation were carried
out and followed by PCR amplification. After quality control, libraries of each sample were
sequenced with 150 bp paired-end reads. A total of ~50 million 150 bp paired-end raw reads
were generated from the shotgun metagenomic sequencing of each sample.

2.2. Quality Control, Reads Assembly, Binning, Refinement, Assessment, and Annotation

Quality control (QC) of raw sequenced reads was performed using FastQC v0.11.9 [43],
and, according to the QC report, hugely imbalanced 10 bases from start and N’s from
start/end of the reads were trimmed off using cutadapt [44] tool. Simultaneously, reads
were assembled using metaSPAdes v3.15.4 [45]. After assembly, assembled contigs were
binned using Metabat2 v2.15 [46], and the quality of each bin was further improved using
Binning_refiner. Binning followed by refinement of bins able to be recovered metagenome-
assembled genomic reads (MAGs) (based on universal standards, i.e., contamination < 10%
and completeness ≥ 50% (medium), and contamination < 5% and completeness ≥ 90%
(high)). Finally, each bin quality was evaluated using CheckM v1.2.0 [47], and according
to standard criteria, bins were selected. The taxonomy of each selected bin was assigned
using GTDB-tk tool v2.1.0 [48], and annotations of these bins were carried out using Prokka
v1.14.5 [49].

2.3. Taxonomic Compositions of Basalt and Chalk Sample

Kraken2 [50] was used for taxonomic profiling, and the relative abundance was
estimated by Bracken [51]. Next, taxonomic and functional data tables were down-
loaded and fed into the STAMP v2.1.3 (Statistical analysis of metagenomic profile) soft-
ware [52] for statistical validation. The species with significant differences were identified
by LEfSe (linear discriminant analysis effect size, LDA score > 2) [53] on the website
(http://huttenhower.sph.harvard.edu/galaxy/, v1.0, accessed on 19 May 2022).

2.4. Function Compositions of Basalt and Chalk Sample

High-quality unassembled reads were first uploaded onto the MG-RAST server [54] for
functional profiling, and the subsystem database was selected with default parameters. In order
to obtain a more accurate contig for the construction of non-redundant gene catalogs, we use
MEGAHIT [55] to assemble the reads; next, we use Prodigal [56] to predict coding sequences
(CDS, >100 bp) of assembled contig and use CD-HIT [57] (-c 0.95 -d 0 -aL 0.9 -uL 0.05 -aS 0.9) to
obtain a non-redundant gene catalog. KoafmKOALA [58] was performed to annotate functional
genes against the Kofam database. KEGG enrichment was accomplished by ReporterScore [59].
Carbohydrate active enzymes (CAZyomes) were identified by dbCAN2 [60]. The relative gene
abundance was calculated as follows:

Step 1: Calculation of the copy number of each gene: bi = xi/Li;
Step 2: Calculation of the relative abundance of gene i: ai = bi/∑bi:

ai: the relative abundance of gene I;
bi: the copy number of gene i from sample N;
Li: the length of gene i;
xi: the number of mapped reads.

The calculations mentioned above were performed with our custom Python scripts.

http://huttenhower.sph.harvard.edu/galaxy/
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2.5. Analysis of Structured Noncoding RNAs in the Metagenome-Assembled Genomic Reads
(MAGs) Sequences

Riboswitches are the most common form of structured noncoding RNAs in bacteria [61–65].
The Rfam 12.0 [66] database contains sequence and structural information of more than 40
classes of riboswitches. We have downloaded all the covariance models of each riboswitch class
from Rfam. Then, the cmsearch program of the Infernal 1.1 package [67] was used to identify
the riboswitches from the metagenome-assembled genomic reads (MAGs). Furthermore, the
detected riboswitches were again confirmed with the Riboswitch Scanner [68]. To obtain a local
minimum energy structure, aligned consensus structure generated using the covariance model
was passed to RNAfold from the Vienna RNA package 2.0 [69] as enforced structure constraints.
This enables generating the potential riboswitch structure where the local minimum energy and
covariance model are both considered [63,70]. FORNA from Vienna RNA package was used to
visualize the riboswitch structure.

2.6. Metagenomic Single Nucleotide Variants (SNVs) Analysis

In order to calculate sympatric speciation in bacteria based on single nucleotide variant
(SNV), first, human contaminations were removed by mapping trimmed reads to the human
reference genome (hg38) using BWA tool [71]. Next, unmapped (non-human) reads were
mapped to the CDS sequences of RefSoil+ database [2], which contains 888 bacteria and
34 archaea. Furthermore, mapping of RefSoil+ was subjected to the metaSNV pipeline
to calculate pairwise distance between chalk and basalt samples based on population
SNVs [34].

2.7. Single Nucleotide Polymorphisms (SNPs) Analysis

For the most abundant species, their genomes were downloaded from NCBI as refer-
ences. Reads after removing human contaminations were mapped against these genomes
by BWA, and we use GATK4 [72] to call hard-filtered SNPs with default parameters. Prin-
cipal component analysis (PCA) was performed by PLINK [73]. Neighbor-joining (NJ)
tree was accomplished by TreeBeST [74]. FST and nucleotide diversity (π) were calculated
by VCFtools [75]. Furthermore, a genetic distance matrix was generated by PLINK, then
visualization of genetic network was finished by R packages [76] (“netview”, “network”,
“igraph”, “sna”, “visNetwork”, “threejs”, and “networkD3”).

3. Results
3.1. Metagenome Assembly

A total of ~16 GB of raw reads from the shotgun metagenomic sequencing has been
generated (Table S2), and after trimming the low-quality bases, about 15 Gb of clean reads
were retained for each of the six samples from basalt and six samples from chalk soils. After
assembly, an average of 850,000 contigs (>300 bp) was generated for each sample. Statistical
information of assembled contigs (Table S3) shows that these assemblies were sufficient
for the taxonomical and functional analysis of our study. We performed a Spearman
correlation analysis to understand whether the differences between the two groups of
samples (basalt and chalk) are more significant than the biological repeats (samples from
the same group). We found that the differences between biological repeats are significantly
smaller than between the samples from another group (Figure S1), which signify the
significant differences between the samples from basalt and chalk.

3.2. Bacterial Community Composition

Bacteria were the most dominant kingdom in both of the soils, followed by Archaea
and Eukaryota. For the bacterial community, 58 phyla, 98 classes, 212 orders, 462 families,
1791 genera, and 6413 species were detected by metagenomic sequencing from 12 soil samples.
We identified 32 phyla, 56 classes, 135 orders, 289 families, 981 genera, and 3103 species that
were significantly different between basalt and chalk (Welch’s t-test, p < 0.05). Among the
bacterial phyla, Proteobacteria and Actinobacteria were found to be the most abundant phyla
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both in chalk soil as well as in basalt soil, accounting for over 90% of the total population
of all the phyla, followed by Bacteroidetes, Acidobacteria, Verrucomicrobia, and Chordata
(Figure 2A). Bacterial composition was separated into two clusters in PCoA (Figure 2B), and
it is significantly higher in the more arid chalk soil (Figure 2C). Actinobacteria was signif-
icantly higher in basalt than in chalk (Figure 2D); in contrast, Proteobacteria, Firmicutes,
Planctomycetes, and Bacteroidetes were higher in chalk than in basalt. High abundances of
Proteobacteria and Actinobacteria indicate that these phyla played important roles in the soil
bacterial communities providing basic functions related to the biogeochemical cycle. More-
over, we performed a t-test (paired) and found significant differences in a relative phylum
abundance of Proteobacteria (p = 0.011), Actinobacteria (p = 4.6 × 10−3), Planctomycetes
(p = 3.16 × 10−5), Chordata (p = 1.93 × 10−4), and Cyanobacteria (p = 9.87 × 10−4) (Figure 2A).
Further genus-level analysis indicates that Streptomyces, Micromonospora, Bradyrhizobium,
Kribbella, Actinoplanes, and Amycolatopsis were enriched in basalt, while in chalk, Sph-
ingobium, Burkholderia, Xanthomonas, Mesorhizobium, and Rubrobacter were enriched
(Figure S2). Species with the most differences in abundance between basalt and chalk, revealed
by linear discriminant analysis effect size (LEfSe) (Table S4), are: Xanthomonas euvesicatoria,
Sphingomonas sp. MM-1 (enriched in chalk) and Bradyrhizobium icense, Kribbella flavida (enriched
in basalt).

Figure 2. The taxonomy analysis of soil microbiomes and relative abundance of the two soil types.
(A) Bacteria composition, which shows the most abundant species are from Actinobacteria and
Proteobacteria. (B) Principal component analysis shows the bacterial composition of the two soil
types was clearly separated. (C) Comparison of community diversity measured by Shannon diversity,
showing it was higher in the arid chalk than that in the clayey wetter and milder basalt soils. (D) The
relative abundance of the five dominant phyla. In this figure, *, **, and **** indicates the significance
levels p < 0.05, p < 0.01, and p < 0.0001 accordingly.
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3.3. Functional Analysis of Metagenomic Data

Principal coordinate analysis (PCoA) based on a non-redundant gene catalog revealed the
functional compositions of basalt and chalk are significantly different (Figure 3A, ANNOVA,
p = 0.0095). There was no significant difference in the Shannon index of the two functional
genes (Figure 3B). CAZyomes (carbohydrate-active enzymes) compositions of basalt and
chalk are different (Figure 3C, ANNOVA, p = 0.0040), with a higher Shannon index in basalt.
Specifically (Figure 3D), basalt contains more Auxiliary Activity (AA), Carbohydrate−Binding
Module (CBM), Carbohydrate Esterase (CE), Glycoside Hydrolase (GH), and GlycosylTrans-
ferase (GT). GH13, GH92, GH5, GH18, and CBM32 were enriched in basalt, while in chalk,
GT51, GH13, GT84, GT35, and GT9 were enriched (Figure S3). The significantly higher KEGG
pathways (Figure 3E) in basalt included: “Metabolic pathways”, “Ribosome”, “Biosynthesis
of secondary metabolites”, “Lipopolysaccharide biosynthesis”, “Folate biosynthesis”, “Purine
metabolism”, and some immune- and disease-related pathways, such as “Alzheimer dis-
ease”, “Parkinson disease”, and “Prion disease”. The significantly higher KEGG pathways
(Figure 3F) in chalk included: “Steroid degradation”, “Lipoarabinomannan (LAM) biosynthe-
sis”, “Arabinogalactan biosynthesis—Mycobacterium”, and “Starch and sucrose metabolism”.

The taxonomic assignments of the chalk and basalt soil samples were obtained by
analyzing assembled contigs and the gene prediction and the classification of the potential
functional genes via Clusters of Orthologous (COG) analysis. We summarized the results
into four categories: information storage and processing (cluster I); cellular processes and
signaling (cluster II); metabolism (cluster III); and poorly characterized function (cluster
IV). Mostly, cluster III was dominant in both chalk and basalt soil samples which is related
to the growth of microbial communities. Cluster II was the next most dominant in all
the samples, followed by clusters IV and I (Figure S4). Functional annotation at level 1
revealed that genes related to “carbohydrates”, “co-factor, vitamins, prosthetic groups,
pigments”, “RNA metabolism”, “Virulence, Disease and Defense”, and “Metabolism of
aromatic compounds” were highly dominant in both chalk and basalt microbial communi-
ties (Figure S5). Functional annotation at level 2 demonstrated that genes related to “Di-
and oligosaccharides”, “Biotin”, and “Phage and prophages” are most enriched in basalt,
while genes related to “Resistance to antibiotics and toxic compounds” and “transcription”
are most enriched in basalt (Figure S6). Therefore, the functional analysis demonstrated
that the enriched processes are important for the functional adaptation of the microbes to
survive in the stress associated with the specific soil environments.
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Figure 3. Functional composition of the two soil type metagenomics. (A) Principal component
analysis shows the function composition of the two soil types was clearly separated. (B) There was
no significant difference based on the Shannon index of non-redundant gene sets. (C) Principal
component analysis shows that the comparison of carbohydrate-active enzymes (CAZyomes) compo-
sition of the two soil types was clearly separated. (D) The diversity of CAZYomes in basalt is higher.
(E) Comparison of abundances of different CAZYomes families between basalt and chalk. (F) KEGG
pathways with significant differences between basalt and chalk. In this figure, *, **, and *** indicates
the significance levels p < 0.05, p < 0.01, and p < 0.001; and NS indicates not significant accordingly.
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3.4. Analysis of Structured Noncoding RNAs in Metagenome-Assembled Genomic Reads
(MAGs) Sequences

Bacterial structured noncoding RNAs play vital roles in several biological processes such
as gene regulation, signaling, RNA processing, and protein synthesis [77]. Among these,
the most common groups of structured noncoding RNAs in bacteria are riboswitches [61].
Riboswitches are the cis-regulatory structural RNA sensors found in the 5’ UTR of bacterial
genes and control the expression of the associated genes/operons [78]. There are more than
40 different classes of riboswitch classes discovered so far, which are based on the type of
ligand bind with the aptamer domain of specific riboswitches [61,78,79]. Understanding
the abundance of specific riboswitch classes in bacteria can provide much deeper functional
insights by identifying the metabolic pathway in which it participates and the conditions in
which it is expressed. Therefore, we performed the riboswitch analysis to understand the
abundance of riboswitch classes in the MAGs from basalt and chalk samples. We identified
more riboswitches in the basalts than in chalk (Figure 4A), indicating that the preference for
RNA-based gene regulation could be important for their evolutionary adaptation in the soil of
the basalt region. Riboswitches are highly evolutionary conserved at both their sequence and
structural levels. Specific mutations in riboswitches could affect the riboswitch conformation
by causing a global rearrangement [17,80,81]. In [17], a mutational study was performed
at an “Evolution Canyon”, and in [80], the rational design was exemplified by mutations
predicted by energy minimization [69,81,82] and conformational switching was presented by
using energy dot plots that can be analyzed in a variety of ways (e.g., as in [83]). Affecting
riboswitches by mutations shows that sequence level variations of a particular riboswitch class
that can significantly explain the differences between basalt and chalk bacterial groups could
be useful for understanding the beneficial fitness effect in the specific group. For this purpose,
we analyzed the TPP riboswitches, where six hits were found in basalt and four hits in chalk.
We observed that TPP riboswitches detected in the MAGs from basalt have significantly
higher GC content than MAGs in chalk (Avg_GC Basalt = 67.50, AVG_GC Chalk = 63.09,
p-value = 0.0287) (Figure 4B). This observation indicates that GC content variation could shape
the regulatory divergence of bacteria to survive in the face of different ecological stresses
associated with the chalk and basalt region at Evolution Plateau (EP). Although we found that
riboswitches are more abundant in the basalt sample than in chalk, we have detected Fluoride
riboswitch in the MAGs of the chalk sample, which is absent in the basalt sample. Figure 4C
represents the fluoride riboswitch structure detected in the MAGs from the chalk sample. The
fluoride riboswitch is important for the bacterial defense mechanism in counteracting against
the high fluoride toxicity by regulating downstream genes that encode putative fluoride
transporters, enzymes that are known to be inhibited by fluoride [84]. Therefore, the presence
of fluoride riboswitch in the bacterial MAGs of the chalk sample indicates that chalk soil could
contain higher fluoride concentration, and some bacterial species use fluoride riboswitches
to regulate the expression of proteins that alleviate the deleterious effects of fluoride. In
conclusion, the diversity within the riboswitch-based gene regulation in between the bacteria
of chalk and basalt samples indicates that structured noncoding RNAs are the potential driver
for generating bacterial adaptation in new environments, which could play a significant role
in bacterial evolution, including the sympatric speciation.
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3.5. Genetic Divergence between the Two Microsites

We have observed a significant difference in functional enrichment and noncoding
structured RNAs between the bacteria from chalk and basalt samples. We hypothesized
that the bacterial community evolved in two soil types to adapt to local ecological stress,
where some bacterial species might be involved in SS. Sympatric speciation could explain
the origination of new species from the ancestral species, while both are found in different
ecological abutting contrasts. Although, in most cases, the complete genome informa-
tion could not be mapped from metagenomic data, we can map and compare the large
segment of the genome sequence of particular species to check if they are significantly
different between two samples, which could help to infer the potential sympatric speciation
in bacteria. To look at the potential sympatric speciation between the chalk and basalt
soil samples, we performed the mapping to the reference database of soil bacteria and
archaea containing the CDS sequences of 888 bacteria and 34 archaea. Interestingly, we
found that most of the sympatric species were also found to be highly abundant at the
genus level. Species-level pairwise distance based on single nucleotide variants (SNVs)
between the chalk and basalt populations was calculated using the metaSNV pipeline [34],
and it showed a significant difference in the same species between the two soil types
(Figure S7). In PCoA, based on pairwise distance, we have identified more than 20 species
showing clear-cut separate clusters (Figure S7). Furthermore, these species also have
differences in SNP composition between chalk and basalt (Figures 5 and S8–S25), PCA
(Figures 5A and S8A–S25A), phylogenetic tree (Figures 5B and S8B–S25B), population
STRUCTURE analysis (Figure 5C), and genetic networking (Figure 5D) showed separate ge-
netic clusters of basalt and chalk, suggesting sympatric divergence. The genetic distance be-
tween the chalk and basalt soil populations of Streptomyces lividans measured by FST is 0.058,
suggesting differentiation with gene flow. The nucleotide diversity (π) for basalt and chalk is
3.6 × 10−3 and 2.8 × 10−3, respectively. FST and nucleotide diversity (π) of other species
were also calculated for these species based on SNPs (Table S5). However, this analysis
failed to classify if they are new strains or new species, as retrieving complete genome
sequence information of all these species was not possible from the metagenomic data.
However, this finding indicates that several bacterial species change their genomic se-



Biology 2022, 11, 1110 11 of 17

quences to evolve and adapt to a new environment that could drive the generation of new
species. Further experimental studies on sequencing each of the genomes of these bacteria
and their phylogenomic analysis could identify many new bacterial species, which might
be generated from the SS.
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4. Discussion

SS has been controversial since Darwin suggested it (Darwin 1859). The key problem
is whether they have allopatric history, and rare cases of SS admitted were from islands or
small places [85]. In the current study, the SS arena, dubbed EP, was formed by a volcanic
eruption around one Mya in chalk regions, which is like a basaltic island floating on a chalk
ocean (Figure 1). The isolated basaltic island precludes the allopatric possibility, especially
in the abutting regions, which is like the case of palm from abutting contrasting soils [86,87].
Our previous studies identified numerous SS events in EC and EP. Several SS across life,
from bacteria to mammals, have been identified at EC, including the soil bacterium Bacillus
simplex [32], Hordeum spontaneum [37], wild emmer wheat [88], Triticum dicoccoides [89],
crucifer Ricotia Lunaria [90], Oryzaphilus surinamensis [91], etc. Similarly, several SS cases
were identified from the EP [24,25,39,40], which was suggested to be an SS hotspot [92].

The central questions of bacterial ecology and evolution require a method to consis-
tently demarcate, from the vast and diverse set of bacterial cells within a natural community,
the groups playing ecologically distinct roles (ecotypes). Because of a lack of theory-based
guidelines, current methods in bacterial systematics fail to divide the bacterial domain of
life into meaningful units of ecology and evolution [26,93]. We introduce a sequence-based
approach (“ecotype simulation”) to model the evolutionary dynamics of bacterial popula-
tions and to identify ecotypes within a natural community, focusing here on two Bacillus
clades surveyed from the EC in Israel. This approach has identified multiple ecotypes
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within traditional species, with each predicted to be an ecologically distinct lineage; many
such ecotypes were confirmed to be ecologically distinct, with specialization to different
canyon slopes with different solar exposures.

In this study, high-throughput shotgun metagenomics sequencing and advanced bioin-
formatics algorithms enabled us to investigate microbial abundance and diversity under
two sharply contrasting abutting divergent soil types. For example, microbial abundance
at the phylum level shows that Actinobacteria was significantly highly abundant in basalt
soil, while Bacteroidetes, Gemmatimonadetes, Firmicutes, and Verrucomicrobia were sig-
nificantly highly abundant in chalk soil (Figure 2). The Actinobacteria are significantly
higher in basalt soil, and Proteobacteria are significantly higher in chalk soil (Figure 2D),
which is similar to a previous study [94] and was explained by the lower water availability
in chalk than in basalt [94]. The basalt soil in Israel is typically slightly acidic [36]. Micro-
bial abundance at the genus level shows that Streptomyces, Micromonospora, Kribbella,
Microbacterium, and Frankia were significantly abundant in basalt soil samples. Firmi-
cutes are higher in the dry chalk (Figure 2D), which is probably because the mild water
stress could increase the relative abundance [95], and lower abundance members of the
Firmicutes could facilitate bioremediation of acid basalt soil [96], where Gemmatimonas
were significantly highly abundant in chalk soil samples.

Furthermore, we observed significant differences in functional enrichment between
the bacteria from chalk and basalt soil. We found that most of the COG annotations were
involved in microbial metabolism (Figure S4), and the relative abundance of cluster III
(metabolism) was the highest among the four clusters. These functional differences help the
bacterial community in specific soil adapt to the local ecology. Next, to check if there were
any differences in non-coding RNA-based gene regulations, we performed the riboswitch
analysis in the bacteria from two different soil types. Interestingly, we observed the
differences in preferences of different metabolite sensing riboswitch classes. Furthermore,
we detected differences in the GC content of highly conserved TPP riboswitch sequences
between the bacteria from chalk and basalt soils, which indicates that these differences
were generated due to the adaptive mutations that could have a significant role in the
bacterial response to specific ecologies. All these findings decipher that the differential
patterns of non-coding structural RNAs could alter the regulatory patterns of the bacteria,
which could drive the soil bacterial evolution in microclimatic ecological differences.

Furthermore, we have also identified several sympatric species between the chalk and
basalt soil populations, and many of them were also found to be highly abundant at the
genus level in both populations. Overall, this study opens a new paradigm of soil bacterial
evolution and sympatric speciation. Furthermore, our finding suggests that mutations
in the functional genes and in the structured non-coding RNA are continuous processes
that could help the soil bacterial community evolve continuously and adapt to ecological
changes. The divergence of each species between the chalk and basalt soils showed clearly
separate clusters, which were caused by the contrasting ecological stresses, either water
availability or pH values, or both. Although there is no physical barrier between the two
soils, the strong selection would overrule the gene flow between them, and the cumulated
mutations facilitated speciation between them, just as in other species from the same
speciation arena [24,25], which were proved to be SS. Since Evolution Canyons (ECs) and
Evolution Plateaus (Eps) are numerous on our planet, SS appears to be a common model of
the origin of species. Clearly, microsites divergent ecologically, geologically, edaphically,
climatically, abiotically, and biotically are numerous across the planet; hence, SS, first
hypothesized by Darwin, is proved to be a common model of speciation, not only in Israel
but globally.
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5. Conclusions

Soil bacteria tend to evolve rapidly in response to new environmental stress. However,
the evolution of soil bacteria under microclimatic ecological differences is largely unex-
plored. In this study, we performed a comparative metagenomic analysis of two sharply
divergent soil types and investigated the evolution of soil bacteria. Our findings elucidate
the significant divergence of bacterial taxonomic compositions between two soil types.
Furthermore, we found that the bacterial community from two soil types significantly
differ in functional enrichment and preferences in RNA-based gene regulations. Hence,
these findings suggested that the bacterial community diverged and functionally evolved
to adapt to local ecological stress. Next, we detected several soil bacterial species have
significant genetic divergence between the two soil types, which could support their evolu-
tion towards sympatric speciation. Thus, our study provided detailed insights into the soil
bacterial evolution and incipient sympatric speciation under microclimatic ecological dif-
ferences and encouraged further research in this area to uncover the evolutionary patterns
of soil bacteria in the face of new ecological stresses.
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