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Machine learning models
including insulin resistance
indexes for predicting liver
sti�ness in United States
population: Data from NHANES

Kexing Han†, Kexuan Tan†, Jiapei Shen†, Yuting Gu,

Zilong Wang, Jiayu He, Luyang Kang, Weijie Sun, Long Gao*

and Yufeng Gao*

Department of Infection, The First A�liated Hospital of Anhui Medical University, Hefei, China

Background: Prevention and treatment of liver fibrosis at an early stage

is of great prognostic importance, whereas changes in liver sti�ness are

often overlooked in patients before the onset of obvious clinical symptoms.

Recognition of liver fibrosis at an early stage is therefore essential.

Objective: An XGBoost machine learning model was constructed to

predict participants’ liver sti�ness measures (LSM) from general characteristic

information, blood test metrics and insulin resistance-related indexes, and to

compare the fit e�cacy of di�erent datasets for LSM.

Methods: All data were obtained from the National Health and Nutrition

Examination Survey (NHANES) for the time interval January 2017 to

March 2020. Participants’ general characteristics, Liver Ultrasound Transient

Elastography (LUTE) information, indicators of blood tests and insulin

resistance-related indexes were collected, including homeostasis model

assessment of insulin resistance (HOMA-IR) and metabolic score for

insulin resistance (METS-IR). Three datasets were generated based on

the above information, respectively named dataset A (without the insulin

resistance-related indexes as predictor variables), dataset B (with METS-IR as

a predictor variable) and dataset C (with HOMA-IR as a predictor variable).

XGBoost regression was used in the three datasets to construct machine

learning models to predict LSM in participants. A random split was used to

divide all participants included in the study into training and validation cohorts

in a 3:1 ratio, and models were developed in the training cohort and validated

with the validation cohort.

Results: A total of 3,564 participants were included in this study, 2,376 in

the training cohort and 1,188 in the validation cohort, and all information

was not statistically significantly di�erent between the two cohorts (p > 0.05).

In the training cohort, datasets A and B both had better predictive e�cacy

than dataset C for participants’ LSM, with dataset B having the best

fitting e�cacy [±1.96 standard error (SD), (-1.49,1.48) kPa], which was

similarly validated in the validation cohort [±1.96 SD, (-1.56,1.56) kPa].
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Conclusions: XGBoost machine learning models built from general

characteristic information and clinically accessible blood test indicators are

practicable for predicting LSM in participants, and a dataset that included

METS-IR as a predictor variable would improve the accuracy and stability of

the models.

KEYWORDS

liver cirrhosis, liver sti�ness measurement (LSM), insulin resistance, HOMA-IR, METS-

IR, machine learning model, NHANES

Introduction

Liver cirrhosis is the 14th most common cause of death

worldwide, but the fourth most common cause of death

in Central Europe (1). Liver cirrhosis has different clinical

prognostic stages, with 1-year mortality rates ranging from 1 to

57% (1). Newer research confirmed that although liver stiffness

may be reversible in the early stages of liver fibrosis, most

patients are asymptomatic until the onset of decompensation

(2), whichmeans that the vast majority of patients unconsciously

miss the optimal stage of management. Therefore, it is important

to obtain timely information on the stiffness of the patient’s liver.

Liver biopsy is the gold standard for the diagnosis of liver

fibrosis, but the invasive nature of the test has limited its

widespread use (3, 4). Therefore, it seems appropriate to re-

evaluate the diagnostic performance of other emerging non-

invasive tools. In recent years, there has been considerable

interest in liver ultrasound transient elastography (LUTE). The

principle of LUTE is the stiffness of the tissue being examined in

response to an applied mechanical force (compression or shear

wave) (5). Although liver ultrasound transient elastography

(LUTE) has been widely used as a non-invasive method

to detect liver fibrosis. However, due to factors such as

affordability, disease awareness and uneven distribution of

healthcare resources, LUTEmay only be available at higher levels

of healthcare facilities. Many people in remote areas may only

have access to the most basic public health services and not to

LUTE screening (6). Therefore, it is a matter of concern how to

identify alterations in liver stiffness in an early stage through a

simpler method.

Until then, the non-invasive diagnostic score for liver

fibrosis has provided much help to clinicians (6), but many

scholars believe that classical scores like AST/platelet ratio index

(APRI), Fibrosis-4 (FIB-4) and Fibrotest may only be of their

advantage in diagnosing advanced liver fibrosis and still have

limitations in differentiating between early and mid-stage liver

fibrosis (7, 8). As a result, researchers have been attempting

to use new markers or scoring systems for the prediction of

liver fibrosis, and the correlation between insulin resistance

and liver stiffness has attracted attention as the studies of

factors influencing liver fibrosis-related factors have become

more sophisticated (9). A growing number of studies have

demonstrated a positive correlation between insulin resistance-

related indexes and the degree of liver fibrosis (10, 11), However,

most previous studies were still limited to demonstrating that

insulin resistance may be a risk factor for altered liver stiffness

(12–14). Calapod et al. (15) previously used homeostasis model

assessment of insulin resistance (HOMA-IR) to develop a

Logsitic regression model for predicting the development of

severe liver fibrosis in diabetic patients. However, this study,

which focused first on participants with NAFLD, not only failed

to quantitatively fit liver stiffness but also had unsatisfactory

predictive performance as a conventional predictive model.

In addition, HOMA-IR index is a classical indirect method

of assessing insulin resistance, but it is susceptible to the

accuracy of insulin measurements and is poorly reproducible

(16). Metabolic score for insulin resistance METS-IR is a

recently developed index that aims to be a practical and effective

alternative biomarker of insulin resistance (IR). METS-IR is

insulin-independent and studies have shown that it is superior

to other non-insulin-based indicators of insulin resistance and

has the advantage of being stable and reproducible (17).

Unlike traditional machine learning models, XGBoost is an

integrated learning algorithm. It uses decision trees as weak

learners and in order to perform the gradient descent process it

calculates the loss and adds a decision tree to themodel to reduce

the loss and thus correct the parameters. The number of decision

trees is the same as the number of iterations (n-rounds) of the

algorithm. Because each decision tree contributes a different

value, the final output of XGBoost is given by the mean of

the predicted values (weighted) made by all the individual

trees (18). In addition, for samples with missing eigenvalues,

XGBoost can automatically learn their segmentation direction

to achieve the best prediction (19). XGBoost machine learning

model is maturing as an artificial intelligence algorithm in the

field of medicine, empowering researchers to create models for

diagnosis, treatment, management, etc., which can be used to

great effect in practice (20–22).

In summary, the aim of this study was to build

models capable of predicting liver stiffness using clinically

easily accessible information such as data on general

characteristics of participants and blood test indicators.
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In order to improve the fitting efficacy of the prediction

model, we opted to build XGBoost machine learning

models and compare the fitting efficacy of the original

dataset, the dataset containing HOMA-IR, and the dataset

containing METS-IR.

Methods

Data source

The NHANES program is published by the National

Center for Health Statistics (NCHS) and is designed to

assess the health and nutritional status of the United States

population through information from questionnaires, physical

examinations, and laboratory tests. The NHANES program

obtains a nationally representative sample of approximately

5,000 individuals per year through a complex, multi-stage

sampling design and updates the database every 2 years.

NCHS Research Ethics Review committees endorsed the

NHANES survey protocol, an informed written consent form

was provided to all participants, and all information in

the database was available to the public (https://wwwn.cdc.

gov/nchs/nhanes/Default.aspx), making our research ethics

review exempt.

Participants

The NHANES working group has been collecting

information on participants’ LUTE since 2017 and the

NHANES program suspended field operations in March 2020

due to the coronavirus disease 2019 (COVID-19) pandemic, so

the time interval for our study was January 2017-March 2020.

Within this time range we were able to obtain complete LSM

data for participants. A total of 15,560 participants took part in

the survey, and we excluded participants younger than 20 years

(n = 6,328) and those without complete LUTE information

(n= 1,309). Previous study has graded liver stiffness based on

LSM measured by LUTE (F2:8.2kPa; F3:9.7kPa; F4: 13.6kPa)

(23). In the data where the LSM exceeded 8.2kPa, while the

difference in LSM from F4 to F2 was 3.9kPa (F4-F3) and 1.5kPa

(F3-F2), respectively. To more strictly limited the difference

between the fitted LSM and the actual LSM, we selected 1.5 kPa

as the difference tolerance value. Based on the characteristics

of the LSM distribution (Supplementary materials), we finally

defined the maximum value of LSM for participants that entered

the models as 15.2 kPa, for which we excluded participants with

LSM >15.2 kPa (n = 211). To obtain complete information on

insulin resistance-related indexes, we excluded participants who

lacked high-density lipoprotein (HDL) (n = 523) and fasting

plasma glucose (FPG) (n = 3,625). The final total sample size

for our study was 3,564, and we subsequently randomly split the

FIGURE 1

Flow chart for participants.

total sample population into a training cohort (n= 2,376) and a

validation cohort (n= 1,188) in a 3:1 ratio (Figure 1).

Liver sti�ness measurement

Transient elastography is a widely used and validated

technique for the quantitative assessment of tissue stiffness. It

is considered a reliable and non-invasive method for assessing

liver fibrosis (24, 25). LUTE is able to measure the speed of

mechanically generated shear waves through the liver to obtain a

measure of liver stiffness, which at a certain level can be amarker

for the diagnosis of liver fibrosis (26). LUTE was performed by

trained health technicians at the NHANES Mobile Examination

Centre (MEC). The participants’ LSM was measured using the

FibroScan R©, which was equipped with medium or extra-large

probes to perform the examination. During the examination,

30 measurements were taken for each participant using the

medium-sized (M) or large-sized (XL) probes. The medium-

sized probe was used first, unless the manufacturer’s instructions

recommended the use of the large probe. The displacement

due to shear waves was tracked and measured using a pulsed

echo ultrasound acquisition algorithm. The velocity of the shear

wave is directly related to the hardness of the tissue; the harder

the tissue, the faster the shear wave propagates. Using Young’s

modulus, velocity was converted to liver stiffness and expressed
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in kilopascals. Participants were kept in the supine position

throughout the examination. Participants were excluded from

participation in the examination if they were unable to lie on the

examination table, were pregnant at the time of the examination,

had an electronic medical device implanted, were wearing a

bandage or had damage to the measurement site. Detailed

instructions for this were available on the NHANES website.

Insulin resistance-related indexes

In this study, HOMA-IR and METS-IR were calculated by

the following formulas: HOMA-IR = fasting insulin (uIU/ml)

× 360/[fasting glucose (mg/dl)-63] (27); METS-IR = LN [2

× fasting glucose (mg/ml) + fasting triglycerides (mg/dl)] ×

body mass index (BMI) (kg/m2) / LN [high-density lipoprotein

(HDL) (mg/dl)] (28). BMI was obtained based on participants’

height (m) and weight (kg), calculated as BMI = kg/m2. The

conditions under which the above indicators were measured by

NHANES did not change during the time period of our study.

Other predictive variables

The predictive variables used to develop the machine

learning models in this study consisted mainly of participants’

general characteristics information, body examination data

and laboratory examination data. The general characteristics

information included participants’ demographic information

[e.g., age, gender, education level, ratio of family income

to poverty (PIR), etc.], lifestyle behaviors (e.g., frequency of

alcohol consumption, smoking status, sedentary minutes, etc.)

and medical conditions (e.g., hypertension, diabetes, hepatitis,

etc.). Information on medical conditions was obtained from

the hypertension questionnaire (ever been told you have

hypertension, age at diagnosis of hypertension, medication

used for hypertension treatment), diabetes questionnaire (ever

had diabetes, age at diagnosis of diabetes, medication used

for diabetes treatment), viral hepatitis questionnaire (ever

had hepatitis B, ever been treated for hepatitis B, ever had

hepatitis C, ever been treated for hepatitis C), physical activity

questionnaire (sedentary activity time). Body examination data

included waist circumference (cm), hip circumference (cm),

systolic pressure (mmHg), diastolic pressure (mmHg) and BMI.

Blood pressure was measured using an oscillometric device

and the details of measurement and quality control were

available on the NHANES website. Indicators for blood tests

(Supplementary Table 1) were collected from laboratory data

and all participants were asked to fast for 9 h and assessed

by staff for fasting status before blood samples were drawn.

NHANES only analyzed samples that met the conditions for

laboratory testing. The methods and conditions of NHANES for

TABLE 1 Comparison of participant characteristics in the training and

validation cohorts.

Characteristics Training

cohort

Validation

cohort

P-value

Sample size 2,376 1,188

Age (years) 50.75± 17.11 49.94± 17.15 0.182

Gender (%) 0.570

Male 48.40 49.41

Female 51.60 50.59

BMI (kg/m2) 29.57± 7.00 29.84± 7.35 0.295

Education level (%) 0.332

Less than high school 20.12 17.76

High school 23.27 24.83

More than high school 56.57 57.32

Unclear 0.04 0.08

PIR (%) 0.966

<1.35 23.48 23.99

1.35–3.45 33.04 33.42

≥3.45 29.71 29.04

Unclear 13.76 13.55

Drinking frequency (%) 0.131

Not at all 19.87 17.93

≤1 times per month 28.62 30.98

≤1 times per week 17.51 20.37

≥2 times per week 13.85 10.77

Almost daily 6.69 6.65

Unclear 13.47 13.30

Smoker (%) 0.065

Yes 41.54 45.29

No 58.38 54.71

Unclear 0.08 0

Still smoking (%) 0.079

Every day 13.38 15.82

Some days 4.55 4.04

Not at all 23.61 25.42

Unclear 58.46 54.71

Age started smoking (years) (%) 0.082

<18 20.12 21.13

≥18 21.42 24.16

Unclear 58.46 54.71

Hypertension (%) 0.245

Yes 36.83 39.65

No 63.05 60.19

Unclear 0.13 0.17

Age of hypertension (years) (%) 0.072

<40 10.44 13.22

40–60 18.35 19.02

≥60 8.04 7.41

Unclear 63.17 60.35

(Continued)
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TABLE 1 (Continued)

Characteristics Training

cohort

Validation

cohort

P-value

Medication for hypertension (%) 0.248

Yes 33.88 36.28

No 2.86 3.28

Unclear 63.26 60.44

Diabetes (%) 0.738

Yes 14.48 15.74

No 82.37 81.06

Borderline 3.11 3.11

Unclear 0.04 0.08

Age of diabetes (years) (%) 0.332

<40 2.69 3.45

40–60 8.21 9.26

≥60 3.58 3.03

Unclear 85.52 84.26

Taking insulin now (%) 0.119

Yes 4.12 3.37

No 10.35 12.37

Unclear 85.52 84.26

Taking diabetic pills now (%) 0.181

Yes 12.21 14.39

No 15.74 15.07

Unclear 72.05 70.54

Ever told you have hepatitis B (%) 0.202

Yes 1.47 1.18

No 98.23 98.15

Unclear 0.29 0.67

Ever treated for hepatitis B (%) 0.910

Yes 0.29 0.25

No 0.97 0.84

Unclear 98.74 98.91

Ever told you have hepatitis C (%) 0.903

Yes 1.64 1.77

No 97.94 97.73

Unclear 0.42 0.51

Ever treated for hepatitis C (%) 0.848

Yes 0.88 1.01

No 0.63 0.76

Unclear 98.48 98.23

Waist Circumference (cm) 99.98± 16.25 100.38± 16.74 0.640

Hip circumference (cm) 106.89± 13.81 107.11± 14.27 0.808

Systolic pressure (mmHg) 124.39± 18.60 124.24± 18.35 0.816

Diastolic pressure (mmHg) 75.06± 11.08 75.44± 11.20 0.470

Sedentary activity (min) 375.01± 713.93 373.22± 657.70 0.493

(Continued)

TABLE 1 (Continued)

Characteristics Training

cohort

Validation

cohort

P-value

Median liver stiffness (Kpa) 5.34± 1.93 5.34± 1.97 0.664

METS-IR 44.19± 12.73 44.70± 13.20 0.264

HOMA-IR 113.52± 144.18 103.53± 246.13 0.128

Mean± SD for continuous variables: P-value was calculated by weighted linear regression

model. % for Categorical variables: P-value as calculated by weighted chi-square test.

the measurement of these indicators did not change during the

time period of this study.

Definition of datasets

The LSM served as the final target to be fitted in our

machine learning models, and the other variables mentioned

above were included as predictor variables in the models. We

build three datasets based on the different predictor variables

incorporated. The three datasets were namedDataset A (without

the insulin resistance-related indexes as predictor variables),

Dataset B (with METS-IR as a predictor variable) and Dataset

C (with HOMA-IR as a predictor variable). In a dataset that

included an index related to insulin resistance, the variables that

appeared in the formula would no longer be included separately

in the dataset.

Statistical analysis

Analysis of all data in this study was performed in

R (http://www.R-project.org) and EmpowerStats (http://www.

empowerstats.com). Continuous variables were expressed as

mean ± standard deviation (SD) and statistical variables

were expressed as percentages. Missing continuous predictor

variables were treated as follows: when the missing value was

<5% of the total sample, the mean was used, otherwise the

continuous variables were grouped and the missing values were

named “Unclear group.” When the missing values were present

in the statistical predictor variables, they were set to “Unclear

group.” XGBoost machine learning models were used to predict

the participants’ LSM. To improve the prediction performance,

we used 100 iterations (n-rounds = 100) of the cross-validation

process in this study. To prevent overfitting, we eliminated

concerns about collinearity between predictor variables based on

the principle of regularization and set the following parameters

to the model: booster = gbtree, objective = reg:linear, learning

rate = 0.3, gamma = 5, max depth = 6, min child weight= 1,
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FIGURE 2

XGBoost machine learning model developed with dataset A in

the training cohort. (A) Relative importance of the top 20

(Continued)

FIGURE 2 (Continued)

predictor variables. (B) Bland-Altman analysis of estimated LSM

(kPa) for real data. The dark blue line in the middle represents

the di�erence between the estimated and true values, and the

light blue lines at the top and bottom represent 95% agreement

limits of the estimated values. Each black point represents a

sample. (C) The fitted plot of estimated and true values after

XGBoost regression. Each black point represents a sample.

lambda = 1, subsample = 1, colsample bytree = 1. The mean-

squared error (MSE), mean absolute error (MAE), root mean-

squared error (RMSE), coefficient of determination (R2), and

Pearson’s correlation coefficient (Pearson’s r) were used to assess

the accuracy of the models. The relative importance of all

predictor variables was calculated by obtaining Gain values and

plotting the top 20 predictor variables with the greatest influence

on the LSM. The relative importance was calculated as (1/Gain

value of top1)∗Gain value of other predictor variables. A Bland-

Altman plot was also generated to show the predicted values

and 95% agreement limits, the scatter plot was used to show the

degree of correlation between the estimated and actual values.

Results

Comparison of training cohort and
validation cohort information

The final number of participants included in this study

was 3,564, with 2,376 in the training cohort and 1,188 in

the validation cohort. The mean LSM value for participants

was 5.34 kPa (range 1.6–15.2) and not statistically significantly

different between both cohorts (p = 0.664), and all predictor

variables were not statistically different between the training and

validation cohorts (Table 1; Supplementary Table 1).

Prediction performance of training
cohort

As previously described, we constructed XGBoost machine

learning models with three datasets (datasets A, B, and C). We

summarized the fitted LSM and the measured LSM values, and

the mean values of the LSM produced by the models fitted to

the three datasets were almost identical. The minimum values

of the LSM produced from the fits using datasets A and B were

closer to the actual LSM, and the maximum values of the LSM

fitted to dataset B were closest to the actual LSM maximum

(Supplementary Table 2). Waist circumference possessed the

greatest relative importance in the XGBoost models generated

for all three datasets, and the relative importance of METS-

IR was more pronounced in the datasets that included insulin

resistance-related indexes (Figures 2A, 3A, 4A).
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FIGURE 3

XGBoost machine learning model developed with dataset B in

the training cohort. (A) Relative importance of the top 20

(Continued)

FIGURE 3 (Continued)

predictor variables. (B) Bland-Altman analysis of estimated LSM

(kPa) for real data. The dark blue line in the middle represents

the di�erence between the estimated and true values, and the

light blue lines at the top and bottom represent 95% agreement

limits of the estimated values. Each black point represents a

sample. (C) The fitted plot of estimated and true values after

XGBoost regression. Each black point represents a sample.

Bland-Altman analysis showed that the difference between

the fitted LSM and the measured values was close to 0 for all

three models, but the standard deviation of dataset C was larger.

The limits of agreement (95%, 1.96 SD) for datasets A, B and C

ranged from (-1.52, 1.52) kPa, (-1.49, 1.48) kPa and (-1.72, 1.72)

kPa, respectively (Figures 2B, 3B, 4B; Table 2).

We evaluated the accuracy and stability of the XGBoost

machine learning models, and the dataset that included METS-

IR showed the best prediction performance and stability among

the three machine learning models (Table 3). The fitted plots

after XGBoost regression were shown in Figures 2C, 3C, 4C,

where the solid black line indicates the perfectly fit reference

line, in which we could observe that most of the predicted values

in the three machine learning models were scattered around the

reference line.

Prediction performance of the validation
cohort

Under the same conditions, we validated the XGBoost

machine learning models described above using the validation

cohort. In the summary table of fitted and actual information, it

was seen that the mean value of the fitted LSM for dataset B was

closest to the actual LSM (Supplementary Table 3). The relative

importance of METS-IR for fitting LSM remained greater than

that of HOMA-IR in the datasets containing insulin resistance-

related indexes (Supplementary Figures 1A, 2A, 3A). Bland-

Altman analysis suggested that the dataset containing METS-IR

still had the best fitting performance for LSM, with the limits

of agreement (95%, 1.96 SD) of (-1.56, 1.56) kPa, and the

dataset A was a better fit for the LSM than dataset C, with

the limits of agreement (95%, 1.96 SD) that was (-1.59, 1.59)

kPa (Table 4; Supplementary Figures 1B, 2B, 3B). The values of

the evaluation metrics were listed in Table 5. Machine learning

model constructed from the dataset containing METS-IR

outperformed other datasets in terms of accuracy and stability.

The machine learning model developed from the dataset

containing METS-IR had the best predictive performance for

LSM. The fitted plots from the XGBoost regression were shown

in Figure 2C, with a larger coefficient between the fitted LSM

and the true value for the dataset containing METS-IR (Table 5;

Supplementary Figures 1C, 2C, 3C).
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FIGURE 4

XGBoost machine learning model developed with dataset C in

the training cohort. (A) Relative importance of the top 20

(Continued)

FIGURE 4 (Continued)

predictor variables. (B) Bland-Altman analysis of estimated LSM

(kPa) for real data. The dark blue line in the middle represents

the di�erence between the estimated and true values, and the

light blue lines at the top and bottom represent 95% agreement

limits of the estimated values. Each black point represents a

sample. (C) The fitted plot of estimated and true values after

XGBoost regression. Each black point represents a sample.

Discussion

The normal human liver is soft and elastic, and an increase

in liver stiffness only occurs when the liver develops on

the basis of chronic substantial injury, a sustained activated

inflammatory response and fibrosis formation, with liver fibrosis

forming by the end stage (29). This suggests that liver fibrosis

is not a single disease, but a common pathological change

caused by the development of many chronic liver diseases

(30). Globally, the most common causes of cirrhosis are non-

alcoholic fatty liver disease (NAFLD) (60%), Hepatitis B virus

(HBV) (29%), Hepatitis C virus (HCV) (9%) and alcohol-

related liver diseases (ALD) (2%) (31). In European countries,

the median prevalence of cirrhosis is 833/100,000, but data

on the prevalence of cirrhosis in other regions are scarce,

especially in areas with limited healthcare resources (32), which

could mean that the global economic and healthcare resource

challenge of cirrhosis is grossly underestimated. Although liver

biopsy can give a definitive answer to a patient’s liver stiffness,

many factors limit the acceptance of this test to a wider group

of patients, especially those with early liver fibrosis without

any clinical symptoms. In order to overcome the limitations

of liver biopsy, non-invasive techniques for assessing liver

stiffness are now becoming increasingly popular. However,

even classical scores such as APRI and FIB-4 still have their

limitations, for example, both scores are biased toward the

pathogenic microorganism causing cirrhosis (hepatitis C virus),

APRI may have insufficient diagnostic value in comparative

studies of various scores (33), and FIB-4 has not yet been

fully validated in all causes of liver fibrosis (e.g., autoimmune

liver disease) (34). In contrast, in our study, participants with

or without a previous history of liver conditions were able to

enter models.

Liver ultrasound transient elastography is a test that

allows assessment of tissue stiffness and permits non-

invasive evaluation of liver fibrosis (35), which does not

serve every patient with early liver fibrosis due to many

factors (e.g., economic factors, geographical factors, patient’s

perception of the disease, etc.). With the spread of artificial

intelligence in medicine, the exploration of the unknown

using AI algorithms is becoming increasingly possible,

and standing on the shoulders of those who have gone

before us, we aimed to use simple information to make
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TABLE 2 95% agreement limits of estimated LSM for three datasets in the training cohort.

Datasets Difference (Predicted-observed) 2.5% Limits 97.5% Limits SD

Dataset A 0.00197 −1.52 1.52 0.76

Dataset B 0.00407 −1.49 1.48 0.74

Dataset C 0 −1.72 1.72 0.86

TABLE 3 Evaluation metric values in the training cohort.

Datasets MSE MAE RMSE R
2 Pearson’s r

Dataset A 0.58 0.58 0.76 0.86 0.93

Dataset B 0.55 0.57 0.74 0.87 0.93

Dataset C 0.74 0.67 0.86 0.83 0.91

TABLE 4 95% agreement limits of estimated LSM for three datasets in the validation cohort.

Datasets Difference (Predicted-observed) 2.5% Limits 97.5% Limits SD

Dataset A 0.00002 −1.59 1.59 0.80

Dataset B 0 −1.56 1.56 0.78

Dataset C 0 −1.78 1.78 0.89

TABLE 5 Evaluation metric values in the validation cohort.

Datasets MSE MAE RMSE R
2 Pearson’s r

Dataset A 0.64 0.61 0.79 0.85 0.92

Dataset B 0.61 0.61 0.78 0.87 0.93

Dataset C 0.79 0.69 0.89 0.83 0.91

predictions about the stiffness of a patient’s liver. To our

knowledge, there was still no relevant study on quantitative

prediction of individual liver stiffness. Atsawarungruangkit

et al. (36) had used a machine learning model to predict

non-alcoholic fatty liver, but in contrast to their study,

our machine learning model did not exclude specific

patient-based diseases and could be generalized in a

wider population.

Based on previous studies, the LSM cut-off values for

cirrhosis severity classes F ≥ F2, F ≥ F3 and F = F4

were 8.2kPa, 9.7kPa and 13.6kPa, respectively (23). In this

study, the mean of the differences between the LSM estimates

and the actual values produced by our fit using dataset B

was 0.047 kPa, and the 95% agreement limits were tightly

controlled to within 1.5 kPa. It suggested that the XGBoost

machine learning models we developed were not only capable

of quantitatively predicting LSM in participants, but also

had good discriminative power when grading the severity of

liver fibrosis.

It is well known that liver fibrosis can lead to the

development of insulin resistance (IR), as liver steatosis may

interfere with the function of hepatocytes, particularly their

ability to respond to changes in insulin levels leading to the

development of IR (25). At the same time, IR can induce

the accumulation of hepatic lipids and the production of

reactive oxygen species (ROS), and these metabolites can

indirectly activate stellate cells and initiate cellular signaling

cascades that trigger the development of liver fibrosis (24).

The potential mechanism between IR and liver fibrosis

could explain the better fitting performance of the datasets

containing METS-IR on participants’ LSM in this study.

In particular, METS-IR has a high relative importance in

machine learning models. The most common direct measure

of insulin resistance is the high insulin/ normoglycaemic clamp

(HEC) technique, which is invasive, complex and impractical.

Calapod et al. (15) previously developed a Logsitic regression

model using HOMA-IR to predict the development of severe

liver fibrosis in diabetic patients. However, HOMA-IR is
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susceptible to the accuracy of insulin measurements and is

poorly reproducible (37). As previously mentioned, METS-IR

is insulin independent and diagnostically superior to other

non-insulin indexes of insulin resistance (17, 38). In this

study, we demonstrated that the dataset containing METS-

IR had better fit efficacy for LSM and that the simpler, more

accurate and more practical nature of METS-IR makes machine

learning models built with METS-IR as predictor variables

better applicable.

In our study, we demonstrated the appropriateness of

using XGBoost machine learning models for predicting LSM

in populations, and also confirmed the advantages of METS-

IR for improving the accuracy and stability of the models.

However, there were still some limitations to our study. First,

some of the information in themedical conditions questionnaire

might be subject to recall bias, such as age at diagnosis of

hypertension and diabetes. However, all of this information

received very low relative importance as predictor variables in

the model, so we believe that such a bias is acceptable. Secondly,

we would not discount the importance of indices such as APRI,

FIB-4, HA, etc., and it would be of great help to our study

to have access to this information, unfortunately the NHANES

database does not currently contain these data. However, the

XGBoost machine learning model uses a monitored learning

algorithm and the inclusion of more valuable predictor variables

into the model will bring the fitted values closer to the true

values (39, 40), suggesting the value of subsequent research to

improve and validate the model developed in this study using a

cohort containing the above information. Finally, in this study

we only validated the machine learning models internally; in

order to make them more applicable, we believe that external

validation is needed, and this will be the direction of our

subsequent research.

Conclusions

In this study, we demonstrated the feasibility of the XGBoost

machine learning model for predicting LSM, and the inclusion

of METS-IR as a predictor variable greatly helped to improve

the accuracy and stability of the model. The XGBoost machine

learning model is similar to a clinician’s black box, and the

subsequent inclusion of more valuable predictor variables will

make the model more worthy of replication.
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