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Phenotypic variation is widespread in natural populations, and can significantly alter population ecology and evolution. Phenotypic

variation often reflects underlying genetic variation, but also manifests via non-heritable mechanisms. For instance, translation er-

rors result in about 10% of cellular proteins carrying altered sequences. Thus, proteome diversification arising from translation

errors can potentially generate phenotypic variability, in turn increasing variability in the fate of cells or of populations. How-

ever, the link between protein diversity and phenotypic variability remains unverified. We manipulated mistranslation levels in

Escherichia coli, and measured phenotypic variability between single cells (individual-level variation), as well as replicate popula-

tions (population-level variation). Monitoring growth and survival, we find that mistranslation indeed increases variation across E.

coli cells, but does not consistently increase variability in growth parameters across replicate populations. Interestingly, although

any deviation from the wild-type (WT) level of mistranslation reduces fitness in an optimal environment, the increased variation

is associated with a survival benefit under stress. Hence, we suggest that mistranslation-induced phenotypic variation can impact

growth and survival and has the potential to alter evolutionary trajectories.
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Non-genetic phenotypic variability has long fascinated biolo-

gists, not least due to its potential evolutionary consequences.

Several aspects of such variation have been analyzed from dis-

tinct perspectives. Perhaps the best-studied form of non-genetic

variation is phenotypic plasticity, when individual phenotype

changes in response to the local environment. Such plasticity is

sometimes adaptive in animals and plants, and has clear conse-

quences for population as well as community ecology and evo-

lution (reviewed in Bolnick et al. 2011; Raffard et al. 2019). In

other cases, only some individuals in a population may respond

to environmental change at a given point of time. The resulting

heterogeneity in the population potentially represents an evolved

bet-hedging strategy, whereby different fractions of the popu-
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lation are better adapted to distinct environments (reviewed in

Ackermann 2015). For instance, some cells in Bacillus subtilis

populations form inactive spores in stressful conditions (Tan and

Ramamurthi 2014), whereas others remain metabolically active.

Under prolonged stress, the spores stand a better chance of sur-

vival; however, if the stress is transient, non-spore formers divide

more rapidly. Finally, rather than specific responses to environ-

mental change, genetically identical cells may have distinct phe-

notypes due to “noise” arising from stochastic variation in gene

expression or errors in transcription and translation (Drummond

and Wilke 2009; Gout et al. 2013; Ackermann 2015; Carey et al.

2018). Such phenotypic heterogeneity has been well studied in

microbial populations, although its evolutionary consequences

are relatively poorly understood (Ackermann 2015; van Boxtel

et al. 2017).

The evolutionary impacts of non-genetic variation are

usually reported either as divergent individual-level outcomes
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Figure 1. Possible impacts of individual or cell-to-cell heterogeneity on individuals and populations. (a) Cell to cell heterogeneity (indi-

cated by cell color) causes variation in individual fitness parameters such as the rate of cell division. (b) Populations that have a large

amount of cell to cell heterogeneity may grow more slowly, because of the phenotypic load generated by slower-dividing cells. (c) Cell

to cell heterogeneity can impact between-population variance due to stochastic effects or diverse cell to cell interactions. As a result,

replicate populations with high individual-level heterogeneity may show more variable growth rates (spread around the mean value)

than replicate homogeneous populations.

(e.g., genetically identical cells with distinct phenotypes may

have different reproductive success; Fig. 1a), or as altered mean

population-level parameters (e.g., heterogeneous populations

may grow more slowly than homogeneous populations; Fig. 1b).

Both are useful from an evolutionary perspective: growth and sur-

vival of individuals ultimately determine trait mean and variance

within the population, and hence the outcome of selection. While

it is clear that variability in single cell growth rates influences

population growth, the impact and direction of this influence

remains debated. For example, some models show that variabil-

ity in single cell growth rates can decrease average population

growth rate (Lin and Amir 2017), whereas other models find

that increased noise in single cell growth rate results in higher

mean population growth rate (Hashimoto et al. 2016). However,

non-genetic variation could alter not only average population per-

formance, but also the variance in population-level parameters.

For instance, replicate populations with high individual-level

heterogeneity may have more variable average growth rates than

replicate homogeneous populations (Fig. 1c). This may occur

due to stochastic effects in each replicate; correlated mother and
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daughter cell division times across generations that mimic her-

itability and hence perpetuate across generations (Lin and Amir

2017); or due to divergent outcomes of interactions between in-

dividuals in each population. Thus, despite similar initial hetero-

geneity within each replicate, the population level outcomes may

be divergent (right-hand plot in Fig. 1c). Such effects on variance

are important to measure, because the higher variance in evolu-

tionary outcomes between populations reduces the repeatability

(and hence predictability) of evolutionary dynamics. However,

the potential impact of between-individual phenotypic hetero-

geneity on the variance in population-level parameters remains

unexplored. Hence, it is unclear whether a mechanism that gen-

erates individual-level variation (i.e. between cells or organisms)

also consistently generates divergent population-level outcomes.

From a mechanistic perspective, translation errors are espe-

cially interesting because they are an inescapable aspect of the

biology of all life forms, and they occur at a high rate. For in-

stance, in Escherichia coli, about 10% of dihydrofolate reductase

enzyme molecules differ from the native sequence of the protein

(Ruan et al. 2008). The typical mistranslation rate is ∼1 in 104

incorrect amino acids in a growing protein chain, increasing to as

high as 1 in 103 amino acids under stress (Ribas de Pouplana et al.

2014; Mordret et al. 2019). Such high error rates can generate

significant proteome diversity (Nakahigashi et al. 2016; Mordret

et al. 2019). Importantly, unlike many other forms of non-genetic

variability in microbes – such as spore formation and persister

cells (Ackerman 2015) – mistranslation can generate continuous

(rather than binary) phenotypic variation, allowing a more fine-

tuned response to diverse stresses. Such continuous variation in

protein quality or quantity can reliably generate large phenotypic

variability, as seen with the heat shock protein Hsp90 (Cowen and

Lindquist 2005) and prions (Halfmann et al. 2012), which in turn

can determine survival in a new environment (Novick and Weiner

1957) (reviewed in Samhita 2020). Therefore, it is speculated that

mistranslation-induced non-genetic variation may generate sub-

stantial phenotypic variability, potentially altering the outcome

of natural selection (Miranda et al. 2013; van Boxtel et al. 2017;

reviewed in Samhita 2020).

However, postulating a general hypothesis about the evo-

lutionary consequences of mistranslation-induced variation re-

quires consideration of multiple nuances. First, proteome diver-

sity is visible to natural selection only if it leads to phenotypic

diversity in traits that influence fitness. Given various buffering

mechanisms driven by chaperones and the degradation of mis-

translated products (Bratulic et al. 2015; Kalapis et al. 2015),

protein diversity may not always generate phenotypic diversity.

Hence, in the absence of this link, proteome diversity is of little

evolutionary consequence. Second, the effects of mistranslation

are inherently unpredictable and not heritable, weakening the po-

tential for long-term consequences. In microbes such as E. coli,

proteome diversity has limited across-generation persistence due

to protein dilution at cell division. Hence, favorable mistranslated

protein variants may never be sampled again, limiting their effect

on evolutionary dynamics. Finally, in a constant optimal environ-

ment, populations should face stabilizing selection. This means

that any mechanism that generates increased variability between

individuals is likely to move them away from the optimal pheno-

type, creating a “phenotypic load.” Therefore, if mistranslation

increases cell to cell variability, it is likely to be adaptive pri-

marily under directional or disruptive selection, such as might be

imposed in a new environment or under stress. In contrast, in a

constant environment, mistranslation is more likely to be mal-

adaptive. These limitations of the evolutionary consequences of

mistranslation remain largely untested. Previous work shows that

increased mistranslation can generate diversity in cell morphol-

ogy and cell surface receptors (Bezerra et al. 2013; Miranda et al.

2013). However, experimental evidence directly linking mistrans-

lation with phenotypic variation relevant to fitness is rare.

Here, we tested whether altering mistranslation levels in E.

coli impacts variability at both single cell and population lev-

els, in phenotypes relevant for growth and survival. We increased

the basal level of mistranslation in wild type (WT) cells by in-

troducing mutations in translation components or by changing

the growth environment. Recently, we showed that generalized

mistranslation increases mean population survival under specific

stresses (Samhita et al. 2020). However, we had not explored

whether mistranslation generates phenotypic variability that in-

fluences both cell and population fitness, and in optimal as well

as stressful environments. Here, we find that mistranslation in-

deed increases phenotypic diversity in E. coli at the single cell

level, and that suppressing mistranslation via hyper-accurate ri-

bosomes reduces this variability. However, increased single-cell

variability did not always affect variability in population level

growth parameters. Importantly, while mistranslation-associated

variability is costly in optimal conditions, it increases survival

under stress; and this effect is observed even with a transient in-

crease in mistranslation. Thus, mistranslation indeed results in

phenotypic diversification across cells, and this diversity is di-

rectly correlated with survival under stress.

RESULTS
MISTRANSLATION CONSISTENTLY INCREASES

CELL-TO-CELL BUT NOT BETWEEN-POPULATION

VARIABILITY IN GROWTH AND DIVISION TIME

To test the impact of mistranslation on phenotypic variation,

we manipulated basal mistranslation levels and measured divi-

sion time and cell length of GFP-tagged, isolated single cells

in a microfluidics device (Fig. 2a). Cell division time is a key

proxy for fitness under optimal growth conditions, and changes
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Figure 2. Mistranslation increases cell-to-cell variability in

growth and division time: We injected ∼105 cells of the indicated

strains into a microfluidic device designed for single cell tracking,

and monitored cell growth and cell length under the microscope.

(a) Schematic of the microfluidics device showing GFP tagged

E. coli single cells growing and dividing in channels within the

device. (b–e) Probability density functions for cell length and

division time of single cells as monitored in the microfluidics

device. Wider distributions indicate greater cell-to-cell variation.

Total number of cells (n) is indicated within parentheses in the

key. WT = wild type; HA = hyper-accurate. (f–i) Estimates of mean

and variance of single cell division time and birth length obtained

from bootstrap analysis (n = 106), with SD values. In some cases,

the SD value is too small to be visible.

in cell length are predictive of the physiological state of a cell

(Wehrens et al. 2018). We genetically increased mistranslation

levels in our WT E. coli, generating the “Mutant”: a strain with

depleted initiator tRNA content that has increased mistranslation

rate (Samhita et al. 2013). Conversely, we reduced mistransla-

tion rate by introducing a mutation in the ribosomal protein S12

of both WT and Mutant strains, creating the strains WT(HA) and

Mutant(HA) (“hyper-accurate” strains, see Methods and Table 1).

Other than these genetic manipulations, we also increased mis-

translation rates by adding the amino acid analogs canavanine or

norleucine, or the antibiotic streptomycin to the growth medium.

In each case, we measured phenotypic variability across cells and

across populations. Because data were not normally distributed,

we compared distributions for spread around the median using

the Fligner-Killeen test. The comparison accounts for central ten-

dency (median) as well as sample size, and reports whether two

distributions have similar variability. To infer the direction of the

difference, we used the range of the data in both distributions.

As predicted, all methods of increasing mistranslation in-

creased cell-to-cell variation in the time to division (Fig. 2b–

c; Fligner Killeen test: Mutant >WT, Χ2 = 9, p < 0.0001;

WTcan>WT, Χ2 = 84.9, p < 0.0001; WTnor>WT, Χ2 = 54.1, p <

0.0001; WTstrp>WT, Χ2 = 32.6, p < 0.0001; Table S1) and most

led to increased cell size variability (Fig. 2d–e; Fligner Killeen

test: Mutant>WT, Χ2 = 86.9, p < 0.0001; WTcan<WT, Χ2 =
46.4, p < 0.0001; WTnor>WT, Χ2 = 58.5, p < 0.0001; WT vs

WTstrp, ns, Χ2 = 1.5, p = 0.2; Table S1). Conversely, reducing

mistranslation via hyper-accurate ribosomes reduced variability

in cell size but not division time of the WT, and did not reduce

either phenotype in the Mutant (Fig. 2b and d; see Table S1).

Similar results were obtained at slightly different temperatures

(35°C and 39°C; Fig. S2 and Table S1). In the analyses described

above, for each strain, we pooled data across ∼60 channels of the

microfluidics device (each with a single, original mother cell) and

∼600 divisions. To confirm that this pooling did not end up aver-

aging differences across generations, we re-analyzed data focus-

ing only on the first three divisions of each mother cell (∼60 cells

in total); and found similar results (Fig. S3). In addition, bootstrap

analysis of each dataset at 37°C showed a high degree of conver-

gence in the estimates of mean and variance in time to division

and cell length (Fig. S4). Because each single cell effectively rep-

resents an independent cellular lineage in the mother machine,

the bootstrapped samples represent multiple sets of “replicate

populations.” All pairwise comparisons of means and variance

from the bootstrap analysis were significant (Tukey’s HSD ac-

counting for multiple comparisons, adjusted p-value < 0.001),

indicating that the patterns reported above are robust (Fig. 2f–g).

Thus, our microfluidics experiments show that mistranslation di-

rectly increases single-cell phenotypic variability in growth and

division time.
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Table 1. Strains.

Common name used in the text Strain Genotype/details Reference

WT KL16 E. coli K-12, thi1, relA1, spoT1 (Low 1968)
Mutant KL16ΔZWV Derivative of KL16 lacking three

initiator tRNA genes, metZ, metW and
metV

(Samhita et al. 2012)

WT(HA) KL16rpsL Derivative of KL16 with an additional
mutation in rpsL (K42R)

This study

Mutant(HA) KL16ΔZWVrpsL Derivative of KL16ΔZWV with an
additional mutation in rpsL (K42R)

This study

Next, we examined the consequences of mistranslation on

variability at the population level. We compared growth curves

of ∼40 replicate populations per strain/condition (Fig. S5), to

test whether cell to cell variability manifests at the population

level in growth parameters of mistranslating strains, as discussed

in the Introduction. Our single cell measurements agree with pre-

vious observations of poor correlation between the division times

of mother and daughter cells (Fig. S3) in E. coli (Hashimoto et al.

2016). For this reason, we hypothesized that mistranslation may

not increase variability in population-level growth parameters,

unlike our observations across single cells. We measured four

growth parameters: population aggregate doubling time, growth

rate, growth yield, and lag time. Of these, population doubling

time distributions can be compared directly with their respec-

tive single cell division time distributions, because they measure

the same underlying trait. While we expect growth rate, growth

yield, and lag time to be influenced by differences in division

time and cell length, they do not correspond directly to the traits

measured at the single-cell level. In the case of doubling time,

the results for population-level growth indeed mirrored our ob-

servations for single cell variation: mistranslation level signif-

icantly affected between-population variability in all cases ex-

cept WT vs. WT(nor) and Mutant vs. Mutant (HA) (Fig. 3a).

Interestingly, increasing mistranslation did not increase between-

population variability in growth rate, lag time, or growth yield ex-

cept for the influence of streptomycin and norleucine on growth

yield (Fig. 3, Fig. S6; Table S1). Contrary to expectation, re-

ducing mistranslation through hyper-accurate ribosomes also in-

creased variability in the WT lag time and in all three parameters

for the Mutant (Fig. 3; Table S1). Thus, in contrast to single-cell

variability, mistranslation did not consistently affect variability in

population-level growth parameters.

MISTRANSLATION IS COSTLY UNDER NORMAL

CONDITIONS

In addition to affecting variability in single-cell growth pa-

rameters, altering mistranslation levels often incurred a cost.

At the single cell level, median time to division increased

significantly with higher mistranslation, although reducing

mistranslation had no effect (e.g. WT: 36 min, Mutant: 62 min;

Mann-Whitney test, U = 45832, p < 0.001; Fig. 2b, c, h; Table

S1). Increased mistranslation also increased cell length in most

cases (Fig 2d, e, i; WT 2.4 µm versus Mutant 2.7 µm, Mann-

Whitney test, U = 586570, p < 0.0001; other comparisons in

Table S1), whereas reducing WT mistranslation through hyper-

accurate ribosomes decreased cell length (WT 2.4 vs WT(HA)

2.2 µm, Mann-Whitney test, U = 710144, p < 0.001). Increased

cell length might partly account for greater division times of

mistranslating strains, although we did not explicitly test this.

Note that while increased cell length is associated with stress-

ful conditions (Wehrens et al. 2018), it is not clear if longer

cells are necessarily costly here, given the associated increase

in biomass. These patterns at the single-cell level were also

reflected in population-level parameters. Populations with either

increased or decreased mistranslation relative to WT had longer

doubling time, lower growth rate, and greater lag time for the

most part; although growth yield did not change consistently

(compare median values in Fig. 3a and c; also see Fig. S7, S8 and

Table S1). Overall, mistranslating cells were longer and divided

more slowly than the WT, and mistranslating populations showed

slower growth; suggesting a cost of mistranslation.

MISTRANSLATION INCREASES POPULATION

SURVIVAL UNDER STRESS

Although costly under normal conditions, previous studies sug-

gest that mistranslation often confers a benefit under stress at

the population level (reviewed in Mohler and Ibba 2017). We

therefore examined the impact of two stresses – high tempera-

ture (42°C) and starvation (Koch 1971; van Elsas et al. 2011) –

on single cell and on population growth parameters. Both WT

and Mutant single cells divided faster at 42°C than at 37°C, but

the increase was much larger in the Mutant (compare Fig. 4a

vs. Fig. 2b; median division time WT (42°C): 28 min vs. WT

(37°C): 36 min, Mann-Whitney test, U = 89652, p < 0.0001;

Mutant (42°C): 38 min versus Mutant (37°C): 62 min, U =
66956, p < 0.0001). Thus, the cost of mistranslation decreased
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Figure 3. Mistranslation does not impact variability in growth parameters across replicate populations: Violin plots showing the dis-

tribution of three population growth parameters, estimated using ∼40 (37 to 44) biological replicates (populations) for each strain or

growth condition. (a) Doubling time, (b) growth yield. and (c) lag time (time until culture reaches OD600 ∼0.02). Median, 25th and 75th

quartiles are indicated by solid lines within each violin. The length of each violin corresponds to the range of the distribution. Asterisks

indicate significant differences in variability. WT = wild type; HA = hyper-accurate.

at high temperature; but the Mutant still took longer to divide

than the WT (median division time: Mutant 38 min vs. WT

28 min, Mann-Whitney test, U = 123307, p < 0.0001). At 42°C,

reducing mistranslation rate was also slightly costly for the Mu-

tant (median division time: Mutant (HA) 40 min, Mutant 38 min,

Mann-Whitney test, U = 149832, p = 0.003), and more so for the

WT (median division time WT(HA) 34 min >WT 28 min, Mann-

Whitney test, U = 118457, p < 0.0001; Fig. 4a). As at 37°C,

parameter estimates from bootstrap analysis indicate that these

results are robust (Fig. S9 and Table S1). Overall, an increase in

temperature reduced the cost of slow growth and mistranslation

(as measured by division time difference) in the Mutant, but did

not give it a growth advantage over the WT. All else being equal,

division time is a good measure of fitness in actively dividing

cells; but once cells enter stationary phase, division rate decreases

and growth rate no longer determines competitive fitness. We,

therefore, examined longer-term survival as a population level

fitness measure, assessing total viable counts in 48 h (stationary

phase) cultures exposed to high temperature. Across populations,

mutant survivability was higher than WT at both 37°C and 42°C,

with a stronger effect at 42°C (Fig. 4b; Table S1). Thus, mistrans-

lation was either beneficial (or less costly compared to WT) for

cells and populations exposed to high-temperature stress.

Next, we tested cell survival under starvation stress. We

introduced diluted overnight cultures in the microfluidics de-

vice, allowed cells to enter mid-log phase and then added saline

(0.85% NaCl) instead of growth medium, to test whether Mutant

and WT had different rates of cell death in the absence of nutri-

ents (where no cell division can occur). We did this across three

independent experimental blocks, sampling ∼650 cells of WT

and Mutant each in total (Fig. S10). After 10 h, in each block, a

larger fraction of WT cells died (on average ∼19% WT cells died,

while only ∼4% Mutant cells died, WT>Mutant, t-test, t = 14.3,

p < 0.0001); suggesting that the Mutant is more robust to a lack
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Figure 4. Mistranslation increases survival under stress: (a) Frequency distributions of division time of single cells of different strains

monitored in the microfluidics device at 42°C. The center of each bin (class interval) is 5 units, and each such point is connected to the next

one by a line. WT = wild type; HA = hyper-accurate. (b) Total viable counts (estimated by dilution plating) in WT and Mutant cultures

(n = 9) grown for 48 h (late stationary phase) at 37°C or 42°C. Numbers indicate median viable counts in each case. (c–d) Distribution of

division time and cell length of single WT cells that subsequently either survived (live cells, n = 86) or died (dead cells, n = 31) after being

starved of nutrients for ∼10 h, in saline. Overall, WT cells had a higher fraction of dead cells than the Mutant (see Results).

of nutrients. To test whether dead cells were more likely to have a

specific cellular phenotype, we retrospectively measured the time

to division and cell length of 31 dead cells and 86 live cells of WT

from one block. Interestingly, both surviving and dead cells were

drawn from across the original distribution of cell length and di-

vision time (Fig. 4c–d), indicating that survival was not linked

to these specific aspects of cellular level heterogeneity. We could

not do a similar analysis for the Mutant, due to the small number

of dead cells. Our results suggest that mistranslation increases

cell survival under starvation-induced stress; but that the survival

is not directly connected to the indicators of cellular phenotype

that we measured.

Lastly, we assessed the impact of mistranslation on popula-

tion survival using competitive fitness. We allowed WT to com-

pete with its hyper-accurate derivative or with the Mutant, using

actively growing (log phase) or stationary phase cultures (under

starvation) as a starting point. As expected from their relative log

phase growth rates (Fig. 3a), WT outcompeted both the mutant

and the hyper-accurate strains (Fig. 5a and b; Fig. S11). However,

when competing in stationary phase, Mutant had comparable or

marginally higher fitness than the WT, both at 37°C and 42°C

(Fig. 5c and d). Thus, both increasing or decreasing mistransla-

tion levels in the WT imposed a fitness cost in nutrient-rich con-

ditions when rapid growth is favored. In contrast, under stress,

cells with higher mistranslation rates could either co-exist with

or perform slightly better than cells with a lower mistranslation

rate. Together, our results indicate that mistranslation is costly for

growth under optimal conditions, but is often beneficial for sur-

vival under stress, at the single cell as well as population levels.

THE DEGREE OF MISTRANSLATION DOES NOT

CORRELATE WITH BETWEEN-POPULATION

VARIABILITY

While single-cell variability clearly increased with mistransla-

tion, population-level variability did not show a clear correlation.

To tease apart the role of mistranslation in generating population

variability, we exposed WT cells to a gradient of mistranslation,

by treating them with increasing concentrations of mistranslating

EVOLUTION MAY 2021 1207



L. SAMHITA ET AL.

Figure 5. Mistranslation is costly under optimal conditions but beneficial under stress: (a–b) Cell survival as a function of time, during

pairwise competition in the log phase of growth at 37°C. We mixed log-phase cultures (OD600∼0.6) of two strains (as indicated) in LB, and

plated aliquots on MacConkey’s agar to estimate survival of each strain. Data for a representative block for each case are shown here;

other blocks are shown in Fig. S10. (c) Cell survival as a function of time, during pairwise competition in the stationary phase of growth

at 37°C. We allowed WT and Mutant cultures to grow independently for 48 h in LB medium and then mixed them to assess competition

in late stationary phase. Data for a representative experimental block for each case are shown here; other blocks are shown in Fig. S10.

(d) Cell survival as a function of time, during pairwise competition in the log phase of growth at 42°C.

agents (canavanine, norleucine, or streptomycin). We expected

that across-replicate variability in population growth rate, yield,

and lag time (estimated using the interquartile range of each

parameter) would increase monotonically with increasing mis-

translation. However, we found that the degree of mistranslation

was not strongly correlated with either the median trait val-

ues (Fig. 6a–c) or the variability across replicates (Fig. 6d–f).

Furthermore, the patterns varied across mistranslating agents,

potentially driven by the specific mode of action of each agent, or

its impact on other cellular processes unrelated to mistranslation

(see Discussion).

A BRIEF BURST OF MISTRANSLATION IS SUFFICIENT

TO INCREASE SUBSEQUENT POPULATION SURVIVAL

In the experiments described so far, we maintained a constant

level of mistranslation throughout the course of the experiment,

because mistranslation generates fresh phenotypic variability in

each generation. As discussed in the Introduction, without such

renewal, the impact of initial mistranslation should diminish over

successive generations. However, proteome changes can be trans-

ferred across generations in other ways, such as through protein

aggregates (Govers et al. 2018). We therefore asked whether a

brief pulse of mistranslation can alter subsequent cell viability,

and whether this effect scales with the degree of initial mistrans-

lation, both under normal growth conditions and under stress

(high temperature). We kept the window of exposure to the stress

to within 2 doubling times of the slowest strain (∼2 h), so that

any effects we observed were solely due to the mistranslating

agent and not confounded by subsequent selection for survivors.

We also ensured that the concentrations of mistranslating agents

and the magnitude of the stress used did not cause any cell death

within this window.

We found that briefly exposing cells to increasing concen-

trations of canavanine, norleucine or streptomycin increased

survival on LB agar at 37°C (Fig. 7a), consistent with our prior

observations with the Mutant (Fig. 4b and Fig. 5c and d). Strepto-

mycin was an interesting outlier, with an intermediate concentra-

tion consistently maximizing survival. We speculate that this con-

centration indicates a threshold beyond which the toxic effects of

mistranslation overwhelm its benefits. With increasing concen-

trations of mistranslating agents, as before (Fig. 6a–c), we did not

find a consistent trend towards higher median survival, except

with streptomycin (linear regression: WTnor, R2 = 0.005, P =
0.4; WTcan, R2 = 0.05, p = 0.18; WTstrp, R2 = 0.4, p = 0.0004).
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Figure 6. Variability in growth parameters across populations is not correlated with degree of mistranslation: (a–c) Median values for

population growth rate, growth yield (ODmax600) and lag time (time until culture reaches OD600 ∼0.02) as estimated from raw growth

curves for WT populations treated with four concentrations of canavanine, norleucine or streptomycin (n∼40, 37 to 44 per treatment).

(d–f) Variability in population growth parameters across biological replicates (n∼40, 37 to 44), estimated using the difference between

the 75th and 25th percentile values for each parameter. Linear regression for variability in growth rate as a function of canavanine,

norleucine or streptomycin concentration: R2 = 0.5, 0.3 and 0.3; for ODmax: R2 = 0.8, 0.28 and 0.48; for lag time: R2 = 0.02, 0 and 0.6

respectively. In all panels, untreated WT is indicated as zero concentration.

Surprisingly, at 42°C, none of the treatments significantly in-

creased mean survival as compared with the WT (Fig. 7b). Again,

survival increased with increasing concentration of streptomycin,

but the other mistranslating agents did not have this effect (linear

regression: WTnor, R2 = 0.001, p = 0.9; WTcan, R2 = 0.03,

p = 0.6; WTstrp, R2 = 0.6, p = 0.02). Part of the reason for

the lack of difference at 42°C could be the small sample size.

For logistical reasons (see Methods), we could not increase our
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Figure 7. A brief burst of mistranslation enhances survival under

optimal conditions. (a) Effect of treatment with different concen-

trations of canavanine, norleucine, or streptomycin on viable cell

counts at 37°C (n = 10 per concentration). We treated log phase

cultures (OD600∼0.6) of each strain with three concentrations of

each mistranslating agent as indicated, for 2 h. Cells were then

spun down, washed and dilution plated followed by incubation

at 37°C for 24 h. (b) Effect of a brief exposure to different concen-

trations of canavanine, norleucine or streptomycin on cell survival

at 42°C (n = 3 per concentration). We treated cells as above; then

spun down, washed, and incubated them at 42°C for a further 2

hours in fresh medium. To calculate fold change in survival due to

high temperature, we dilution plated and incubated cells at 37°C

for 24 h. Horizontal bars indicate median values in both panels.

Asterisks indicate significant differences in the median values.

sample size at 42°C; given the large variability across replicates,

we may thus have limited power to detect a correlation.

Overall, as with population growth parameters (Fig. 6), there

was no clear correlation between the extent of mistranslation

and magnitude of the survival benefit at the population level.

However, a brief increase in mistranslation did increase subse-

quent survival. In conjunction with previous results (Fig. 4b and

Fig. 5c and d), these results suggest that mistranslation has the

potential to influence longer-term population and evolutionary

dynamics.

DISCUSSION
Translational errors have been intensively studied by molecular

biologists, leading to a detailed understanding of their causes

and immediate cellular consequences (Kramer and Farabaugh

2007; reviewed in Ribas de Pouplana et al. 2014). At the same

time, evolutionary biologists have analyzed the broader conse-

quences of errors in cellular processes for non-genetic adap-

tation (Whitehead et al. 2008; Evans et al. 2018; reviewed

in Samhita 2020). However, these two perspectives have only

rarely been connected, resulting in poor empirical understand-

ing of the possible role of mistranslation for survival and

adaptation in new environments. By directly manipulating mis-

translation rates in multiple ways, we provide clear empiri-

cal evidence that mistranslation introduces phenotypic variabil-

ity across cells; but does not consistently introduce variabil-

ity across populations. Furthermore, cell-to-cell variability has

environment-dependent impacts on fitness: altering WT mis-

translation rates in either direction is deleterious under optimal

conditions, whereas mistranslation-induced variation is associ-

ated with improved survival under stress (Fig. 8). Recently, us-

ing the same manipulations, we showed that global mistransla-

tion increases survival under at least two stresses, DNA damage

and high temperature (Samhita et al. 2020). Together, these re-

sults show that mistranslation-induced variability has the poten-

tial to significantly alter ecological and evolutionary dynamics of

populations.

Note that although mistranslation generated variability, it

was difficult to establish whether the variability itself was di-

rectly responsible for growth and survival benefits; or whether

these benefits arose due to secondary effects of mistranslation

(see discussion below). It is also tempting to speculate that the

increased variability leads to a bet hedging strategy, that is, a spe-

cific sub-population within a heterogeneous population performs

best in a new environment (for example, cells with the high-

est growth rates, at one end of the distribution). If so, a parent

population that lacks such a sub-population would be at a dis-

advantage. However, our single cell experiments do not support

such a bet hedging strategy within the fitness parameters that we

measured: cells that survived starvation were not drawn from a

specific region of the overall distribution of cell size and time to

division (Fig. 4c–d). It is still possible that mistranslating cells do

sample a specific sub-population and exhibit bet hedging, with

reference to some other phenotype that we have not tested; for
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Figure 8. Summary of the impact of mistranslation-induced variability on fitness.

example, the expression level of a specific protein. Further ex-

periments are necessary to test whether (and under what condi-

tions) mistranslation-induced single-cell variability may serve as

a general bet-hedging strategy, or consistently increase popula-

tion growth or survival.

Interestingly, within-population variability did appear to

generate across-population variability in doubling time – the

one growth phenotype with the same underlying trait at both the

single-cell and population levels. For the other population-level

parameters which are likely to be influenced by single cell

division time (but do not measure the same trait), we found that

despite the significant between-cell variation introduced by mis-

translation, population behavior largely remains repeatable (and

hence predictable). What explains this discrepancy? It is possible

that averaging across several single cell distributions may hide

the underlying variability. For example in our case, mistranslat-

ing cells have more variable division times. If all populations

consistently generate the same set of alternate proteomes (or

distribution of division times), then we would not see significant

variation across replicate populations. Alternatively, selection

during the population growth cycle may ensure that only the

fastest-growing cells contribute to population growth rate, re-

ducing the magnitude of variation across replicate populations.

This is plausible because increased cell-to-cell variability in

specific phenotypes (in our case, cell length and division time)

also increases the number of cells with a sub-optimal phenotype.

In an unchanging or optimal environment, such maladapted cells

decrease the mean trait value, leading to reduced population

growth rate (Fig. 8) (Lin and Amir 2017). However, this would

mean that there is some degree of correlation across successive

divisions, perhaps in a phenotype other than time to division.

Indeed, in fluctuating or stressful environments, both model pre-

dictions (Zhuravel et al. 2010) and prior observations (Levy et al.

2012) suggest that cell to cell variability can be beneficial, and

hence likely to persist. Thus, it is possible that under fluctuating

environments, cell-to-cell variation leads to increased variance

across population fates. Further work – including modeling

efforts – may help to distinguish between these possibilities, and
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resolve conditions under which single-cell (between-individual)

heterogeneity should also increase between-population variance.

Our results indicate that the underlying cause of mistrans-

lation may play a large role in determining the impact of

mistranslation-induced variability. The effect of mistranslation

varied depending on the mechanism used to increase mistrans-

lation, as well as across different population growth parameters

(doubling time, growth rate, yield, and lag time). These inconsis-

tencies could stem from multiple factors. i) Each environmental

manipulation (canavanine, norleucine, streptomycin) affects dif-

ferent sets of proteins. For example, canavanine and norleucine

should respectively alter proteins rich in arginine and methion-

ine; while streptomycin has a global effect, impacting all protein

production. This may also explain why streptomycin tended to in-

crease variability in all population parameters measured (Fig. 6f).

The initiator tRNA depleted Mutant also causes global mistrans-

lation, but through non-AUG initiation, whose effects are ex-

pected to differ from that of streptomycin. Finally, hyper-accurate

ribosomes reduce the chances of codon-anticodon mispairing,

and so do not directly reverse the mistranslation caused by tRNA

depletion. As such, they are not expected to cause the Mutant to

revert to the WT phenotype. ii) Secondary impacts unrelated to

mistranslation may complicate the relationship between the de-

gree of mistranslation and phenotypic variability. For example,

in addition to inducing mistranslation, norleucine also inhibits

DNA methylation and methionine biosynthesis (Bogosian et al.

1989). Hyper-accurate ribosomes are expected to drop off more

often during translation (Karimi and Ehrenberg 1994), potentially

increasing variability in the number of actively dividing cells at

any given time, and altering lag time. We observed an inconsis-

tent pattern of variability in the hyper-accurate versus the WT

and Mutant strains. Lag time across population replicates was

more variable than in the parent strain both in the WT and Mu-

tant hyper-accurate derivatives (Fig. 3e). In addition, WT single-

cell data show tighter distributions for division time but not cell

length in hyper-accurate strains as compared with their parent

strains (Fig. 2b–c, Table S1). Given the complex underlying re-

lationships, it is perhaps not surprising that we do not see a con-

sistent trend linking various causes of mistranslation with pheno-

typic variability. Thus, our work identifies the mechanistic basis

of mistranslation as an important factor to understand the pheno-

typic effects of mistranslation.

Our work addresses gaps in prior work, broadening our

understanding of the potential role of mistranslation in evolu-

tionary dynamics. Previous studies found that mistranslation is

correlated with variability in phenotype (Bacher et al. 2007;

Bezerra et al. 2013) but could not establish a causal link. Oth-

ers identified specific mechanisms that increased stress resistance

under global mistranslation mediated by altered proteomes (Fan

et al. 2015), but did not establish whether this relied on a general

increase in phenotypic variability. In our work, it is reasonable

to assume that a “statistical proteome” is generated in each mu-

tant cell as a result of mistranslation (Winther and Gerdes 2011;

Samhita et al. 2013). Depleting initiator tRNA content (as in our

mutant) can alter the cellular proteome in various ways: via non-

AUG initiation (Winther and Gerdes 2011; Samhita et al. 2013),

ribosome alterations (Shetty and Varshney 2016), or by simply

lowering translation rates (Samhita et al. 2014), potentially lead-

ing to instantaneous changes in global transcript as well as pro-

tein levels. We show that completely different mechanisms of

mistranslation (non-AUG initiation accompanied by decreased

translation; replacing an amino acid with a non-native analog;

increasing decoding errors) all converge on the pattern of in-

creased variability in growth and survival. Thus, the potentially

varied and specific mechanisms linking various forms of mis-

translation to phenotypic variation ultimately achieve the same

endpoint under stress: an increased probability of population sur-

vival. In addition, compared to prior work, our results are some-

what more applicable to E. coli function and evolution in natu-

ral ecosystems. For instance, the ecological relevance of genetic

manipulations used in prior work (such as mutations in the ribo-

somal protein S4 (Fan et al. 2015; Bratulic et al. 2017)) is un-

clear. In contrast, translation – and specifically translation initi-

ation – is reduced in response to several environmental stresses

(Nagase et al. 1988; Winther and Gerdes 2011; Watanabe et al.

2013), creating a cellular environment analogous to that of our

mistranslating mutant with reduced initiator tRNA. Second, we

used two stressful conditions – starvation and high temperature

– that lead to increased cell death in E.coli and are thought to

be encountered by E.coli in its natural habitat (reviewed in Koch

1971; van Elsas et al. 2011). Finally, we measured the impact

of mistranslation on cell growth and survival, which are key pa-

rameters governing microbial ecological and evolutionary dy-

namics and have significant repercussions for genome structure

and evolution (Roller et al. 2016). Thus, we speculate that cells

could modulate mistranslation levels as a generalized, global re-

sponse to multiple stressful conditions that they encounter in

nature.

In closing, we note that our results lead to a number of

interesting open questions. For instance, while we observe that

mistranslation reliably generates variability, we do not know

if the same variants are re-generated across generations; pre-

cisely which variants survive under each stressful condition; and

whether this is predictable across environments. More work is

also needed to clarify whether advantageous variants pave the

way for the phenotype to be fixed by mutation, as suggested

previously (Cowen and Lindquist 2005; Whitehead et al. 2008).

Finally, while our experiments inform about the short-term im-

pact of altering mistranslation, the longer-term impacts of mis-

translation need to be investigated further. For instance, recent
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work showed that a mistranslating strain fixes distinct sets of ben-

eficial mutations during laboratory adaptation to antibiotic stress

(Bratulic et al. 2017). It would be exciting if these results could be

generalized across various stresses and forms of mistranslation.

Here, we have built a foundation to address these questions by

demonstrating that mistranslation can influence short-term popu-

lation trajectories and set the stage for longer-term evolutionary

consequences.

MATERIALS AND METHODS
BACTERIAL STRAINS

To manipulate mistranslation levels in wild type (WT) KL16 E.

coli cells (Low 1968), we used two genetically altered deriva-

tives of the WT. As our focal ‘mistranslating’ strain, we used

the KLΔZWV strain (henceforth ‘mutant’), which lacks three of

the four initiator tRNA genes encoded by E. coli (Samhita et al.

2013). Initiator tRNA acts only at the first step of protein syn-

thesis and has no substitute (Gualerzi and Pon 2015). Since the

mutant carries ∼25% of the WT initiator tRNA complement, it

has a lower rate of protein synthesis, a ∼20% slower growth rate

than the WT (Samhita et al. 2020), and mistranslates through

non-AUG initiation (Samhita et al. 2013). In contrast, to reduce

mistranslation rates in the WT, we introduced a mutation (K42R)

in the protein S12 that increases translation accuracy by reducing

the frequency of decoding errors (Chumpolkulwong et al. 2004).

We transferred this mutation into KL16 and KLΔZWV from the

parent strain SS3242 obtained from CGSC, Yale University, via

P1 transduction, generating strains KL(HA) and KLΔZWV(HA),

referred to as WT(HA) and Mutant(HA) in the text. The mu-

tation led to an ∼10-fold increase in translation accuracy both

in the WT and in the Mutant (Samhita et al. 2020). Note that

the introduction of hyper-accurate ribosomes will not reverse the

non-AUG initiation seen in the Mutant strain; however, it lowers

overall background mistranslation levels by reducing decoding

errors, as mentioned above. For single-cell variability measure-

ments, we used WT and mutant strains carrying a genomically

encoded, constitutively expressed GFPmut2 allele tagged with

a kanamycin resistance marker inserted between the genes aidB

and yjfN, and expressed from a P5 promoter (original strain gifted

by Prof Bianca Sclavi, ENS, Paris). All strains and genotypes are

listed in Table 1.

GROWTH CONDITIONS AND MEDIA

When generating strains or to simulate control (normal growth)

conditions, we grew bacterial cultures in Luria Bertani medium

(LB) or on LB-agar plates containing 1.8% (w/v) agar (Difco),

incubated at 37°C. In some experiments, we also altered growth

conditions to elevate mistranslation levels and/or impose stress,

as follows. To increase mistranslation levels, we added (1) cana-

vanine sulphate at concentrations ranging from to 0.375 to

3 mg/mL as specified in each experiment (canavanine is an ana-

logue of arginine that induces mistranslation) (Fan et al. 2015),

(2) norleucine (an analog of leucine which substitutes for the

amino acid methionine in proteins (Karkhanis et al. 2007)) at

concentrations ranging from 0.28 to 2.25 µg/mL and (3) strepto-

mycin sulphate at concentrations ranging from 0.625 to 5 µg/mL

(streptomycin leads to errors in ribosomal decoding (Carter et al.

2000)). To impose stress, we subjected single cells to starvation

by supplying only saline instead of a growth medium (i.e. no nu-

trients, for measures of survival). At the population level, we let

cultures grow until late stationary phase when nutrients are de-

pleted (which imposes stress on the cells (Koch 1971)) and then

carried out competition experiments. Finally, we cultured cells in

LB at high temperature (42°C), imposing stress that reduces sur-

vival (van Elsas et al. 2011). To check the impact of a transient

increase in mistranslation on survival at 42°C, we exposed repli-

cate cultures to different concentrations of canavanine, norleucine

or streptomycin for ∼2 h until they reached OD600 ∼0.6. We then

pelleted and re-suspended cells and cultured them for 2 h at 42°C

before carrying out dilution plating to assess survival. Each treat-

ment had triplicates before and after exposure to 42°C, i.e. a total

of 6 cultures. Given three concentrations and three mistranslat-

ing agents, this led to 18∗3 = 54 agar plates, which were done

in staggered sets of 18 each. Handling more than 18 at a time

led to significant time variation in the steps of cell pelleting and

exposure to 42°C, adding to the variability that we were attempt-

ing to capture. As a result, at any given time, we were limited to

three treatments for a given mistranslating agent. In addition, we

could not compare across the three blocks of the same experiment

because of the high across-experiment variability in growth and

colony numbers.

SINGLE CELL MICROFLUIDICS MEASUREMENTS

To measure variability in growth characteristics at the single cell

level, we used a microfluidic device seeded with GFP-labelled E.

coli strains (described above). The ‘mother machine’ microflu-

idic device was fabricated as previously described (Wang et al.

2010). Saturated overnight cultures of WT, Mutant, WT(HA),

and Mutant(HA) were sub-cultured to 1% by volume into LB

and incubated at 37°C for 3 h. To concentrate cells ∼20 fold, we

centrifuged the cultures (5 min, 3000g) and re-suspended cells in

200 µL LB. We injected the cell suspension into the microflu-

idic device using a syringe, and allowed cells to diffuse into the

growth channels (∼ 2 h; see schematic in Fig. 4a). Then, the de-

vice was placed in a temperature-controlled stage-top incubator

(OKOlab), which in turn was placed on an inverted microscope

(Olympus IX81). To allow cell growth in the device, we pumped

LB from a 15 mL centrifuge tube (Greiner) held at a constant tem-

perature in a dry block heater (IKA). We allowed cells to grow in
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the device for 2.5 h at a media flow rate between 600 – 800 µL/h,

and then began imaging cells to measure growth characteristics.

When necessary, saline was used in place of LB to simulate star-

vation (since cells cannot divide in saline but will remain osmot-

ically intact). We used a coolLED lamp (excitation: 490 nm) for

fluorophore excitation, and captured bright field and fluorescence

images at intervals of 2 min for 10 h at 40X magnification us-

ing an EMCCD camera (Photometrics Prime). We imaged ∼160

channels at constant flow and temperature. We then carried out

preliminary image editing using ImageJ and a custom MATLAB

code (MathWorks), and extracted information on cell length and

division time, by binarizing the images and assigning an identity

to each cell (Banerjee et al. 2020). Based on changes in fluores-

cence intensity in the cell body, the code identified a cell division

(see Fig. S12). We measured cell length at every frame to calcu-

late cell length at birth and division, and the corresponding time

for each event. For all experiments, we collected data in two or

three independent blocks (each block conducted on a different

day, with independent starting cultures). However, for two of the

experimental blocks at 37°C, the actual temperature (recorded by

the instrument during the experiment) was 35°C or 39°C; hence,

we report the results of each block separately. At 42°C, we could

only conduct a single experimental block. When counting live

and dead cells under stress (3 experimental blocks), an instanta-

neous loss of fluorescence signal was used as an indicator of cell

death.

BOOTSTRAP AND CONVERGENCE ANALYSIS

Since our single-cell phenotype distributions were non-

parametric, accurately estimating and comparing mean and vari-

ance of the distributions was challenging. Hence, we used boot-

strap analysis to estimate the error in the mean X of each

dataset as follows (Efron and Tibshirani 1994): for a dataset D

= (Samhita 2020) with N entries, a large number of realizations

of the dataset is generated by randomly sampling entries with re-

placement. A given realisation is thus produced by picking N ran-

domly selected entries from the dataset; and a given entry may be

picked multiple times. This procedure is repeated many times,

producing many realizations. For each realization, the mean and

variance are calculated, resulting in a distribution of the real-

ization estimators. The error in the estimators is then given by

the standard deviation of the distribution. For the analysis shown

in this paper, we implemented bootstrapping using the standard

MATLAB (v2019a) function ‘bootstrap’. We first tested for con-

vergence in parameter estimates using a range of sample sizes (N

values; Fig. S4); and then used the largest N (106) to estimate

the mean and variance in the distribution of each phenotype of

interest (e.g. cell length or time to division), for each strain or

treatment.

MEASURING POPULATION GROWTH AND YIELD

To measure variability in growth across populations, we used 40

independent colonies of each E. coli strain as biological repli-

cates. We inoculated colonies in LB and allowed them to grow

overnight at 37°C with shaking at 200 rpm for 16 hours. We then

added 5 µL of the overnight culture into 495 µL of the relevant

growth medium in 48 well microplates (Corning-Costar), and in-

cubated them in a shaking tower (Liconic) at 37°C. We measured

optical density (OD) of each well at 600 nm using an automated

growth measurement system (Tecan, Austria), every 30 or 40

minutes for 12 to 18 hours. The automated system allowed us

to simultaneously measure growth rates in up to 10 microplates.

We estimated maximum growth rate using the Curve Fitter soft-

ware (Delaney et al. 2013) and maximum OD value (ODmax, as a

proxy for growth yield) by averaging the five highest OD values.

Doubling time was estimated as ln2/maximum growth rate. Lag

time was measured as the time taken until cultures reached OD600

∼0.02.

MEASURING CELL SURVIVAL

We measured cell survival in liquid culture by plating serial dilu-

tions of the culture on agar medium and counting colonies (which

represent viable cells from the original culture). Briefly, we set up

20 replicate cultures of a strain (each inoculated from an individ-

ual colony) and allowed cultures to grow to saturation overnight

in rich media (LB) or under stress, as required. We then sub-

cultured cells 1% by volume and set up the experiment. At ap-

propriate time intervals, we serially diluted the culture (55 µL

of the focal culture diluted it in 495 µL of normal saline) until

we obtained sufficiently dilute cultures such that the final dilu-

tion plated on LB agar would give rise to ∼20 to 200 distinct

colonies (which can be counted reliably). We incubated plates

for 24 hours, counted colonies, and multiplied by the appropriate

dilution factor to determine viable counts in the original culture.

MEASURING COMPETITIVE FITNESS

To test the relative fitness of WT and mutant strains under com-

petition, we first had to establish a way to distinguish the two

strains. To do so, we generated KLΔlacZ (WT lacking the lacZ

gene). This strain forms white colonies on MacConkey’s agar,

while the other strains under study – Mutant, WT(HA) and Mu-

tant(HA) – form pink colonies because they carry an intact lacZ

gene. We grew the two strains being competed to saturation

(overnight) independently and then mixed them (1% each by vol-

ume) into 5 mL of growth medium. We then subjected the mix to

periodic dilution plating onto MacConkey’s agar, and determined

the relative numbers of each strain over time. We confirmed that

the lacZ deletion is selectively neutral, by competing it against

the unmarked parent WT strain (Fig. S1).
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QUANTIFYING VARIABILITY

As described above, we collected data on the size, length, and di-

vision time of single cells; and parameters such as growth rate,

growth yield (ODmax) and lag time for replicate populations of

each strain or experimental treatment. In most cases, the data

were not distributed normally (Shapiro Wilke test for normality).

Therefore, we could not use standard quantifications of variabil-

ity such as the variance or coefficient of variation (CV = stan-

dard deviation/mean). To assess differences in variability across

groups, we employed a non-parametric statistical test- Fligner-

Killeen test- that is robust to departures from normality (Fligner

and Killeen 1976; Conover et al. 1981). This test ranks all data

around the median value, measures the values of the residuals for

each data point, and calculates the test statistic by ranking the

residual values. All comparisons are tabulated in Table S1. As

appropriate, we visualized variability using the frequency distri-

bution of each measured variable, or the interquartile range of the

data.
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Figure S1. lacZ deletion does not influence the outcome of pair-wise competition experiments: Log phase cultures (OD600∼0.6) of WT and WT�lacZ
were subjected to pair-wise competition experiments in LB at 37°C followed by plating on MacConkey’s agar. Percentage fraction of each strain is plotted
against time.
Figure S2: Probability density function of cell length and division time of single cells as monitored in the microfluidics device.
Figure S3. Distributions of time to division for individual mother cell divisions: Individual mother cells (n=3) from WT and Mutant were monitored in
the microfluidics device for ∼60 cell divisions each, at 37°C.
Figure S4. Parameter convergence in bootstrap analysis: Left panels: Illustration of convergence in estimated parameter values (mean and variance in
single-cell phenotype) as a function of number of bootstrap samples, for WT (black) and Mutant (red) at 32°C.
Figure S5. Raw growth curves showing independent biological replicates: Raw growth curves for the strains indicated (n=37 to 44) showing OD600 over
time plots for each biological replicate (corresponding to a single colony) as obtained by a Tecan growth reader recording OD600 every 30 minutes.
Figure S6. Mistranslation does not impact variability in growth rate across replicate populations: Violin plots showing the distributions of growth rates
estimated using ∼40 (37 to 44) biological replicates (populations) for each strain or growth condition. Median, 25th and 75th quartiles are indicated by
solid lines within each violin.
Figure S7. Mistranslation impacts mean doubling time across replicate populations: Violin plots showing distributions of doubling times estimated using
∼40 (37 to 44) biological replicates (populations) for each strain or growth condition.
Figure S8. Mistranslation impacts mean fitness across replicate populations: Violin plots showing distributions of three population growth parameters,
estimated using ∼40 (37 to 44) biological replicates (populations) for each strain or growth condition.
Figure S9. Results of bootstrap analyses of single cell phenotype at 42 °C: (a) Left panels: convergence in parameter estimates as a function of number of
bootstrap samples.
Figure S10. Cell death under starvation stress: Number of WT and Mutant cells that either lived or died in microfluidic channels during starvation
conditions, in 3 independent experimental blocks (Sets 1, 2 or 3).
Figure S11. Replicate blocks for pair-wise competition experiments: Pair-wise growth competition experiments, strains and conditions as indicated, see
Figure 4b–e.
Figure S12: WT and Mutant cells within a representative single growth channel, with the fluorescence intensity plotted from the region of interest drawn
across the cells.
Table S1: Statistical comparisons of data
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