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Abstract. Cloned complementary DNAs representing 
the complete coding sequence for an embryonic gap 
junction protein in the frog Xenopus laevis have been 
isolated and sequenced. The cDNAs hybridize with an 
RNA of 1.5 kb that is first detected in gastrulating em- 
bryos and accumulates throughout gastrulation and 
neurulation. By the tailbud stage, the highest abun- 
dance of the transcript is found in the region contain- 
ing ventroposterior endoderm and the rudiment of the 
liver. In the adult, transcripts are present in the lungs, 
alimentary tract organs, and kidneys, but are not 

detected in the brain, heart, body wall and skeletal 
muscles, spleen, or ovary. The gene encoding this em- 
bryonic gap junction protein is present in only one or 
a few copies in the frog genome. In vitro translation 
of RNA synthesized from the cDNA template produces 
a 30-kD protein, as predicted by the coding sequence. 
This product has extensive sequence similarity to 
mammalian gap junction proteins in its putative trans- 
membrane and extracellular domains, but has diverged 
substantially in two of its intracellular domains. 

AP junctions form an aqueous pathway connecting one 
cytoplasm to the next in a multicellular system (Gil- 
ula et al., 1972; Loewenstein, 1981). The channels 

that make up a vertebrate gap junction allow passage of ions 
and molecules <20 ,~ in diameter, and show weak charge 
selectivity (Simpson et al., 1977; Flagg-Newton et al., 1979; 
Schwartzmann et al., 1981; Brink and Dewey, 1980; Neyton 
and Trautmann, 1985). Thus, ceils coupled to each other by 
gap junction channels form an electrical syncytium and 
potentially share a host of metabolic intermediates and effec- 
tor molecules such as cyclic nucleotides and other "second 
messengers" (Pitts and Sims, 1977; Lawrence et al., 1978; 
Murray and Fletcher, 1984). 

Gap junction-mediated intercellular coupling is wide- 
spread during embryonic development and pattern formation 
in many organisms. Regional variations in junctional com- 
munication can be correlated in some cases with specific 
morphogenetic behaviors and cell fate (reviewed by Caveney, 
1985). In the frog Xenopus laevis, the pattern of gap junc- 
tional communication in early embryos seems to be related 
to the plane of bilateral symmetry. Animal hemisphere 
blastomeres near the future dorsal midline of the 32-cell em- 
bryo transfer the dye Lucifer Yellow to their neighbors more 
frequently than do cells flanking the ventral midline (Guth- 
rie, 1984). This suggests that there are consistent dorsoven- 
tral differences in the number of functional gap junctional 
channels very early in development. 

In Xenopus and other amphibian embryos, changes in the 
pattern of junctional coupling occur during several episodes 
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of tissue morphogenesis and embryonic induction. Black- 
shaw and Warner (1976) found that ionic coupling between 
prospective myotomal cells in Xenopus disappears when the 
somites begin to segment and rotate, but then reappears. 
Electrical continuity has been observed between prospective 
chordamesoderm and neural plate cells of the newt embryo 
during the period of neural plate induction and regionaliza- 
tion (Ito and Ikematsu, 1980). While prospective epidermal 
and neural epithelial cells are well coupled across the neural 
plate border during neurulation in the axolotl, this becomes 
a communication boundary at about the time the neural folds 
meet and fuse (Warner, 1973). Finally, junctional coupling 
among progenitor cells of the central nervous system in 
Xenopus embryos can be reduced by microinjection of anti- 
bodies raised against the predominant protein of rat liver gap 
junctions (Warner et al., 1984). In these embryos, abnormal- 
ities in development of the brain, eye, and other anterior 
structures are common. 

Taken together, these results suggest that cell-cell interac- 
tions crucial for normal development in amphibia involve 
regulated diffusion of ions or small molecules via gap junc- 
tions. Modulation of gap junctional communication during 
embryonic development may reflect regulated conductance 
at existing junctions or alterations in the number of junctions 
in the plasma membranes. Junctional conductance is affected 
by intracellular events such as membrane depolarization, 
calcium and proton fluxes, and changes in intracellular sec- 
ond messenger activities (reviewed by Spray and Bennett, 
1985). Gap junction number may be regulated at many lev- 
e l s -  from the control of gene transcription to rates of protein 
modification and degradation. Finally, structurally distinct 

© The Rockefeller University Press, 0021-9525/88/09/1065/9 $2.00 
The Journal of Cell Biology, Volume 107, September 1988 1065-1073 1065 



gap junction proteins may be present during embryogenesis, 
as they are in diverse adult organs (Hertzberg et al., 1982; 
Gros et al., 1983; Kumar and Gilula, 1986; Beyer et al., 
1987; see also Kistler et al., 1988; Nicholson et al., 1987). 

To fully understand the developmental role of gap junc- 
tions, it is essential to determine their number and distribu- 
tion in the embryo, their chemical composition and struc- 
ture, and the mechanisms which regulate their activity. This 
paper describes a first step in this direction using a system 
especially suited for embryological study, the Xenopus em- 
bryo. Complementary DNAs that contain the complete cod- 
ing sequence for a gap junction protein in Xenopus have been 
cloned and sequenced. In addition, the pattern of accumula- 
tion of mRNA encoding this protein has been determined. 

Materials and Methods 

Collection, Culture, and Staging of Embryos 
Adult Xenopus laevis were maintained at 22°C on a 12-h light/dark cycle 
and a diet of chopped beef liver and Purina Trout Chow, Ovulation was in- 
duced by injection of 400-700 IU of human chorionic gonadatropin (Sigma 
Chemical Co., St. Louis, MO) into the dorsal lymph sac, and stripped eggs 
were fertilized in vitro with minced testis. Fertilized eggs were dejellied in 
a solution of 0.1 M NaCI, 25% (wt/vol) l-cysteine hydrochloride (Sigma 
Chemical Co.), pH 7.9. Embryos were cultured at 18-22°C in 33% 
modified Ringers solution (33% MR; MR is 0.1 M NaCI, 0.002 M KCI, 
0.001 M MgCI2, 0.002 M CaCI2), and staged according to the normal table 
of Xenopus development (Nieuwkoop and Faber, 1975). Oocytes were 
staged according to Dumont (1972). Embryos at stage 26 were dissected 
with watchmaker's forceps and a hair-loop in a bath of 33% MR on an 
agarose substratum. 

Extraction of Nucleic Acids from Embryos and Tissues 
RNA was extracted from whole embryos or microdissected embryonic parts 
by the method of Auffray and Rougeon (1980) as modified by Mohun et al. 
(1984). RNA was prepared from adult tissues by homogenization in a 4.0 
M guanidinium thiocyanate buffer (Chirgwin et al., 1979), followed by 
sedimentation through a layer of 5.7 M cesium chloride (Glisin et al., 1974). 
Polyadenylated RNA was selected by chromatography on oligo-dT cellulose 
(Aviv and Leder, 1972). 

High molecular weight genomic DNA was prepared by pulverizing a 
freshly dissected frog liver in liquid nitrogen and homogenizing in 0.01 M 
Tris-Cl (pH 7.4), 0.5 M NaCI, 0.025 M EDTA, 1.0% SDS, 0.1 mg/ml pro- 
teinase K. DNA was extracted sequentially with phenol/chloroform (1:1), 
chloroform, and ether, and spooled out from 2.5 vol of cold 100% ethanol. 

Screening of cDNA Clone Libraries 
A eDNA library constructed in lambda gtl0 (Huynh et al., 1985) from 
Xenopus liver polyadenylated RNA was kindly supplied by Dr. David 
Shapiro (University of Chicago). Approximately 5 x 105 phage from this 
library were screened by hybridization at low stringency (45 % formamide, 
5× SSC, 37°C, with washing in 2x SSC, 37°C) with a 997-bp Eco RI-Stu 
1 fragment of the human liver gap junction eDNA clone decribed by Kumar 
and Gilula (1986). A single hybridizing plaque was isolated. The 426-bp 
Eco RI insert of Xenopus eDNA in this phage, designated XL1, was sub- 
cloned in Ml3mpl9 for DNA sequencing. The eDNA insert was purified 
from the replicative form of MI3 for further screening. A lambda gtlO 
eDNA library made with stage-I 1 embryo polyadenylated RNA was kindly 
supplied by Dr. Douglas Melton (Harvard University). Hybridization 
screening of this library was done in 50% formamide, 5 x SSC at 37°C, with 
washing in 0.2 x SSC at 45°C. Hybridization probes were synthesized from 
double-stranded DNA using the large fragment of DNA polymerase I and 
random hexameric oligonucleotides (Pharmacia, Piscataway, N J) as primers 
(Feinberg and Vogelstein, 1983). 

DNA Sequence Analysis 
eDNA fragments were excised from the bacteriophage vector and inserted 

into the Eco RI site of M13mp19 for DNA sequencing by the chain termina- 
tion method as modified by Biggens et al. (1983). Sequencing reactions at 
the fragment termini were primed with the 17-nucleotide universal sequenc- 
ing primer (New England Biolabs, Beverly, MA), and further sequencing 
reactions were primed with synthetic oligonucleotides complementary to 
Xenopus eDNA sequences. DNA oligonucleotides were synthesized with an 
Applied Biosystems synthesizer (model 380A; Applied Biosystems, Inc., 
Foster City, CA). DNA sequences were compiled and analyzed using 
PCGene software (Intelligenetics, Palo Alto, CA). 

RNA and DNA Blot Analyses 
RNAs were separated by electrophoresis through 1% agarose gels contain- 
ing 0.66 M formaldehyde and transferred to Biodyne nylon filters (Pall 
Corp., Glen Cove, NY) for hybridization with radiolabeled fragments of 
cloned Xenopus eDNA. A probe for Xenopus actin mRNAs was obtained 
from Dr. T. Sargent (National Institutes of Health). This was a l.l-kb eDNA 
from a library constructed by Dworkin and Dawid (1980), which represents 
a muscle actin mRNA. When hybridized at low stringency with Xenopus 
RNAs, this probe detected all of the actin isoform mRNAs (Sargent et al., 
1986). Mitochondrial RNAs were detected using a probe consisting of the 
cloned 17.4-kb Xenopus mitochondrial genome (Chase and Dawid, 1972). 
Genomic DNA was digested with several restriction endonucleases and 
fractionated on 0.7 % agarose gels for transfer to nylon filters and hybridiza- 
tion with cDNA probes. Low stringency hybridizations with filter-bound 
nucleic acids were done in 40% formamide, 5× SSC, at 37°C, followed by 
washing in 2x  SSC at 37°C. High stringency hybridizations were done at 
37°C in 50% formamide, 5× SSC, washing in 0.2× SSC at 60°C. 

Nuclease Protection Analysis 

RNA was purified from embryos at various developmental stages and hy- 
bridized in solution with single-stranded DNA probes. The probes were 
synthesized from a (+)-strand M13mpl9 subelone using the large fragment 
of DNA polymerase I as described (Messing, 1983), in the presence of 
[~t-32P]dCTP (800-1,200 Ci/mmol; Amersham Corp., Arlington Heights, 
IL). Synthesis was primed with the "-40", 17-mer oligonucleotide sequenc- 
ing primer (New England Biolabs). The double-stranded extension product 
was digested with restriction endonucleases (New England Biolabs) Ace I 
(base 590) or Hinf I (base 745). The resulting antisense strand probes were 
purified by electrophoresis in alkaline agarose gels (Burke, 1984). After hy- 
bridization with RNA (250-625 p.g/ml) in 80% formamide, 0.4 M NaCI 
at 55°C, residual single-stranded probe was digested at 37°C with SI 
nuclease (Bethesda Research Laboratories, Gaithersburg, MD) as described 
(Berk and Sharp, 1977). DNA fragments protected by annealing with RNA 
were separated by electrophoresis in 6% polyacrylamide gels containing 
6 M urea and detected by autoradiography at -70°C using Kodak XAR-5 
film with an intensifying screen. 

Absolute transcript numbers were estimated by probe excess hybridiza- 
tion, or titration (Lev et al., 1980), with varying amounts of unfractionated 
or polyadenylated RNA. The total RNA mass in each reaction was adjusted 
to 30 I.tg by addition of yeast tRNA. Hybridization and SI nuclease digestion 
were followed by phenol/chloroform (1:1) extraction and ethanol precipita- 
tion. Radioactive hybrids were bound to DE81 filters (Schleicher & Schuell, 
Inc., Keene, NH), washed in 0.5 M Na2HPO4, and quantitated by scintilla- 
tion counting. Background nuclease-resistant radioactivity was determined 
using parallel reactions with 30/.tg yeast tRNA. Transcript abundance was 
calculated as described by Scheller et al. (1978). The accuracy of this 
method was checked using control hybridizations with in vitro-synthesized 
RNA (see below). 

In Vitro Translation of Xenopus Gap Junction 
Polypeptides 
An Eco RI fragment from the stage-ll embryonic gap junction cDNA clone 
was inserted into the vector pT7/T3-18 (Betbesda Research Laboratories). 
Coding RNA was transcribed in vitro using T3 bacteriophage RNA poly- 
merase after linearizing the plasmid with Pvu II. Antisense RNA was tran- 
scribed using T7 polymerase after linearizing with Hind Ill. Bacteriophage 
RNA polymerases were purchased from Bethesda Research Laboratories, 
and transcription reactions were as described by Melton et al. (1984). 

In vitro translation was performed using ",d pg of synthetic RNA in 50 
pl of rabbit reticulocyte lysate (Bethesda Research Laboratories), contain- 
ing [35S]methionine (Amersham Corp.). Translation reactions were termi- 
nated by addition of SDS-containing gel loading buffer. Translation prod- 

The Journal of Cell Biology, Volume 107, 1988 1066 



X GCTTTCCATTECAGCTACCCAGTGATTGGAACACAGGAGAGCAGCTAACACATCTAACACA 61 

ATG A~ TGG GCA GGA TTA TAC GCC ATA CTG AGT GGC GTG AAC CGC CAC TCC ACE TCA ATC GGA CGC ATA TGG CTC TCT GTG GTC TTC ATC 151 
ATG TGG ACA GGT TTG TAC ACC TTG CTC AGT GGC GTG AAC CGG CAT TCT ACT GCC ATE GGC CGA GTA TGG CTC TCG GTC ATC TTC ATC 

X M N W A G L Y A I L $ G V H R H S T $ I G R T W L S V V ¥ T 30 

H M N W T G L Y T L L S G V N R H S T A I G R V W L S V I F I 

X TTC CGT ATC ATG GIG CTT GTG GCG GCT C-CA GAA AGC GTA TGG GGG GAT GAG AAG TCC GCG TTT ACA TGC AAC ACA CAA CAG CCC GGT TGC 241 
H TIC AGA ATC ATG GTG CTG GTG GTG GCT GCA GAG AGT GTG TGG GGT GAT GAG AAA TCT TCC TTC ATC TGC AAC ACA CTC CAG CCT GGC TGC 

X F R I M V L V A A A E S V W G D E K S A F T C N T Q Q P G C 60 

H F R I M V L V V A A E S V W G D E K S S F I C N T L Q P G C 

X AAC AGT GTA TGC TAT GAT CAC TTC TTC CCC ATC TCA CAT ATC CGT CTG TGG GCC CTC CAG CTA ATC ATT GTA TCC ACA CCT GCC CTT CTG 331 
H AAC AGC GTT TGC TAT GAC CAA TTC TTC CCC ATC TCC CAT GTG CGG CTG TGG TCC CTG CAG CTC ATC CTA GTT TCC ACC CCA GCT CTC CTC 

X N S V C ¥ D H F F P I S H I R L W A L Q L I I V S T P A L L 90 

H N S V C Y D Q F F P I S H V R L W S L Q L I L V S T P A L L 

X GTG GCC ATG CAC GTG C-CT CAT CTA CAG CAC CAA GAG AAG AAG GAG CTA CGT TTG TCC GGC CAT GTT AAG GAC CAA GAG CTG C-CA GAA GTG 421 
H GTG GCC ATG CAC GTG C-CT CAC C~ CAA CAC ATA GAG AAG AAA ATG CTA CGG CTT GAG GGC CAT GGG GAC CCC CTA CAC CTG GAG GAG GTG 

X V A M H V A H L Q H Q E K K E L R L S G H V K D Q E L A E V 120 

H V A M H V A H Q Q H I E K K M L R L E G fl G D P L fl L E E V 

X AAG AAA CAT AAA GTC AAG ATT TCC GGC ACT TTG TGG TGG ACC TAC ATC TCT AGT GTT TTC TTC AGA ATC ATA TTC GAG GCA GCC TTT ATG 511 
H AAG AGG CAC AAG GTC CAC ATC TCA GGG ACA CTG TGG TGG ACC TAT GTC ATC AGC GTG GTG TTC CGG CTG TTG TTT GAG GCC GTC TTC ATG 

X K K H K V K I S G T L W W T Y I S S V F F R I I F E A A F M 150 

H K R H K V H I S G T L W W T Y V I S V V F R i. L F E A V F M 

X TAC ATC TTC TAC CTC ATC TAC CCT GGT TAC TCC ATG ATC CGA CTT GTT AAG TGC GAT GCC TAT CCC TGC CCC AAC ACT GTA GAC TGT TTC 601 
H TAT GTC TTT TAT CTG CTC TAC CCT GGC TAT C-CC ATG GTG CGG CTG GTC AAG TGC GAC GTC TAC CCC TGC CCC AAC ACA GIG GAC TGC TTC 

X Y I F Y L I Y P G Y S M I R L V K C D A Y P C P N T V D C F 180 

H Y V F Y L L Y P G Y A M V R L V K C D V Y P~C P N T V D C F 

X GTT TCT CGT CCC ACG GAG AAG ACC ATA TTC ACC GTC TTC ATG CTC GTC GCC TCT GGG GTC TGC ATC GTT CTG AAT GTT GCT GAA GTA TTC 691 
H GTG TCC CGC CCC ACC GAG AAA ACC GTC TTC ACC GTC TTC ATG CTA GCT C-CC TCT GGC ATC TGC ATC ATC CTC AAT GTG GCC GAG GTG GTG 

X V S R P T E K T I F T V F M L V A S G V C I V L N V A E V F 210 

H V S R P T E K T V F T V F M L A A S G I C I I L N V A E V V 

X TTC CTG ATE GCC CAG GCC TGC 
H TAC CTC ATC ATC CGG GCC TGT 

X F L I A Q A C 

H Y L I I R A C 

ACC AGA AGA GCC --- CGC CGC ............... CAC AGG GAT TCT GGC --- AGC ...... ATC AGC 754 
GCC CGC ~ GCC CAG CGC CGC TCC AAT CCA CCT TCC CGC AAG GGC TCG GGC TTC GGC CAC CGC CTC TCA 

T R R A R R - - - H R D S G S I S 231 

A R R A Q R R S N P P S R Y G S G F G H R L S 

X AAA GAG CAT CAA CAG AAT GAA 
H CCT GAA TAC AA~ CAG AAT GAG 

X K E H Q Q N E 

H P E Y K Q N E 

ATG AAC --- TTG CTG --- ATC ACG GGA GGC AGT ......... ATT ATT AAA CGG TCC CCT ......... 820 
ATC AAC AAG CTG CTG AGT GAG CAG GAT GGC TCC CTG AAA GAC ATA CTG CGC CGC AGC CCT GGC AOC GGG 

M N L L I T G G S - I I K R S P 253 

T N K L L S E T D G S L K D ~ L R R S P G T G 

X COG GGG CAG - - -  GAG. As~ GGA GAT CAC TCT TCT ACC TCC T.V, AGGATAAGGCT'I"CTA.ACTCTCACGGCTCCCTGGTGGGACATGACC-GA~AGCCCT~ 922 
H GCT GGG CTG GCT GAA AAG AGC GAC CGC TGC TCG GCC TGC TGA 

X A G Q E K G D H C S T S *** 265 

H A G L A E K S D R C S A C *** 

3' 
X ATCATACAGCTACAAAAGCAAAGATGAGATATT GC-C~GTTAGTTACAAGACT T G A A C A G G ~ G T G T ~ ~ ~ T A ~ ~ ~  1032 

Figure 1. Nucleotide sequence of the Xenopus laevis embryonic gap junction cDNA. The complete sequence of the XE1 la cDNA is present- 
ed (lines designated X) together with the amino acid sequence deduced from its longest open reading frame (in single letter code). Num- 
bering at right refers to the Xenopus sequences. The human liver gap junction coding sequence and translation product is shown for comparison 
(lines designated H).  Dashes indicate gaps introduced into the frog sequence for optimal alignment with the human codons. Underlined 
sequences indicate the positions of the four putative transmembrane helices (Milks et al., 1988). Arrowheads identify the 5' and 3' ends 
of the Xenopus liver partial cDNA XL1. The three overlined cytosine residues (817-819) were missing in the XL1 cDNA, leading to the 
absence of proline residue 253. Both strands of each cDNA were completely sequenced as described in Materials and Methods. 
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Figure 2. Southern analysis of 
genomic DNA. Frog liver 
DNA was digested to comple- 
tion with the following restric- 
tion endonucleases: (a) Barn 
HI, (b) Dde I, (c) Pst I, and (d) 
Eco RI. Separated fragments 
were immobilized on nylon 
and hybridized with an XE1 la 
DNA probe. Blots were washed 
at high stringency, and exposed 
to x-ray film for l wk. Size 
markers (in kilobases) arc 
lambda DNA fragments of an 
Eco RI, Hind III digest. 

ucts were separated on 12.5 % polyacrylamide gels with 4 % polyacrylamide 
stacking gels (Dreyfuss et al., 1984). Gels were permeated with Amplify 
(Amersham Corp.), dried, and exposed at -70°C to Kodak XAR-5 film 
with intensifying screens. 

Results 

Cloning of  Xenopus Gap Junction cDNAs 

The antigenic properties of gap junctions have been highly 
conserved in the evolution of deuterostomes (Hertzberg and 
Skibbens, 1984; Warner et al., 1984; Fraser et al., 1987). 
The complete primary structure of the 32-kD protein subunit 
of the mammalian liver gap junction has been deduced from 
the sequences of cloned cDNAs (Kumar and Gilula, 1986; 
Paul, 1986). Since embryos and adult tissues of Xenopus 
laevis contain proteins antigenically related to the rat liver 
junction protein (Warner et al., 1984; Green, C. R., unpub- 
lished results), it was anticipated that frog and mammalian 
liver would contain homologous gap junction mRNAs. To re- 
cover related mRNA sequences, Xenopus cDNA libraries 
were screened by hybridization at low stringency with the hu- 
man liver gap junction cDNA. 

A 997-bp restriction fragment of the human cDNA (Ku- 
mar and Gilula, 1986) containing the 5' untranslated region, 
the 849-bp protein coding sequence, and 85 bp of the 3' un- 
translated region was isolated. This fragment was labeled to 
high specific activity and used to screen a frog liver cDNA 
library in lambda gtl0. In a screen of 500,000 recombinant 
phage, a single hybridizing plaque was obtained. After 
plaque purification; the phage genome was found to contain 
a 426-bp cDNA insert which hybridized to the human gap 
junction probe. The insert was purified and subcloned in 
M13mpl9 for DNA sequencing. It contained a 282-bp open 
reading frame sharing 67 of 111 codons with the sequence 
encoding the carboxyl-terminal portion of the human liver 

Figure 3. Northern blot analysis. (a) Gel blots with 2.5 Ixg of poly- 
adenylated RNA from Xenopus adult tissues and embryos were 
probed with the radioactive XEIla cDNA insert and washed at high 
stringency. Lanes 1-6 contain RNA from (1) liver, (2) heart, (3) 
ovary, (4) stage VI oocytes, (5) stage 10 gastrulae, and (6) stage 
15-16 neurulae. Size standards are ethidium bromide stained 
ribosomal RNAs and an RNA standard of 1.35 kilobases. (b) As 
a control for RNA integrity and transfer efficiency, the filter was 
washed and probed for actin mRNAs using a skeletal muscle actin 
cDNA probe (Sargent et al., 1986). Lanes show the expected rela- 
tive abundances of cytoskeletal (bands i and ii) and muscle (bands 
iii and iv) actin isoform mRNAs. 

gap junction protein. This partial cDNA clone was desig- 
nated XL1 (Fig. 1). 

The XLI insert was excised and purified from the replica- 
tive form of M13mpl9 and labeled to high specific activity 
for use as a hybridization probe. A screen of ~150,000 
recombinants from a stage-11 gastrula cDNA library yielded 
a single hybridizing plaque. The 1,032-bp insert in this phage 
was subcloned in M13mpl9 and both strands were sequenced 
as described in Materials and Methods. The complete se- 
quence of this cDNA, designated XElla, is shown in Fig. 
1.~ A 795-bp open reading frame encodes a polypeptide 
with striking similarity to mammalian liver gap junction pro- 

1. These sequence data have been submitted to the EMBL/GenBank Data 
Libraries under the accession number Y00791. 
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Figure 4. Nuclease protection analysis. A 480 nucleotide single-stranded DNA probe synthesized from XEI la was annealed to completion 
with 25 Ixg of each RNA. A fragment of 440 nucleotides is protected by hybridization from SI nuclease digestion, a shows the accumula- 
tion of transcripts during embryogenesis. P, probe; RNA from (1) yeast, (2) Xenopus ovary, (3) fertilized eggs, (4) stage 8, (5) stage 
10, (6) stage 12, (7) stage 14, (8) stage 19, and (9) stage 25. Northern analysis of these RNAs with a mitochondrial genomic DNA probe 
showed approximately equivalent recovery of mitochondrial ribosomal RNAs and mRNAs (data not shown), b shows hybridizations to 
RNA extracted from (1) Xenopus lung, (2 and 3) liver, two independent preparations, (4) intestine, (5) stomach, (6) spleen, (7) body 
wall muscle, (8) larynx, (9) thigh muscle, (10) kidney, (11) heart, (12) brain, and (13) yeast. Abundant intact actin mRNAs were detected 
in each of the Xenopus samples by Northern analysis (data not shown). Markers at 518 and 396 nucteotides are Hinf I fragments of 
pGEMI DNA. 

teins. When the predicted frog and human amino acid se- 
quences are aligned for optimal fit, they show '~71% identity. 
Of the 272 nucleotide alterations between human liver and 
frog embryonic coding sequences, 115 are conservative, 
leaving amino acid coding unchanged. 

Like the mammalian liver gap junction proteins (Kumar 
and Gilula, 1986; Paul, 1986), the protein encoded by the 
XE1 la sequence contains four hydrophobic domains capable 
of spanning the lipid bilayer (Kyte and Doolittle, 1980). The 
location of putative transmembrane domains indicated in 
Fig. 1 is based on experimental and theoretical considera- 
tions detailed by Milks et al. (1988). Each sequence is rich 
in charged and polar amino acids at residues 100-130 and in 
the carboxy-termina140-60 residues. Only 45 of the first 223 
amino acids differ between frog and human sequences; sim- 
ilarities in the carboxy-terminal region are more limited. 
There are 20 positions in the two sequences at which codon 
changes produce a change in charge at neutral pH; however, 
the net charge difference between the predicted frog and hu- 
man proteins is 0. Based on these sequence similarities, the 
product of the XElla coding sequence was tentatively 
identified as a Xenopus embryonic gap junction protein. 

Genomic Sequences Encoding Embryonic 
Gap Junctions 

To estimate the number of genes encoding this putative gap 
junction protein, chromosomal DNA was prepared from the 
liver of an individual frog and digested with several restric- 
tion endonucleases. The pattern of hybridization of the XE1 la 
probe to separated restriction fragments is shown in Fig. 2. 
Digestion of genomic DNA with Bam HI or Eco RI, neither 
of which cleaves the cDNA, produced a single fragment of 
16-20 kb with complementarity to the cDNA probe. The en- 
zymes Pst I and Dde I both recognize single sites in the 
cDNA. Digestion with Pst I generated two fragments which 

hybridized with the probe. Three Dde I fragments in genom- 
ic DNA bound the XElla probe. This could indicate the pres- 
ence of an intron containing a Dde I site, or the occurrence 
of sequence polymorphism at this locus. Low stringency hy- 
bridization of XElla with genomic DNA did not reveal any 
additional hybridizing fragments (data not shown). These re- 
suits suggest that the XElla genomic sequence is unique or 
exists in highly conserved copies. 

Abundance of  Gap Junction mRNAs in Embryos 
and Frog 1issues 

Polyadenylated RNA was purified from adult tissues and 
from embryos at various developmental stages. RNA gel 
blots probed with the radiolabeled XElla fragment revealed 
hybridizing transcripts of '~1.5 kb in polyadenylated RNA 
from adult liver and neurula stage embryos (Fig. 3). The 
transcripts were not detected in polyadenylated RNA from 
the heart or the ovary, nor in stage-VI oocytes or early gas- 
trula stage embryos. These RNA samples contained abun- 
dant intact actin mRNAs, showing that they were intact. 

A more detailed determination of the abundance of tran- 
scripts complementary to XElla is provided by S1 nuclease 
protection assays. A radiolabeled single-stranded DNA 
probe complementary to bases 590-1,030 of the XElla cod- 
ing sequence was annealed in solution with unfractionated 
RNA from adult frog tissues and embryos. After digestion 
with S1 nuclease, protected probe fragments were resolved 
on sequencing gels. Transcripts which hybridize to this probe 
were not detected in total RNA (Fig. 4 a) or polyadenylated 
RNA (data not shown) from ovaries or stage VI oocytes, but 
accumulated between stages 10 and 12, the early to middle 
gastrula stages. Accumulation continued until at least stage 
25, after the end of neurulation. In adults, transcripts were 
detected in RNA from the lungs, liver, intestine, stomach, 
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Table L Titration of Excess XE11a Probe with Liver 
and Neurula RNAs 

Mass probe protected Mass transcript" 
RNA assayed Experiment per lag RNA per lag RNA 

Pg Pg/t~g 

Live r  poly(A)~ AS 0 .33  

B§ 0 .52  1.35 + 0 .42  

Neuru la  total  R N A  A 0 .20  

B 0 .18  0 .60  + 0 .04  

* Transcript mass was calculated as probe mass times the length ratio of tran- 
script to protected probe (1,500:440). 
* Probe specific activity was 5 x 108 cpm/p.g. Samples of 0.5, 1.0, 2.0, 3.0, 
or 5.0 lag polyadenylated RNA were hybridized with 5 x 10 a cpm, or 100 pg 
probe, per assay. Linear correlation coefficient >0.97. 
§ Probe specific activity was I x 10 ' cpm/lag. Samples of 5.0, 10.0, 20.0, or 
30.0 lag of stage-19 total RNA were assayed, using I x 105 cpm, or 100 pg 
probe. Linear correlation coefficient >0.96. 

and mesonephric kidney, but not in spleen, body wall, thigh 
muscle, heart, or brain (Fig. 4 b). These results confirm and 
extend the results of Northern blot analysis of polyadenylated 
RNAs. 

Transcript abundance in several of the RNA samples was 
quantitatively determined using probe-excess titration with 
varying amounts of RNA (Table I). Total RNA from the late 
neurula stage (stage 19) contained 2-5 x 106 copies of the 
putative junction mRNA per embryo equivalent (i.e., per 4 
lag RNA). By comparison, the abundance of a-cardiac actin 
mRNA was estimated to be 107-108 copies per embryo at 
this stage (Mohun et al., 1984). Titration analysis also 
showed that transcripts complementary to XElla were at 
least 10-fold rarer in liver than in neurulae. Putative gap 
junction mRNA comprised <0.001% of the mass of poly- 
adenylated RNA in liver. Assuming that 1-1.5 % of the RNA 
mass is polyadenylated (Sagata et al., 1980), the transcripts 
accounted for as much as 0.01% of the poly(A)-containing 
RNA from the stage-19 embryo. These quantitative results 
also suggested that the transcript abundance in the ovary and 
oocytes was at most 10-5% of the poly(A)-containing 
maternal RNA, or 0.01 times the abundance found in the 
liver. 

Regional Abundance of  Gap Junction RNAs 

The distribution of putative gap junction mRNAs in the em- 
bryo was also assessed by hybridization analysis, Tadpoles 
at stage 26 were dissected into anterior and posterior por- 
tions by cutting just caudad to the otic vesicle and heart rudi- 
ment. Dorsal and ventral subfragments were then made by 
cutting through the cement gland and branchial region, along 
the flank just ventral to the pronephric duct rudiment, and 
through the closed blastopore or proctodaeum, as shown in 
Fig. 5 a. Equivalent amounts of total RNA from each region 
were assayed by nuclease protection (Fig. 5 b). Complemen- 
tary RNA was detected in several of the fragments, but was 
most abundant in the ventral pieces. These contain ven- 
trolateral epidermis and mesoderm, and the rudiments of the 
heart and endodermal structures (Nieuwkoop and Faber, 
1975). Within the ventral portion of the embryo, most of the 
putative gap junction mRNA was found at, or posterior to, 
the position of the liver diverticulum. 

Figure 5. Distribution of gap junction transcripts in early taiibud 
stage embryos. (a) Embryos at stage 25 were dissected as shown 
(heavy lines). Fragments included all germ layer derivatives in each 
region. (b) RNA (!0 lag) from each portion was assayed by S1 
nuclease protection using a single stranded XE1 la probe (p). Lanes: 
(T) total RNA from intact tadpoles, from (A) anterior fragments 
(AD plus AV), (P) posterior fragments (PD plus PV); (AD ) dorsal 
head, (PD) dorsal trunk and tail, (AV) anteroventral, and (PV) 
posteroventral fragments. The probe, generated by Hinf I digestion 
after primer extension, migrated as three similarly sized single- 
stranded fragments of '~340 nucleotides. Fragments of ,'.,300 
nucleotides were protected by hybridization from SI nuclease diges- 
tion. (c) Northern blot analysis of actin mRNA content in the same 
RNA samples. Actin isoform RNAs are designated as in Fig. 4 b. 

In Vitro Translation of the Embryonic 
Gap Junction cDNA 

The Xenopus eDNA sequence described above potentially 
encodes a protein of 30,122 D. In vitro translation of syn- 
thetic RNA transcribed from the XElla insert is shown in 
Fig. 6. Addition of coding strand RNA transcribed in vitro 
(Melton et al., 1984) to a rabbit reticulocyte lysate stimulated 
synthesis of a major product migrating as a 30-kD protein 
in polyacrylamide gels. In contrast, synthetic mRNA for the 
human 32-kD liver gap junction protein (Kumar and Gilula, 
1986) directed synthesis of a product migrating discernably 
slower than the frog protein. Control translations with in 
vitro transcribed noncoding strand RNA from the XEIIa 
clone produced no labeled proteins besides the endogenous 
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Figure 6. In vitro translation of synthetic 
gap junction mRNA. Xenopus or human 
liver gap junction cDNAs were cloned in 
the vector pT3/T7-18 and coding strand 
RNA was synthesized and translated in 
vitro as described in Materials and Meth- 
ods. Translation products labeled with 
[35S]methionine were separated by 
PAGE and detected by fluorography. 
Translation products resulting from ad- 
dition of (a) no exogeneous RNA, (b) 
XElla coding strand RNA, and (c) hu- 
man liver gap junction protein coding 
strand are shown. Addition of noncod- 
ing strand RNAs consistently yielded a 

pattern similar to that in lane a (data not shown). The major bands 
above 29 kD represent full-length translation products, while minor 
bands at 23 kD and below are attributable to premature termination 
of translation or proteolysis. Size markers are soybean trypsin in- 
hibitor (20.1 kD), bovine carbonic anhydrase (29 kD), and egg al- 
bumin (45 kD). 

translation products (data not shown). Thus, the cloned 
XEIla sequence is capable of directing expression of the 
predicted 30-kD protein. 

Discussion 

The Xenopus embryonic cDNA XElla represents the mRNA 
for a protein with clear structural similarity to the predomi- 
nant protein in mammalian liver gap junctions. The 1.5-kb 
transcripts that hybridize to the XE1 la probe are not detect- 
ably represented in the pool of mRNA which is synthesized 
and stored during oogenesis. The putative gap junction 
mRNA apparently begins to accumulate at the midgastrula 
stage (stage 12). Its abundance increases rapidly during gas- 
trulation and neurulation, and continues to increase at least 
to the tailbud stage. Therefore, these transcripts may be 
classified as "late" embryonic mRNAs, according to the 
nomenclature of Davidson (1986). 

In the adult frog, nuclease protection assays that use the 
embryonic cDNA probe reveal closely related RNAs in the 
lung, the mesonephric kidney, and a variety of organs of the 
alimentary tract, including the liver. It should be noted that 
full-length cDNA clones of Xenopus liver gap junction 
mRNA have not yet been recovered. Therefore, it is not 
known whether the 1.5-kb liver polyadenylated RNA de- 
tected by hybridization is a product of the same gene that 
gives rise to the embryonic transcript. Although the cloned 
embryonic and liver cDNA sequences differ by one codon, 
no mismatch at this position is detected by S1 nuclease pro- 
tection analysis of liver RNA with the embryonic probe. 
Consequently, it is likely that this difference represents an ar- 
tifact of the cloning process or a sequence polymorphism. 
The near identity of the cDNA sequences and the apparent 
low copy number of the gene encoding them argue that the 
1.5-kb transcripts in liver and embryos are the same. 

Nuclease protection assays with RNA from the early tail- 
bud stage showed that the putative gap junction mRNA has 
a restricted distribution in the embryo. The highest concen- 
tration of transcripts is found in the ventral portion contain- 
ing ventrolateral epidermis and mesoderm and the rudiments 

of pharynx, heart, and endodermal structures. Within this 
region, the greatest abundance is found in a posterior ventral 
fragment that contains the liver rudiment, the ventral walls 
of midgut and postanal gut, and ventral mesoderm and epi- 
dermis (Nieuwkoop and Faber, 1975). Although the signifi- 
cance of this distribution is not known, it is possible that the 
gene product plays some role in morphogenesis of the respi- 
ratory, alimentary, and urogenital tract organs where it is 
later stably expressed. A better understanding of the em- 
bryonic distribution of the putative gap junction mRNA will 
require analysis by in situ hybridization. 

It was surprising to find that the embryonic gap junction 
transcript was not represented in the maternal RNA pool. 
Several types of data argue for the existence of functional gap 
junctions in the pregastrula Xenopus embryo. It is clear that 
cell-to-cell channels exist as early as the 32-cell stage which 
allow diffusion of a small dye, Lucifer Yellow (Guthrie, 
1984), but not of macromolecular tracers such as horserad- 
ish peroxidase and fluorescent dextrans (Hirose and Jacob- 
son, 1979; Gimlich and Braun, 1985). Warner et al. (1984) 
found that microinjection of antibodies that bind to deter- 
minants on the cytoplasmic surface of mammalian gap junc- 
tions and block channel conductance (Young et al., 1987) re- 
duced dye and ionic coupling of cells in the frog early 
blastula. These authors also showed that antibodies specific 
for the major gap junction protein of rat liver recognize 
Xenopus early embryonic proteins in immunoblot experi- 
ments. A simple prediction from the present data on RNA 
accumulation is that early embryonic gap junctions, while 
antigenically related to the liver type of junction, are the 
products of oocyte mRNAs which do not form stable hybrids 
with the XE1 la probes. Unless such transcripts were abun- 
dant, they would be difficult to detect by low stringency hy- 
bridization on gel blots. Indeed, in more recent work (Gim- 
lich, R. L., N. M. Kumar, and N. B. Gilula, manuscript in 
preparation), we have identified two maternal mRNAs that 
encode proteins closely related to the gap junction subunit 
predominant in the rat heart (Beyer et al., 1987). One of 
these mRNAs accumulates during oogenesis, but is absent 
by the neurula stage. Thus it seems that Xenopus embryonic 
gap junction proteins are the products of a family of related 
genes with distinct patterns of expression. The developmen- 
tal significance of a switch in predominant gap junction sub- 
unit structure is a topic of current research in this laboratory. 

Structural features believed to be determinants of protein 
folding and membrane association are well conserved among 
the predicted XE1 la translation product and the known gap 
junction proteins of mammals (Kumar and Gilula, 1986; 
Paul, 1986). In particular, the number and placement of 
predicted transmembrane domains is similar in the frog and 
mammalian proteins. The amino acid sequences of these hy- 
drophobic domains, including a putative amphipathic chan- 
nel-forming helix (Milks et al., 1988), are also highly con- 
served. The amino terminal 220 residues show identical 
spacing of cysteine residues and domains rich in charged 
amino acids. Topological considerations based on the exis- 
tence of cytoplasmic sites and four potential transmembrane 
helices (Unwin, 1986) predict that the gap junction protein 
has two extracellular domains (around residues 40-75 and 
160-190 in Xenopus). The excellent sequence conservation 
in these regions is consistent with the capacity of phylogenet- 
ically diverse cells in culture to establish heterospecific gap 
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junctional coupling (Michalke and Loewenstein, 1971; Ep- 
stein and Gilula, 1977). 

Comparison of diverse gap junction proteins also shows 
a consistent pattern of structural divergence. A region be- 
tween the second and third putative transmembrane domains 
(around residues 100-140 in Xenopus) is highly variable in 
primary sequence. This domain also differs in its length be- 
tween the major liver gap junction protein and that predicted 
for the heart gap junction in mammals (Beyer et al., 1987). 
The combined proteolytic and immunochemical studies of 
Zimmer et al. (1987) indicate that this part of the molecule 
is exposed on the cytoplasmic surface of the junctional mem- 
brane. The carboxy-terminal sequences (after residue 220) 
are highly divergent, although careful alignment reveals par- 
tial identity between the frog protein and the mammalian 
liver molecule. This variable region is also thought to reside 
on the cytoplasmic surface of the native gap junction (Zim- 
mer et al., 1987). 

Phosphorylation of gap junction proteins has been pro- 
posed to be an important modulator of junction number and 
conductance (Johnson et al., 1986; Saez et al., 1986). Thus, 
it may be significant that despite extreme sequence diver- 
gence in cytoplasmic domains, a consensus protein kinase A 
modification site (Krebs and Beavo, 1979) between positions 
220 and 240 exists in both the human liver and frog em- 
bryonic junction proteins (at residue 227 in Xenopus). In con- 
trast, the two consensus tyrosine phosphorylation sites (Pat- 
schinsky et al., 1982) in the carboxy-terminal domain of the 
human protein (Kumar and Gilula, 1986) are absent in the 
frog sequence. However, the single conserved tyrosine modi- 
fication site (at amino acid 171 of the frog protein) lies in one 
of the putative extracellular regions. The functional signifi- 
cance of these primary sequence features remains to be de- 
termined. 

The availability of the coding sequences for embryonic gap 
junction proteins will greatly facilitate detailed study of the 
regulation of junctional conductance and its role in develop- 
ment. Specific antibody probes are being developed to deter- 
mine the number and distribution of different gap junction 
proteins in the embryo. A combination of in vitro mutagene- 
sis and in vivo expression studies are now possible to locate 
the structural determinants of junctional assembly and con- 
ductance. Genomic sequences encoding diverse embryonic 
gap junctions have been cloned (Kumar, N. M., R. L. Gim- 
lich, and N. B. Gilula, unpublished data) and the genetic 
regulatory determinants of junction biosynthesis are being 
identified. These approaches will form a basis for under- 
standing the complex physiological control of cell-cell inter- 
actions during embryogenesis. 
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