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Abstract: To improve the water solubility of ursolic acid (UA), UA-loaded chitosan nanoparticles
were firstly prepared by the ionotropic gelation method and dried by freeze drying (FD), microwave
freeze drying (MFD) and spray drying (SD). The characterization of UA-loaded chitosan nanoparti-
cles was performed with particle size, drug loading (DL), scanning electron microscope (SEM), fourier
transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), dissolution studies
and antioxidant activity. The results demonstrated that UA was successfully encapsulated into chi-
tosan nanoparticles using sodium tripolyphosphate (TPP) as a cross-linker, with a 79% encapsulation
efficiency. The spray-dried, UA-loaded chitosan nanoparticles had the lowest drug loading (11.8%)
and the highest particle size (496.9 ± 11.20 nm). The particle size of UA-loaded chitosan nanoparticles
dried by MFD and FD was lower, at 240.8 ± 12.10 nm and 184.4 ± 10.62 nm, respectively, and their
antioxidant activity was higher than those nanoparticles dried by SD. Moreover, the drying time
and energy consumption of UA-loaded chitosan nanoparticles dried by MFD and SD were lower
than that of FD. The dissolution rates of UA-loaded chitosan nanoparticles prepared by FD and MFD
were 60.6% and 57.1%, respectively, in a simulated gastric fluid, which was a greater value than SD
(55.9%). Therefore, the UA-loaded chitosan nanoparticles encapsulation method, combined with
MFD technology, showed a promising potential to improve the water solubility of UA.

Keywords: ursolic acid; chitosan nanoparticles; microwave freeze drying; dissolution study

1. Introduction

Ursolic acid (UA) is a representative small-molecule compound of pentacyclic triter-
penoid found in Fructus Corni [1,2] and exhibits various biological activities, such as
anti-inflammatory, antioxidant and anti-diabetic effects [3,4]. In addition, UA also features
a low toxicity and an easier availability in nature [5]. However, UA is not broadly used
in health products and cosmetics because of its poor water solubility and low bioactiv-
ity [6,7]. Therefore, it is necessary to explore suitable approaches to overcome the low
water solubility of UA.

A number of delivery systems have been developed to enhance UA solubility, in-
cluding solid inclusion complexes, liposomes, nano-emulsions and hydrogels. Nowadays,
natural polymer nanoparticles are a research hotspot due to their distinct advantages
such as their small size and effective penetration ability [8,9]. Chitosan, as a natural
polymer, is a linear and naturally cationic polymer obtained by the partial deacetyla-
tion of chitin [10]. Chitosan-based nanoparticles are widely used as nano-carriers for
delivering active ingredients to increase stability and bioavailability [11]. For example,
chitosan and alginate nanocapsules were prepared by the solvent displacement technique
to improve its solubility of curcumin [12]. The resveratrol loaded zein/chitosan colloidal
particles prepared by the classical antisolvent procedure had a higher stability and bioavail-
ability [13]. Previous studies on UA-loaded chitosan focused on organic, acid-modified
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chitosan nanoparticles. Chitosan modified poly (lactic acid) nanoparticles by the emulsion–
solvent evaporation method, which was used extensively to improve the bioavailability of
UA [14]. The folate–chitosan nanoparticles loaded with UA could increase the solubility of
UA [15]. Zhao et al. [16] successfully encapsulated UA in the mesoporous silica nanopar-
ticle chitosan-lactobionic acid (MSN-CS-LA) nanocarrier system through non-covalent
interactions. Although the above organic acid-modified chitosan nanoparticles can sig-
nificantly improve the solubility and bioavailability of UA, they have the disadvantages
of redundant procedures, a larger particle size and a low drug-loading efficiency. The
reaction of chitosan and sodium tripolyphosphate (TPP) without organic acid modification
can easily form nanoparticles via electrostatic interaction. However, studies on the UA
chitosan-TPP nanoparticles by the ionotropic gelation method have not yet been performed.
Therefore, the preparation of UA-loaded chitosan-TPP nanoparticles to encapsulate UA
was investigated.

Drying is a necessary unit operation to obtain chitosan nanoparticles. Common
techniques in the fabrication of chitosan nanoparticles are the spray drying (SD) and freeze
drying (FD) [17]. SD was applied in preparing the amoxicillin chitosan nanoparticles and
erlotinib chitosan nanoparticles [18,19]. However, the inlet temperature during the SD
process was above 100 ◦C and could cause the degradation of sensitive compounds [20].
FD produces high-quality nanoparticles with an excellent retention ratio and a minimal
thermal and long-term storage stability [21–23], but always requires more time and energy
consumption to obtain dry products. In the current research, UA-loaded nanoparticle
powder is generally obtained by FD [24–26], but the drawbacks of a longer duration and
higher cost exist in the FD process of UA nanoparticles. In order to avoid the disadvantages
of SD and FD, microwave freeze drying (MFD) as a novel drying technology can be used
to produce high-quality products with less energy consumption [27,28]. Duan et al. [29]
reported that the time for drying a sea cucumber by MFD was nearly half of that for FD,
and there were no significant differences in the quality of the microwave freeze-dried and
standard freeze-dried sea cucumbers. Moreover, MFD could realize a better dry mushroom
quality and drying efficiency than FD [30]. Therefore, as a low-energy method, MFD is a
potential drying technology to obtain nanoparticles in high quality. We hypothesized that
MFD for drying UA nanoparticles could achieve a better retention of UA at a lower cost.
However, there are no studies about the preparation of UA-loaded chitosan nanoparticles
by MFD.

In this research, the ionotropic gelation method was used to fabricate UA-loaded
chitosan nanoparticles, and the nanoparticle powders were dried by FD, MFD and SD,
respectively. The UA-loaded chitosan nanoparticles were characterized in terms of encap-
sulation efficiency (EE), scanning electron microscope (SEM), fourier transform infrared
spectroscopy (FT-IR), differential scanning calorimetry (DSC), dissolution studies and
antioxidant activity. The findings of this research might broaden the methods of fabricating
UA nanoparticles and contribute to the application of UA in functional food.

2. Materials and Methods
2.1. Materials

Chitosan (degree of deacetylation ≥90.0%), with a molecular weight of 30,000, was
purchased from Shanghai Lanji Technology Development Co., Ltd. (Shanghai, China).
UA (purity: 98%) was purchased from Chengdu Prefa Technology Development Co., Ltd.
(Chengdu, Sichuan, China). TPP and Tween-80 were analytical grade reagents purchased
from Tianjin Deen Chemical Reagent Co., Ltd. (Tianjin, China). The remaining chemical
reagents were of analytical grade.

2.2. Preparation of UA-loaded Chitosan Nanoparticles

UA-loaded chitosan nanoparticles were prepared according to the method of Yan
et al. [31] and optimized. Chitosan was added to 1% (w/v) acetic acid solution for magnetic
stirring for 8 h at 25 ◦C to obtain transparent solution. The pH of chitosan solution was
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adjusted to 5.0 with 0.1 g/mL sodium hydroxide solution, and then 1% Tween-80 was
added and magnetically stirred for 20 min at 25 ◦C. After that, the UA solution dissolved
in ethanol was added to the above solution at the UA–chitosan mass ratio of 4:1, and under
magnetic stirring for 30 min. TPP solution of 2.0 mg/mL was slowly dropped into the
mixed solution at the chitosan-TPP mass ratio of 4:1, and magnetically stirred for 45 min to
obtain UA-loaded chitosan nanoparticles suspension. The nanoparticles suspension was
centrifuged at 12,000 rpm for 20 min, and the precipitate was washed with distilled water
to remove unbound UA, and dried for further studies.

2.3. Drying Experiments
2.3.1. Spray Drying (SD)

The materials were dried by a spray dryer (YC-015, Pilotech Instrument & Equipment
Co., Ltd., Shanghai, China). The UA-loaded chitosan nanoparticles suspension was fed
into the chamber through a peristaltic pump at a feed flow rate (300 mL/h). The inlet
temperature, outlet temperature and air flow rate were 120 ◦C, 80 ◦C and 1.3 m3/min,
respectively. The spray-dried, UA-loaded chitosan nanoparticles were collected and stored
in desiccators until analysis.

2.3.2. Freeze Drying (FD)

The precipitate was dried by a vacuum freeze dryer (LGJ-10D, Beijing Science Instru-
ment Co. Ltd., Beijing, China). The precipitate was placed into Petri dish and frozen at
−25 ◦C for at least 8 h. The frozen precipitate was put into the drying chamber at the
pressure of 40 Pa. The cold trap and heat shelf temperatures were set at −40 ◦C and −50 ◦C,
respectively. The precipitate was frozen in the vacuum freeze dryer for about 6 h. The
freeze-dried, UA-loaded chitosan nanoparticles were stored in desiccators until analysis.

2.3.3. Microwave Freeze Drying (MFD)

The precipitate was dried by a microwave freeze dryer which was developed by
Duan et al. [32]. The precipitate was frozen at −25 ◦C for at least 8 h. The pressure of the
independent polypropylene drying cavity and cold trap temperature was carried out at
100 Pa and −40 ◦C, respectively. The power of microwave was set at 20 W. The microwave
freeze-dried, UA-loaded chitosan nanoparticles powders were stored in desiccators until
analysis.

2.4. Characterization of UA-Loaded Chitosan Nanoparticles
Encapsulation Efficiency (EE) and Drug Loading (DL)

After UA-loaded chitosan nanoparticles were prepared according to 2.2, the UA
nanoparticle suspension was centrifuged at 10,000 rpm for 20 min. The supernatant was
separated and the precipitate was washed with distilled water. Ethanol was added to the
precipitate and sonicated for 15 min, centrifuged at 10,000 rpm for 15 min, the absorbance
at 210 nm was analyzed by using UV spectrophotometer (UV-2600, Shanghai Ronnik
Instrument Co. Ltd., Shanghai, China), and the content of UA was calculated by the
standard curve. The EE and DL were calculated using the following Equations (1) and (2),
respectively [33]:

EE (%) =
amount of encapsulated UA in nanoparticles

amount of UA initially added
×100 (1)

DL (%) =
amount of encapsulated UA in nanoparticles

weight of UA chitosan nanoparticles
×100 (2)

2.5. Particle Size and Polydispersity Index (PDI)

The particle size and PDI of the UA-loaded chitosan nanoparticles dried by different
methods were measured by using a dynamic light scattering technique (Zetasizer model
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Nano ZS, Malvern Instruments, Malvern, UK) [34]. All the samples were measured in
triplicates.

2.6. Scanning Electron Microscope (SEM)

The UA-loaded chitosan nanoparticles were sprinkled on the double-sided adhesive
tape and coated with gold [35]. The microstructure and surface morphology of UA-
loaded chitosan nanoparticles were observed with SEM (TM3030Plus, Hitachi High-Tech
Corporation, Tokyo, Japan) at magnification 20,000×.

2.7. Fourier Transform Infrared (FT-IR) Spectroscopy

FT-IR spectrophotometer (VERTEX70, German BRUKER Company, Karlsruhe, Ger-
man) was used to analyze the UA-loaded chitosan nanoparticles. The spectra were recorded
in the scanning range of 4000–400 cm−1 at a resolution of 4 cm−1 [36].

2.8. Differential Scanning Colorimetry (DSC)

DSC was used to analyze the effect of different drying methods on the thermal
behavior of UA-loaded chitosan nanoparticles. The powders were evaluated using DSC
(Switzerland METTLER-TOLEDO, Zurich, Switzerland). Approximately 5 to 10 mg of
samples were weighted and set in hermetically sealed aluminum pans and the cover lid
was poked. DSC analysis was heated from 50 ◦C to 400 ◦C and the heating rate was
10 ◦C/min. Nitrogen was used as the purge gas at a constant flow rate of 100 mL/min. An
empty hermetically sealed aluminum pan was used as a reference [37].

2.9. Dissolution Study

The UA-loaded chitosan nanoparticles were added to a beaker containing simulated
gastric fluid (SGF, pH 2.0, 0.01 mol/L hydrochloric acid and 0.09 mol/L sodium chloride)
and simulated intestinal fluid (SIF, pH 6.9, 0.07 mol/L potassium dihydrogen phosphate
and 0.2 mol/L sodium hydroxide), and stirred at 120 rpm at 37 ◦C. Suspensions were
sampled at appropriate time intervals and replaced with same volume of fresh dissolution
medium to maintain the sink conditions. The withdraw samples were immediately filtered
through 0.45 µm filter membrane and analyzed by UV [38,39].

2.10. Antioxidant Activity

Antioxidant activity of UA-loaded chitosan nanoparticles was measured using DPPH
free radical scavenging capacity. DPPH (4 mg) were dissolved in 100 mL ethanol solution
to obtain DPPH solution. The UA-loaded chitosan nanoparticles were dissolved in ethanol
solution and mixed with DPPH solution. After 30 min, the absorbance was measured at
517 nm. The results were calculated according to the vitamin C (VC) standard curve and
Equation (3). The equation of DPPH scavenging activity was as follows:

DPPH scavenging activity (mg Vc/g) =
(

1 − As
Ao

)
×100 (3)

where, As is the absorbance of the sample mixed with ethanol solution of DPPH and Ao is
the absorbance of DPPH solution.

2.11. Statistical Analysis

The results were performed as means ± SD. Origin 2017 software was used to draw
results diagrams. In order to determine the significant difference between the group
samples, the confidence interval was selected as 95% (p < 0.05).

3. Results and Discussion
3.1. Particle Size, PDI and Morphology of UA-Loaded Chitosan Nanoparticles

The characteristics of the UA-loaded chitosan nanoparticles dried by different methods
are shown in Table 1. The EE of the UA-loaded chitosan nanoparticles was approximately
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79%. Table 1 shows that the DL of the UA nanoparticles dried by FD, MFD and SD were
12.7%, 12.0% and 11.8%, respectively, indicating that the DL of spray-dried nanoparticles
was lower than microwave freeze-dried and standard freeze-dried nanoparticles. This
may be due to the high inlet temperature of the SD process causing the degradation of
partial UA. Table 1 shows that the drying times of FD, MFD and SD were 24 h, 2 h and
3 h, respectively, which demonstrated that MFD had the shortest drying time and the
highest drying efficiency. As shown in Table 1, the particle size of the UA nanoparticles
dried by different methods ranged from 190 nm to 531 nm, and the order was as follows:
SD > MFD > FD. The PDI of standard freeze-, microwave freeze-, and spray-dried, UA-
loaded chitosan nanoparticles were 0.186, 0.515 and 0.476, respectively, which indicated
that FD formed more homogeneous populations, compared with MFD and SD [40].

The morphology of the UA-loaded chitosan nanoparticles dried by three drying meth-
ods is shown in Figure 1, where the shape of the dried, UA-loaded chitosan nanoparticles
varied significantly depending on the drying method used. Specifically, the morphologies
of freeze- and spray-dried nanoparticles were agglomerated small spheres with porous
structures (Figure 1A), and spherical types of different sizes (Figure 1C), respectively.
Compared with FD, the morphology of the microwave freeze-dried UA nanoparticles
(Figure 1B) presented looser porous structures, and the surface of the powders appeared
rough due to the effect of microwaves during the drying process.

Table 1. Characteristics of the UA-loaded chitosan nanoparticles.

DL (%) Drying Time (h) Particle Size (nm) PDI

FD 12.7 ± 0.3 a 24 184.4 ± 10.62 a 0.186 ± 0.04 a

MFD 12.0 ± 0.5 a 2 240.8 ± 12.10 b 0.515 ± 0.01 c

SD 11.8 ± 0.2 b 3 496.9 ± 11.20 c 0.476 ± 0.03 b

Values are given as mean ± standard deviation. a–c Values with different superscript letters in the same column
are significantly different (p < 0.05) on the basis of Tukey’s multiple-comparison test.
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Figure 1. SEM micrographs of UA-loaded chitosan nanoparticles prepared by FD (A), MFD (B), and
SD (C).

3.2. FT-IR Analysis

The FT-IR spectra of chitosan, UA, chitosan nanoparticles, and UA-loaded chitosan
nanoparticles obtained by different drying methods are illustrated in Figure 2. The spectra
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of chitosan showed a peak at 3432 cm−1 assigned to the O-H stretching vibration. In the
spectra of UA, the peaks at 3524 cm−1, 1714 cm−1 and 1125 cm−1 were attributed to the
cyclitols’ O-H stretch, the C = C stretching vibration and the cyclitols’ C-O stretch, respec-
tively [41]. The spectra characteristics of chitosan and UA were similar to those reported in
previous studies [42,43]. For the blank chitosan nanoparticles, the peak of O-H bending
shifted from 3381 to 3432 cm−1, and the band became much broader, indicating that the
hydrogen bond interaction of chitosan was enhanced and that there was a presence of elec-
trostatic interactions. During the formation of chitosan nanoparticles, the peak shifted from
1653 cm−1 and 1599 cm−1 in the chitosan spectra to 1578 cm−1, suggesting that C = O amide
I and the –NH2 groups of chitosan were both involved in electrostatic interactions [44].
Besides, the peaks in the range of 780 to 540 cm−1 indicated the symmetrical stretching of
these bonds, proving the existence of the interaction between chitosan and TPP [42]. The
difference in the peak position of 3650 to 3000 cm−1 of UA-loaded chitosan nanoparticles
under different drying methods was attributed to the discrepancy in the stretching vibra-
tion of the O-H. Compared with FD and MFD, the peak of O-H stretching vibration shifted
from 3385 cm−1 to 3362 cm−1 in spray-dried, UA-loaded chitosan nanoparticles, indicating
that the intramolecular hydrogen bond strength increased. Compared with the UA FT-IR
spectra, the characteristic peaks of all the UA-loaded chitosan nanoparticles dried by the
three methods at 1714 cm−1 and 1125 cm−1 disappeared, which confirmed no chemical
interaction between UA and chitosan nanoparticles. Furthermore, the disappearance of the
UA peaks indicated the encapsulation of UA into the nanoparticles.
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Figure 2. FT-IR spectra of chitosan, UA, chitosan nanoparticles, freeze-, microwave freeze-, and
spray-dried UA-loaded chitosan nanoparticles. UA-loaded chitosan nanoparticles prepared by freeze
drying (FD), microwave freeze drying (MFD) and spray drying (SD). UA: ursolic acid.

3.3. DSC Analysis

Figure 3 shows the DSC spectra of UA, chitosan alone, the chitosan nanoparticle, and
the UA-loaded chitosan nanoparticles dried by SD, FD and MFD, respectively. The DSC
curve of chitosan showed an endothermic peak near 100 ◦C and an exothermic peak around
290 ◦C, respectively, which were related to the loss from the hydrophilic groups of chitosan
and structural decomposition, respectively [45]. The DSC curve of the blank chitosan
nanoparticle showed an endothermic peak near 90 ◦C. The variation of the endothermic
peak in the chitosan nanoparticle was considered to be the physical and molecular changes
caused by the electrostatic interaction between chitosan and TPP [46]. The DSC curve of
UA showed an endothermic single peak near 283 ◦C in Figure 3, which was the melting



Foods 2021, 10, 2470 7 of 11

point of UA, owing to its crystal structure. UA-loaded chitosan nanoparticles dried by SD,
FD and MFD showed the decreased in the endothermic peak at 92 to 96 ◦C compared to
chitosan at 100 ◦C. After UA was encapsulated by the chitosan nanoparticles, the crystalline
peak at 283 ◦C in UA disappeared. These results proved that UA was encapsulated into
the chitosan nanoparticles dried by the three methods.
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chitosan nanoparticles. UA-loaded chitosan nanoparticles prepared by freeze drying (FD), microwave
freeze drying (MFD) and spray drying (SD). UA: ursolic acid.

3.4. Dissolution Studies

Figure 4 displays the dissolution curves of UA-loaded chitosan nanoparticles prepared
by different methods in SGF and SIF, respectively. It can be seen from Figure 4 that the
dissolution rates of the unencapsulated UA in SGF and SIF were both lower than 10%.
Figure 4A showed that, during the first 50 min, UA-loaded chitosan nanoparticles prepared
by different drying methods presented a fast dissolution rate in SGF followed by a slight
and steady dissolution rate, and the dissolution rate at 50 min was in the order of SD
(53.9%) > MFD (53.1%) > FD (50.6%). From 50 to 120 min in SGF, the cumulative dissolution
rate of UA-loaded chitosan nanoparticles dried by SD, FD and MFD were 2%, 10% and 4%,
respectively. The dissolution rate in SIF of the UA-loaded chitosan nanoparticles prepared
by different drying methods was in the order of FD (16.9%) > MFD (16.4%) > SD (13.7%)
(Figure 4B). Thus, the UA-loaded chitosan nanoparticles prepared by FD and MFD showed
more advantages in increasing the dissolution rate of UA than SD.
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Figure 4. Dissolution curves of UA-loaded chitosan nanoparticles prepared by different methods in
SGF (A) and SIF (B).

3.5. Antioxidant Activity

The DPPH free radical scavenging capacity of UA-loaded chitosan nanoparticles
prepared by different drying methods is shown in Figure 5. It was suggested that UA-
loaded chitosan nanoparticles prepared by different drying methods exhibited different
antioxidant activities. The order of the DPPH free radical scavenging capacity of the
UA-loaded chitosan nanoparticles dried by the three drying methods was as follows: FD
(2.72 mg VC/g) > MFD (1.76 mg VC/g) > SD (1.04 mg VC/g). These results indicated that
the UA-loaded chitosan nanoparticles prepared by FD and MFD had a higher antioxidant
activity than that dried by SD, which was attributed to the lower drying temperature of FD
and MFD. Therefore, MFD as a new drying technology and FD could be applied in drying
UA-loaded chitosan nanoparticles to maintain the biological activity of UA.
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4. Conclusions

This study demonstrated that UA encapsulated in chitosan-TPP nanoparticles dried
by MFD, FD and SD could increase the water solubility of UA. The FT-IR and DSC spectra
confirmed the presence of UA in the chitosan nanoparticles. The SEM results confirmed
that the UA-loaded chitosan nanoparticles prepared by the three drying methods were
in the nano size range (184.4–496.9 nm), and displayed a spherical type in different sizes.
UA-loaded chitosan nanoparticles dried by FD and MFD showed a higher antioxidant
activity and higher dissolution rates than that of the spray-dried nanoparticles. Among the
three drying methods, MFD is a novel and promising technology with the shortest drying
time, which can be applied in drying UA-loaded chitosan nanoparticles to increase UA
solubility. Therefore, this study provides more references for the application of UA-loaded,
chitosan-TPP nanoparticles in functional food to further enhance UA bioavailability.
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