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Introduction
Quantitative methodologies to evaluate high-throughput 
omics data are indispensable for biological risk assessment.  
Frequently used methods to interpret the transcriptomic 
analysis and to understand the biological response upon differ-
ent exposures include gene set enrichment analysis (GSEA)1 
or pathway analyses [eg, the Database for Annotation, 
Visualization and Integrated Discovery (DAVID, https://
david.ncifcrf.gov/) and Ingenuity Pathways Analysis (IPA, 
http://www.ingenuity.com/)]. While these tools are relevant 
for finding the most affected biological processes or pathways 
in large-scale data sets,1–3 the results obtained are typically 
qualitative and are not specific for a particular tissue type or 
disease. To quantify the impact of exposure or potentially 
affected biological processes in disease, biological network 
models (BNMs) have emerged as powerful and useful tools in 
the field of systems biology.4 The major advantage of the BNM 
approach is to capture unstructured knowledge into inter
connected and organized knowledge that describes biological 
processes precisely and accurately. There are several model-
ing languages, such as the Markup Language (SMBL: http://
sbml.org/)5 and Biological Pathways Exchange (BioPAX),6 
that can be employed to convert scientific results into a com-
putable form. The Biological Expression Language (BEL) 
(http://www.openbel.org)7,8 represents scientific information 

as statements with causal or noncausal relationships between 
biological entities.7 BEL also addresses the common challenge 
in traditional pathway analyses, which is missing condition- 
and cell-specific information (Fig. 1).9 Today, more than 80 
commercial pharmaceutical and life science projects use BEL 
to build causal BNMs.10

To aid in the curation of biological knowledge into BEL, 
the Biological Expression Language Information Extraction 
Workflow (BELIEF) has an integrated text mining tool11,12 and 
simplifies the conversion of biological entities and relationships 
into BEL.13–16 The compiled BEL statements can be visual-
ized in the form of a BNM that is a static representation of the 
extracted biological knowledge. This model can be used for the 
analysis and interpretation of large-scale data.17 Algorithms were 
developed to score such network models employing the causal 
structure of the model as well as transcriptomic data.18–20

Here, we describe a particular network model constructed 
from literature knowledge focusing on atherosclerosis plaque 
destabilization in ApoE−/− mice. We further demonstrate 
that in combination with the scoring algorithm, the network 
model can be used to accurately quantify the impact of plaque 
development in aging ApoE−/− mice, which allows the inter-
pretation of the precise mechanisms involved. Figure 1 shows 
the high-level workflow for the building and scoring of BNMs 
described in this article.
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Methods
Biological Expression Language. The BEL (http://

www.openbel.org) was specially designed to represent causal 
relationships across a wide range of mechanistic events 
(eg,  protein–protein functional or physical interactions, 
protein–diseases interactions, and protein–biological processes 
interactions) in the scientific literature. A BEL statement is a 
semantic triplet expressed in the form of subject-relationship-
object, where the subject and object are coded by biological 
entity and where the relationship is a causal predicate (increase, 
decrease, directly decrease, directly increase; Fig.  2). Each 
BEL entity is defined by the BEL function (abundance chemi
cal, abundance protein, gene, mRNA, abundance activity) 
and a referencing namespace (HUGO Gene Nomenclature 
Committee [HGNC], Mouse Genome Informatics [MGI], 
or Gene Ontology Consortium [GO]).15,21 BEL also captures 
the experimental context and includes information about the 
biological and experimental system in which the relationships 
were observed (tissue type, species, cell line, or disease).

The BELIEF workflow. Thirty-three relevant articles 
(Supplementary File 1) derived from original experiments 
describing biological mechanisms involved in the plaque 

destabilization process in atherosclerosis in mice with the 
ApoE−/− genetic background were identified using specific 
key words such as “atherosclerosis plaque destabilization”, 
“vulnerable lesion”, and “advanced lesions” in PubMed (http://
www.ncbi.nlm.nih.gov/pubmed). After the conversion of PDF 
files (abstract, materials and methods, and results sections) into 
text files using ABBYY FineReader 11 (http://www.abbyy.
com/finereader/), the articles were uploaded into BELIEF11,16 
and relevant biological terms in the text were recognized by the 
text mining software integrated in the BELIEF software, as 
described elsewhere (Fig. 2).16 Each processed text document 
was opened in the curation interface, and the automatically 
assembled BEL triplets were reviewed, corrected, and anno-
tated for the biological context (in this case, tissue, disease, cell, 
and species) to form a complete and accurate BEL document. 
To fulfill this process, the verified BEL statements in the BEL 
document were compiled to generate a knowledge assembly 
model, and exported into the eXtensible Graph Markup and 
Modeling Language (XGMML) format, to be visualized 
in Cytoscape.

Transcriptomic data sets for verification of the athero-
sclerosis plaque destabilization network model. To test the 
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Figure 1. Five-step approach describing the use of the text mining tool for model network building and transcriptomics data for validation of the network. 
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ability of the plaque destabilization network model to provide 
a quantitative measure of plaque progression based on tran-
scriptomic data from the aorta, we investigated publicly avail-
able data sets from studies describing aortic tissue affected by 
atherosclerosis or by nonatherosclerotic disease, as a negative 
control. The GSE10000 and GSE9371 data sets were obtained 
from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/gds). The GSE1000 data set examined age-dependent 
gene expression in the aorta of ApoE−/− mice aged 6, 32, and 
78 weeks versus that in C57BL/6J mice (http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2626665/). In this study, the 
ApoE−/− mice at 32 and 78 weeks represented a disease model 
with the high activation of mechanisms implicated in the 
atherosclerosis plaque destabilization process. The GSE9371 
data set examined the role of alpha and beta estrogen receptors 
in the mouse aorta22; hence, such data are from the aorta of 
mice without the atherosclerotic disease.

Network perturbation amplitude (NPA) methodology. 
The NPA methodology is used to analyze the transcriptomics 
data sets in the context of the plaque destabilization network 
model. Briefly, network scoring exploits the functional layer 
described in the previous section. The signs of the relation-
ships between the backbone and the functional layer repre-
sent the increase or decrease in the abundance of individual 
mRNAs and are used to infer the activation of a backbone 
node using transcriptomics data. Because not all backbone 
nodes have downstream mRNA nodes, the network models 

need to be prepared for scoring to improve the specificity and 
relevancy of the overall NPA score. Only backbone nodes that 
are on a directed path that starts and ends with a node that has 
downstream mRNA nodes are considered. After removing the 
nodes that do not satisfy this criterion, the largest connected 
component is kept. Finally, the edges “causesNoChange” are 
disregarded for the scoring.

The NPA methodology23 aims at contextualizing the 
high-dimensional transcriptomics data by combining gene 
expression (log2) fold changes, β, into fewer differential node 
values (one value for each node of the network), f. The dif-
ferential node values are determined by a fitting procedure 
that infers the values that best satisfy the directionality of the 
causal relationships (positive or negative signs) contained in 
the network model, while being constrained by the experi-
mental data (the gene log2 fold changes, which are described 
as downstream effects of the network itself):

f L LT= −
3

1
2 β,

where L is the signed weighted Laplacian of the network and 
the extra edges and nodes describing the downstream effects 
(to expression gene nodes), L3 is the submatrix of L for the 
nodes in the network, and L2 is the submatrix corresponding 
to the edges connecting the network nodes to the downstream 
gene expression nodes. The differential node values are in turn 
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summarized as a single positive number, which are referred to 
as the amplitude of perturbation (NPA scores):

NPA
in

= +∑1
| | 0 1

2

E
f e e f e

e E
( ( ) ( ) ( )) ,σ

where E is the set of edges in the network; |E| is its size; σ(e) 
is the sign of the edge e; and e0 and e1 denote the start and the 
end, respectively, of an edge e. The sum computing the NPA 
score can be expressed as f   TQ f, where Q is the signed Laplacian 
of the network where all the edge signs have been reversed.

Details of the methodology are described in a previous 
publication.23 For the NPA scores, a confidence interval account-
ing for experimental variation and associated P-values are com-
puted. In addition, companion statistics, derived to determine 
the specificity of the NPA score with respect to the biology 
described in the network model, are shown as *O and K* if their 
P-values are below the significance level (0.05). A network is 
considered to be significantly impacted if the three values (the 
confidence interval, *O, and K* statistics) are below 0.05.

Results
The network model representing mechanisms involved 

in atherosclerosis plaque destabilization. The atherosclerotic 

plaque network model represents a comprehensive collection 
of biological mechanisms that regulate the plaque destabiliza-
tion process in the ApoE−/− mouse aorta.16 A network model 
is a representation of the causal relationships between the 
biological entities in the determined cellular systems coded in 
the BEL (Fig.  2). The nodes of the network correspond to 
biological entities or processes and diseases; relationships are 
represented by edges that connect two nodes and represent 
the cause-and-effect relationship between the correspond-
ing objects (Fig. 2). This first layer constitutes the backbone 
network. In addition to the backbone network model, the net-
work contains a downstream layer, called the functional layer; 
this functional layer includes downstream nodes of a particu-
lar node from the backbone network. Downstream entities are 
in this case the differential expression of the genes causally 
affected by the considered nodes, which allows the integration 
of gene expression measurements into the model. This process 
is called “backward” reasoning and relies on the premise that 
the activity of the specific activities (eg, enzymes or transcrip-
tion factors) is deduced from the changes in the expression 
of its downstream genes.23 By definition, in the two-layered 
structure, there are no edges between genes in the transcript 
layer as we assume that the functional layer drives rela-
tionships between genes. The majority of these edges were 
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Figure 3. Atherosclerosis plaque destabilization network model containing 203 nodes (colored boxes) and 511 edges (gray lines connecting nodes).  
Notes: Biological entities or nodes: red parallelogram, pathology; pink parallelogram, biological process; cyan rectangle, protein abundance; blue 
triangle, chemical abundance; “V” shape, cell secretion; blue hexagon, activity of protein. Relationships or edges: lines with arrows indicate positive 
causal relationships; lines with dark “Ts” indicate negative causal relationships; gray dashed line indicates correlative and noncausal relationships.
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retrieved from the Selventa Knowledgebase,19 and some new 
downstream nodes were also created via literature curation, as 
described above.

Evaluation of the plaque destabilization network 
model. The GSE10000 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE10000) published dataset was used 
to test the network model and the NPA methodology. The 
GSE10000 captures the gene expression changes in aortic 
tissue in response to aging. This study compared the aorta 
transcriptomes of C57BL6/J and ApoE−/− knockout mice 
at different ages. In the ApoE−/− genetic background, age is 
considered a biological stimulus of atherogenesis and a strong 
inducer of the mechanisms implicated in the atherosclerotic 
destabilization process.24 The 6-week-old ApoE−/− mice 
described in the GSE10000 data set had minor atheroscle-
rotic lesions that advanced with time to become the advanced 
atherosclerotic lesions observed in the aorta of 32- and 
78-week-old mice.24 The GSE9371 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE9371) data set examined 
the implication of alpha and beta estrogen receptors in mouse 
arteries. This data set was used as a negative control to assess 

the specificity of our atherosclerosis plaque destabilization 
network model.

Figure 4 shows the values for the perturbation amplitude 
for the network as a whole. The NPA score peaked at the age 
of 78 weeks, whereas at 6 weeks, only slight perturbation of 
the network was observed (Fig. 4). By contrast, evaluation of 
the data set from the study investigating estrogen receptors 
in the aorta (GSE9371) did not result in significant pertur-
bation of the plaque destabilization network model. The key 
nodes contributing to the amplitude of network perturbation 
are referred to as the leading nodes, which are shown below 
the NPA bar graph (Fig. 4). Interestingly, while the NPA was 
substantially lower in ApoE−/− mice, at the age of 6 weeks, 
mitogen-activated protein kinase 9 (Mapk9), Cd36 antigen 
(Cd36), and “oxidation of low-density lipoprotein (LDL)” 
were inferred to be activated, whereas Cxcl16 and the “smooth 
muscle cell apoptosis process” were inferred to be suppressed. 
These leading nodes were different from the ones obtained 
with the data from older mice in the study. The most primary 
controllers implicated in the atherosclerosis plaque desta-
bilization process at 32 and 78 weeks were Mmp13, Cxcl16, 
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Figure 4. Perturbation of the atherosclerosis plaque destabilization network model as a whole. 
Notes: (A) Quantification of the entire NPA in the aortic tissue of 6-, 32-, and 78-week-old ApoE−/− mice and in Era knock out estrogen (ERaKA) mice. *O and 
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The blue color and the negative sign mean that the activation of the leading node is decreased, and the red color indicates the increased activation.

http://www.la-press.com
http://www.la-press.com/journal-gene-regulation-and-systems-biology-j26
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10000
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10000
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9371
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9371


Szostak et al

100 Gene Regulation and Systems Biology 2016:10

advanced glycosylation end product-specific receptor Ager, 
Mmp9, and Cd36 (Fig. 4).

The firm regulation of these biological entities was also 
associated with the robust activation of biological mechanisms 
such as “oxidation of LDL”, followed by “atherogenesis” and 
“plaque destabilization.”

Figure 5A shows a graphic representation of the response 
of the network model to plaque progression in the ApoE−/− 
mouse aorta based on transcriptomics data. While the net-
work model is marginally impacted when scoring the sample 
of 6-week-old mice, the number of affected nodes gradually 
increases as the mice age, and plaques develop in the ApoE−/− 
background. As shown in Figure 5B, the mechanisms regu-
lated in the network at 6 and 32 weeks in ApoE−/− mice were 
considerably different (Pearson correlation: 0.12). This was 
in line with the fact that at 6 weeks, the ApoE−/− aorta does 
not yet show pathology, which was observed later, toward 
32 weeks. By contrast, the mechanisms that were impacted 
at 32 and 78 weeks were quite similar, as demonstrated by 
a robust positive correlation (Pearson correlation: 0.97) 
between the activation of the backbone network model at 
these two ages.

Figure  6  shows a graphic representation of the leading 
nodes in the plaque destabilization model, when scored with 
transcriptomics data from the ApoE−/− mouse aorta. In 6-week-
old mice, the activation of nodes, such as Cd36 and oxidized 
LDL, was predicted to be principally responsible for mac-
rophages chemotaxis. At 32 weeks, the macrophages chemot-
axis was accompanied by the development of inflammation 
through macrophages activation, which could lead to smooth 
muscle cell apoptosis and plaque destabilization. The mecha-
nisms that were predicted to be impacted at 32 weeks were also 
the most important contributors to the effect at 78 weeks. In 
addition, inflammatory players, such as the cytotoxic CD8+ 
T-lymphocytes, were predicted to be activated, which indi-
cated progression of the plaque destabilization process.

Discussion
The cellular and molecular mechanisms behind the process 
of atherosclerosis plaque destabilization are complex and still 
relatively poorly understood.25–27 Here, we demonstrated how 
a five-step approach combining semiautomated curation with 
transcriptomics data and a perturbation network algorithm 
could be used to study the process of atherosclerosis plaque 
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destabilization in great detail at the molecular level. The central 
component of our analysis is the causal BNM describing 
molecular relationships that take place during plaque instabil-
ity in ApoE−/− mouse aorta. While being a static representa-
tion, this computable causal model could serve as the basis for 
developing a dynamical model describing the dynamics of its 
molecular entities, in line with the perspectives discussed in 
Ref. 28. Dynamical models describing, for example, the ini-
tiation of atherosclerosis through a small number of molecular 
species have been previously published.29 With the use of two 
public datasets, we have demonstrated that the atherosclerosis 
plaque destabilization network model is accurate to the ath-
erosclerotic disease and is very sensitive to data from advanced 
lesions. However, the network model was extracted in pro-
priety from ApoE−/− model; the mechanism of atherosclerotic 
disease could be used in another disease model to investi-
gate the severity of atherosclerotic plaque. High connected 
nodes were captured as the backbone network model (Fig. 3) 
to allow the NPA scoring (Fig.  3). The results suggest that 
lesions observed at 78 weeks present the most elevated risk for 
the plaque destabilization process in ApoE−/− mice. Interest-
ingly, the network was already slightly impacted in ApoE−/− 
mouse aorta at 6 weeks, when no plaques should be present. 
However, the significant molecular contributors to the pertur-
bation differed from those observed for more advanced lesions, 

as demonstrated by the leading node and correlation analyses. 
The inferred downregulation of CXCL16  in the younger 
mice could be related to enhanced macrophage recruitment 
to the aortic arch, which could promote the acceleration of 
the inflammatory response and atherosclerosis, as has been 
previously proposed.30 This enhanced macrophage recruit-
ment could be additionally enhanced through CD36 activa-
tion, as suggested by the NPA analysis. CD36 is an essential 
scavenger receptor strongly implicated in the capture of lipids 
and macrophages in the subendothelial layer; overexpression 
of CD36 has been shown to lead to the development of an 
inflammatory response mediated through lipid oxidation.31 
Together, these findings suggest that in ApoE−/− mice aged 
6 weeks, mechanisms related to the recruitment of lipids and 
inflammatory cells are predominantly activated and that these 
mechanisms strongly involve CXCL16 and CD36 (Fig. 6). Our 
network model further integrated the crucial role of MMPs in 
the plaque destabilization process and showed that MMP13 
was strongly deactivated, whereas MMP9 and AGER were 
strongly activated in the network model scored with 32-week 
ApoE−/− mouse data. Together, these results suggest that 
pro- and antiplaque destabilization mechanisms are regulated 
at 32 weeks. While MMP13  inhibition promotes collagen 
accumulation in atherosclerotic lesions, even in established 
plaques, and participates in preventing plaque rupture,32,33 
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the pro-rupture mechanisms related to MMP9 and AGER 
degrade the extracellular matrix and could promote smooth 
muscle cell apoptosis. However, antiplaque destabilization 
mechanisms seemed to be regulated at 32 weeks; the imbalance 
between matrix accumulation and degradation reduces plaque 
stability, as suggested by the activation of “smooth muscle cell 
apoptosis” and the “plaque destabilization process,” which 
occurs despite MMP13 deactivation.34 At 78 weeks, the ath-
erosclerosis plaque destabilization process had progressed fur-
ther, as indicated by the reinforcement of mechanisms already 
inferred to be activated at 32 weeks. Despite the substantial 
agreement between the leading nodes activated at 32  and 
78 weeks, we observed that additional mechanisms mediated 
by CD8 were increasingly activated at 78 weeks (Fig. 6). Cd8a 
is a biomarker for cytotoxic CD8+ T-lymphocytes. The activa-
tion of such lymphocytes suggests that the advanced lesions at 
78 weeks present infiltration of not only macrophages but also 
cytotoxic Cd8a+ T-lymphocytes. As demonstrated in the lit-
erature, CD8+ T-lymphocytes play a critical role in the plaque 
destabilization process; the infiltration of Cd8+ T-lymphocytes 
promotes the induction of macrophages, endothelial cells, 
and smooth muscle cell apoptosis, leading to plaque instabil-
ity.32,33 Our conclusion demonstrating the additional effects 
of CD8+ T-lymphocytes on the plaque destabilization process 
is in accordance with literature results that revealed that the 
advanced atherosclerotic lesions promote the infiltration of 
CD8+ T-lymphocytes, which account for plaque rupture.27,33

Conclusion
As demonstrated in this study, BNMs in combination with 
the NPA algorithm provide a sensitive, quantitative method 
to follow disease progression at the molecular level.20 In this 
study, we additionally demonstrated that the mechanisms 
playing important roles in atherosclerotic lesions at 6, 32, 
and 78 weeks differed markedly. While the mechanisms at 
6 weeks focused on lipids and macrophage adhesion, the 
mechanisms in advanced lesions were strongly associated 
with the promotion of macrophages and Cd8+ T-cell activa-
tion, maintaining the essential role of inflammatory cells in 
advanced lesions. The causal BNMs describing the athero-
sclerotic plaques destabilization could be utilized for scoring 
of different data sets to determine the severity of atheroscle-
rotic lesions and could help in the discrimination of vulner-
able and nonvulnerable lesions. Although we focused on the 
atherosclerosis plaque destabilization process, the approach 
described here could be used in various contexts or diseases; 
the NPA methodology is not restricted to a particular domain 
and can be widely used in pharmaceutical and toxicological 
contexts. In fact, semiautomated curation using BELIEF 
tools is a flexible approach; BELIEF integrates the gene, pro-
tein, chemical, and disease database namespaces and allows 
the recognition of biological entities and their associated 
relationships in various biological and toxicological contexts. 
Although BELIEF strongly supports the creation of BNMs, 

direct visualization of the structured network knowledge in 
BELIEF is not currently possible. The BELIEF tool could 
benefit from a dynamic visualization tool, which is suggested 
as the next step to advance this approach. Finally, a key 
advantage of network models built using a text mining tool 
is that they can be regularly updated and maintained to keep 
the knowledge up to date.
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