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Abstract: Towards the development of a systems biology-based risk assessment approach for environmental toxicants, including 
tobacco products in a systems toxicology setting such as the “21st Century Toxicology”, we are building a series of computable biologi-
cal network models specific to non-diseased pulmonary and cardiovascular cells/tissues which capture the molecular events that can be 
activated following exposure to environmental toxicants. Here we extend on previous work and report on the construction and evalua-
tion of a mechanistic network model focused on DNA damage response and the four main cellular fates induced by stress: autophagy, 
apoptosis, necroptosis, and senescence. In total, the network consists of 34 sub-models containing 1052 unique nodes and 1538 unique 
edges which are supported by 1231 PubMed-referenced literature citations. Causal node-edge relationships are described using the 
Biological Expression Language (BEL), which allows for the semantic representation of life science relationships in a computable 
format. The Network is provided in .XGMML format and can be viewed using freely available network visualization software, such as 
Cytoscape.
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Introduction
System-wide ‘omics’ data containing measure-
ments of thousands of molecular species in a single 
experiment are increasingly being used to unravel 
the complex biological mechanisms contributing to 
pulmonary and cardiovascular diseases. Detailed 
mechanistic network models are needed to place the 
differential measurements obtained from molecular 
profiling data into the context of known biology. These 
mechanistic models can then be used to better under-
stand the impact of biologically active substances/
toxicants and associated disease risks as outlined in 
systems toxicology settings such as the “21st Century 
Toxicology”.1,2

Previously, we have reported on the construc-
tion of network models describing cell proliferation 
and cellular stress.3,4 Extending on elements of these 
networks (eg, the Cellular Stress Network), which 
described the network perturbations occurring during 
cellular defense in response to acute exogenous or 
endogenous insults, we report here on the construction 
and evaluation of a third network model, describing 
the mechanisms that can be activated if these cellular 
defenses are overwhelmed.

The proper maintenance of homeostatic balance 
is essential for cell survival in a constantly chang-
ing environment. Human pulmonary tissue forms an 
interface between the external and internal microen-
vironments, and is therefore constantly exposed 
to both exogenous stressors including combustion 
products (diesel exhaust, carbon monoxide, ciga-
rette smoke (CS)), particulate matter, ozone,5–7 and 
endogenous stressors (eg, mitochondrial-derived 
reactive oxygen species (ROS), unfolded proteins, 
nutrient deprivation), all of which can alter cellular 
homeostasis. Pulmonary cells are equipped with a 
variety of defense mechanisms to aid in the preserva-
tion of cellular homeostasis in the face of such harsh 
conditions8–10 as outlined in one of our previous net-
work model describing the main CS-related cellular 
stress defense mechanisms in detail.3 However, these 
mechanisms can be overwhelmed by chronic stress, 
for example, ultimately culminating in the intracel-
lular accrual of free radicals, oxidative damage to 
biomolecules including DNA, and the induction of 
the DNA damage response as a further protective 
mechanism. If all these responses to restore cellular 
homeostasis fail, compromised cells may commit to a 

terminal fate for the collective benefit of the surround-
ing tissue, adopting one of four main fates: apoptosis, 
necroptosis, autophagy, or senescence11 to prevent the 
nucleation of a potentially deleterious proinflamma-
tory microenvironment.

The DNA damage response activates DNA repair 
enzymes and in cycling cells, halts cell division by acti-
vating G1/S or G2/M cell cycle checkpoints, allowing 
time for DNA repair.12 Apoptosis is initiated through 
two main pathways following appropriate extracellu-
lar or intracellular signals.13 It fragments a dying cell 
into apoptotic bodies, which are subsequently cleared 
from tissue by the phagocytic activity of neighbor-
ing or immune cells, minimizing local inflammation. 
Alternatively, cell clearance can occur through necro-
sis, a form of death that results in cell lysis and release 
of proinflammatory intracellular components into the 
surrounding milieu. Accumulating evidence indicates 
that at least some forms of necrotic cell death occur in 
a regulated manner, termed “necroptosis”.14,15 In con-
trast to apoptosis and necroptosis, which result in the 
removal of damaged cells, the induction of autophagy 
or senescence leaves cells surviving, but qualita-
tively changes their phenotype or function.16,17 During 
autophagy, lysosomal enzymes degrade and recycle 
damaged intracellular organelles and proteins in an 
effort to maintain nutrient and energy homeostasis.18,19 
Cellular senescence is characterized by irreversible 
growth arrest,20,21 as response to a variety of external 
stimuli including DNA damage, oncogene amplifica-
tion, and telomere dysfunction.

The DNA damage response, apoptosis, necrop-
tosis, autophagy, and senescence are especially 
important in the context of CS, as smoke exposure 
in human pulmonary experimental systems has been 
shown to induce each, depending on the exposure 
or experimental context.22–29 Although these cel-
lular fates generally serve in a protective capacity, 
emerging research also points to a prominent role for 
stress-induced cell fate choices in the pathogenesis of 
CS-related diseases, including lung cancer, chronic 
obstructive pulmonary disease (COPD), and cardio-
vascular disease.30–33 Understanding how this protec-
tive to pathogenic transition occurs requires both a 
thorough mechanistic understanding of the pathways 
involved and the appropriate input data.

Here we describe the construction and applica-
tion of a literature-based network model depicting 
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the DNA damage response, apoptosis, necroptosis, 
autophagy, and senescence, hereafter referred to by 
the acronym DACS (DNA damage, Autophagy, Cell 
death (apoptosis and necroptosis), and Senescence). 
The DACS Network is modular and computable 
with its edges supported by hundreds of scientific 
references. We applied the Network to an indepen-
dent molecular profiling data set, verifying the con-
tent and computability of the network in the process. 
Together with our previously published network 
models, the Network will be an invaluable research 
tool to investigate the biological effects of environ-
mental exposures including CS on human systems, 
both qualitatively and quantitatively, towards systems 
toxicology approaches.

Methods
Biological Expression Language (BEL)
The causal relationships in the model are expressed in 
the Biological Expression Language (BEL)44, which 
allows for the representation of biological processes 
in a computable format. BEL is designed to represent 
scientific findings by capturing causal and correlative 
relationships in context, where context can include 
information about the biological and experimental 
system in which the relationships were observed, the 
supporting publications cited and the curation pro-
cess used.

Knowledgebase
The nodes and edges comprising the DACS Network 
were assembled from the Selventa Knowledgebase, a 
comprehensive repository containing over 1.5 million 
nodes (biological processes and entities) and over 
7.5 million edges (assertions about causal and non-
causal relationships between nodes). The assertions 
in the Selventa Knowledgebase are derived from 
peer-reviewed scientific literature as well as other 
public and proprietary databases. Specifically, each 
assertion describes an individual experimental obser-
vation from an experiment performed in a human, 
mouse or rat species context, either in vitro or in vivo. 
Assertions in one species (eg, human) are homolo-
gized to another species (eg, mouse) in cases where 
each element of an assertion has an orthologous coun-
terpart in both species. Assertions also capture infor-
mation about the referring source (eg, the PubMed 
ID (PMID) for journal articles listed in MEDLINE), 

as well as key contextual information including the 
species (human, mouse, or rat) and the tissue or cell 
line from which the experimental observation was 
derived. An example causal assertion is the increased 
transcriptional activity of TP53 (tumor protein p53) 
causes an increase in the mRNA expression of 
CDKN1A (cyclin-dependent kinase inhibitor 1A) 
[fibroblast; Human; PMID 15616590]. The Knowl-
edgebase contains causal relationships derived from 
healthy tissues and disease areas such as inflamma-
tion, metabolic diseases, cardiovascular injury, liver 
injury and cancer.

Analysis of transcriptomic data sets
Four previously published data sets, GSE6206,34 
E-MEXP-1968,35 GSE13330,36 and GSE19018 were 
used to construct the DACS Network. A fifth data set, 
GSE28464,37 was used to evaluate the DACS Network, 
with a specific focus on the relevant senescence sub-
models (Supplementary Table 1). All data sets were 
downloaded either from Gene Expression Omnibus 
(GEO) (http://www.ncbi.nlm.nih.gov/gds) or from 
ArrayExpress (http://www.ebi.ac.uk/arrayexpress). 
RNA expression data were analyzed using the “affy”, 
“lumiHumanIDMapping”, and “limma” packages of 
the Bioconductor suite of microarray analysis tools 
available for the R statistical environment.38–42 Robust 
Microarray Analysis (RMA) background correc-
tion and quantile normalization were used to gener-
ate microarray expression values for the Affymetrix 
platform (CEL files from GSE6206, E-MEXP-1968, 
GSE13330, and GSE19018), while log2 transforma-
tion and quantile normalization were used to generate 
expression values for the Illumina platform (non-
normalized data file from GSE28464). An overall lin-
ear model was fit to the data for all sample groups, and 
specific contrasts of interest were evaluated to gener-
ate raw P-values for each probe set on the expression 
array.43 The Benjamini-Hochberg False Discovery 
Rate (FDR) method was then used to correct for mul-
tiple testing effects.

For Affymetrix data sets, probe sets were consid-
ered to have statistically significant changed expres-
sion levels in a specific comparison if they had an 
adjusted P-value of less than 0.05, an absolute 
fold change greater than 1.3, and average expres-
sion intensity greater than 150  in either treatment 
group. NetAffx version na32 feature annotation files, 
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available from Affymetrix (http://www.Affymetrix.
com), were used to map probe sets to genes. For 
the Illumina platform, the criteria used for statisti-
cal significance in changed gene expression were if 
they had an adjusted P-value of less than 0.05 and an 
absolute fold change greater than 1.3. In our analysis, 
genes represented by multiple probe sets were con-
sidered to have changed if at least one probe set was 
observed to change. Gene expression changes that 
met these criteria are called ‘State Changes’ and have 
the directional qualities of ‘increased’ or ‘decreased’ 
ie, they were upregulated or downregulated, respec-
tively, in response to the experimental condition. The 
number of State Changes for each data set is listed in 
Supplementary Table 1.

Reverse causal reasoning (RCR): 
automated hypothesis generation
Reverse causal reasoning (RCR) analysis of the five 
DNA damage and senescence transcriptomic data sets 
was used to generate lists of nodes that were predicted 
to be increased or decreased, and these lists of nodes 
were used to aid in the selection of nodes for inclusion 
in the DACS Network, as well as to evaluate the DACS 
Network using the data set. RCR interrogates the Sel-
venta Knowledgebase to identify potential upstream 
controllers of entities observed to change significantly 
in an experiment (see Selventa 201044 and Additional 
File 1 for specific detail on RCR). Here we applied 
RCR to the mRNA State Changes in the five transcrip-
tomic data sets to predict potential upstream controllers 
for the expression changes. These potential upstream 
controllers identified by RCR are called HYPs as they 
represent statistically significant hypotheses that are 
potential explanations for the observed downstream 
mRNA State Changes. Specifically, the upstream 
HYP is a potential explanation for the subset of State 
Changes that are causally downstream of the HYP in 
individual assertions in the Selventa Knowledgebase.

Each HYP is scored according to two probabilistic 
scoring metrics: richness and concordance. Richness 
is the probability that the number of observed mRNA 
State Changes connected to a given HYP could have 
occurred by chance alone, calculated using the hyper-
geometric distribution. Concordance is the probabil-
ity that the number of observed RNA State Changes 
that match the direction of the HYP (eg, increased or 
decreased activity or abundance of a node) could have 

occurred by chance alone, calculated using a binomial 
distribution. HYPs meeting both richness and concor-
dance P-value cutoffs of 0.1 were considered to be 
statistically significant. When performing control anal-
yses, applying these significance cutoffs to randomly 
generated data (with similar numbers of RNA State 
Changes as the experimental data) generally produces 
less than 5% of the number of HYPs meeting both sig-
nificance criteria than are observed for experimental 
data (not shown). For the purposes of network model 
construction, top scoring HYPs meeting the mini-
mum statistical cutoffs for richness and concordance 
were evaluated and selected for integration based on 
their biological plausibility and relevance to the per-
turbation and biological context (eg, cell type) of the 
experiment. For data set interrogation, scored HYPs 
meeting these same statistical cutoffs were considered, 
with the understanding that as potential explanations 
for a subset of State Changes, the connectivity and 
consistency of direction of individual HYPs needed to 
be considered within context of the models (Selventa 
201044 and Additional File 1).

Results
Network structure and content
We constructed a network model focused on DNA 
damage response and the four main cellular fates 
induced by overwhelming stress: autophagy, 
apoptosis, necroptosis, and senescence (Fig.  1, 
Supplementary Fig.  1). The complete DACS Net-
work is provided in Additional File 2 as an excel file 
and in Additional Files 3–7 in .XGMML format. The 
.XGMML format can be viewed using freely available 
network visualization software, such as Cytoscape.45 
The DACS Network was constructed using a highly 
modular design, where the larger network is divided 
into sub-models. Discrete mechanisms affecting cell 
fate (eg, ‘NFKB signaling’ describing the prosurvival 
effects of NFKB-mediated transcriptional upregula-
tion of anti-apoptotic genes) in the five DACS Net-
work areas are described by 34 sub-models (Fig. 1).

In total, the DACS Network contains 1052 unique 
nodes and 1538 unique edges (959 causal edges and 
579 non-causal edges), which are supported by 1231 
PubMed-referenced literature citations (Table  1, 
Additional Files 2–7). Nodes in the DACS Network 
are biological entities such as protein abundances, 
mRNA expression levels, and protein activities. 

http://www.la-press.com
http://www.Affymetrix.com
http://www.Affymetrix.com


DNA Damage, Autophagy, Cell Death, and Senescence Model

Bioinformatics and Biology Insights 2013:7	 101

Caspase cascade

ER stress-induced apoptosis

MAPK signaling

NFkB signaling

PKC signaling

Proapoptotic mitochondrial signaling

Prosurvival mitochondrial signaling

TNFR/Fas signaling

TP53 transcriptional signature (TS)

ATG induction of autophagy

mTOR signaling

Nutrient transporter synthesis

Protein synthesis

Fas activation

Gene signature

Proinflammatory mediators

RIPK/ROS mediated execution

TNFR1 activation

Components affecting TP53 activity

Components affecting TP63 activity

Components affecting TP73 activity

DNA damage to G1/S checkpoint

DNA damage to G2/M checkpoint

Double-strand break response

Inhibition of DNA repair

NER/XP pathway

Single-strand break response

TP53 TS

Oncogene induced senescence

Replicative senescence

Stress induced premature senescence

Regulation of CDKN2A expression

Regulation of tumor suppressors

Transcriptional regulation of SASP

A
po

pt
os

is
A

ut
op

ha
gy

D
N

A
 d

am
ag

e 
re

sp
on

se
N

ec
ro

pt
os

is
S

en
es

ce
nc

e

Figure 1. Overview of the DACS Subnetworks.
Notes: The DACS Network is comprised of 34 submodels that represent relevant signaling within five areas of biology – apoptosis, autophagy, DNA 
damage response, necroptosis, and senescence. Each of the 34 submodels describes the molecular signaling mechanisms shown to activate or inhibit 
the end process (eg, in the submodel ‘Replicative senescence,’ increased CDKN2A and CDKN1A protein abundances lead to the induction of replicative 
senescence, while increased abundance of WRN protein inhibits replicative senescence). The left panel lists the names of the submodels involved in each 
area (eg, ‘Replicative senescence’ under Senescence), and the right panel shows an agglomerated diagram of all submodels involved in each area, with 
different submodels highlighted in unique colors.

In addition, nodes can also represent biological pro-
cesses (eg, protein biosynthesis). Edges are rela-
tionships between the nodes, and are categorized as 
either causal or non-causal. Causal edges are direc-
tional cause-effect relationships between nodes 

(eg, NFKB directly increases the gene expression of 
BCL2), whereas non-causal edges connect different 
forms of a biological entity, such as gene expression 
to the related protein abundance. Node-edge relation-
ships in the DACS Network are described using the 

http://www.la-press.com


Gebel et al

102	 Bioinformatics and Biology Insights 2013:7

BEL which allows for the semantic representation 
of life science relationships in a computable format 
(Selventa 201044 and Additional File 1). Overall, the 
DACS Network provides a comprehensive, detailed 
representation of the causal pathways involved in 
the DNA damage response, apoptosis, necroptosis, 
autophagy, and senescence.

Network construction
The DACS Network was constructed using the same 
iterative process used to create previously published 
network models.3,4 Using this strategy, the network 
is populated with nodes and edges from two main 
sources: prior knowledge described in the scientific 
literature, and results obtained from the computational 
analysis of transcriptomic profiling data via RCR 
(Selventa 201044 and Additional File 1) (Fig. 2).

In order to build a network model that describes the 
DACS-related biological mechanisms in non-diseased 
pulmonary and cardiovascular cells/tissues, we first 
defined and applied a set of criteria for selecting net-
work content similar to those used in previously pub-
lished network models.3,4 Starting with a list of nodes 
identified by a survey of published literature in the 
five DACS Network areas, we searched for causal 

Table 1. DACS Network statistics.

Nodes 1052
mRNAs 138
Proteins 392
Phosphoproteins 105
Activities 224
Complexes 22
Protein families 25
Biological processes/GO terms 48
Chemicals/small molecules 22
Other 76
Total edges 1538
Causal 959
Non-casual 579
Unique PMIDs 1231
Submodel name Total nodes (predictable)
DNA Damage 272 (72)
Autophagy 161 (49)
Apoptosis 280 (112)
Necroptosis 94 (30)
Senescence 365 (186)

Notes: Summary of relevant statistics describing the contents of the 
DACS Network. For each DACS Network area, the total number of 
unique nodes in the agglomerated model is given, along with the number 
of those nodes that are capable of prediction by RCR (in parentheses).
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Figure 2. Workflow used to construct and evaluate the DACS Network.
Notes: The DACS Network is a literature based model containing 
content derived from two main sources. The literature model was 
constructed from causal relationships extracted from relevant scientific 
literature following the definition of network boundaries. The literature 
model was then augmented with additional nodes derived from Reverse 
Causal Reasoning (RCR) analysis of transcriptomic data sets, forming 
the integrated model. In this step, RCR analysis was also used to verify 
the placement of existing nodes in the literature model. Manual review 
and refinement of the integrated model resulted in the final network 
model. The final network model was evaluated using RCR analysis of an 
independent test transcriptomic data set.

relationships describing the mechanistic relationships 
between these nodes with literature support from nor-
mal lung and cardiovascular cell types. In cases where 
the relevant experiments have not been published in 
these contexts, relationships derived from non-lung 
contexts using cell types found in normal lung (fibro-
blasts, epithelial cells, endothelial cells, etc.) were 
used. Canonical mechanisms that are well-known in 
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the literature were also included in the network model 
even if literature support explicitly demonstrating the 
presence of the mechanism in normal lung or cardio-
vascular tissues was not found (eg, the catalytic activity 
of the FAS receptor increasing the catalytic activity of 
FADD in the activation of TNFR signaling). For direct 
and proximal connections such as a kinase phosphory-
lating a residue on a target or protein-protein interac-
tions, evidence from cell free in vitro systems, which 
lack a single specified tissue context, were also used 
when normal lung or cardiovascular tissues were not 
available. Lastly, relationships derived from human 
and rodent (specifically mouse and rat) systems were 
included and homologized, with human contexts pri-
oritized (see Methods).

Using these network boundaries, a literature 
model was created by compiling causal relationships 
extracted from the Selventa Knowledgebase, a uni-
fied collection of over 1.5 million elements of biolog-
ical knowledge captured from public literature and 
other resources (see Methods). When critical causal 
connections did not exist in the Knowledgebase, they 
were identified and manually curated from literature 
into the Knowledgebase. During the course of model 
building, over 7,500 new causal relationships related 
to DNA damage, cell death, and senescence from 
685 unique literature references were added to the 
Knowledgebase to support the biology reflected in 
the DACS Network. Following this effort, the litera-
ture model encompassed experimentally proven and 
well-established mechanistic signaling within the five 
DACS areas.

Next, the literature model was augmented with 
additional nodes derived from the computational 
analysis of molecular profiling data using RCR. 
RCR-derived HYPs were included as new nodes in 
the DACS Network model if they had literature sup-
port for a mechanistic role in the process of interest. 
RCR analysis was done to confirm the relevance 
of nodes already present in the literature model, 
and to uncover relevant nodes that were not identi-
fied during the construction of the literature model. 
RCR-based augmentation of the DACS Network was 
performed using four transcriptomic data sets (two for 
DNA damage and two for senescence), referred to as 
‘building’ data sets (Supplementary Table 1). Ideally, 
transcriptomic data sets addressing all five DACS 
areas would be used in order to maximize network 

coverage. However, because three of the DACS 
Network areas (apoptosis, autophagy and necrop-
tosis) have not been classically described as driven 
by or executed through transcriptomic changes, 
we focused our efforts on transcriptomic data from 
experiments describing DNA damage response and 
the induction of senescence. Candidate data sets 
for RCR analysis were selected from public gene 
expression data repositories GEO and ArrayExpress. 
We prioritized data sets according to three main cri-
teria: (1) whether the biological process relevant to 
the DACS Network was induced in non-diseased cell 
types found in normal lung, (2) whether phenotypic 
endpoint data was available to provide additional 
verification of the experimental setup/transcriptomic 
data, and (3) the statistical rigor of the design of tran-
scriptomic profiling experiments. The four building 
data sets (Supplementary Table  1) were all derived 
from in vitro experiments done in human or mouse 
fibroblasts, and represent the response to DNA 
damage, induction of replicative senescence (RS) 
and stress-induced premature senescence (SIPS). 
Applying RCR to the four network building data sets, 
575 HYPs were evaluated for biological plausibility. 
From this initial list of 575 HYPs, 63 were consid-
ered biologically plausible in the context of previous 
literature reports, and were placed into the appropri-
ate sub-model(s) based on their mechanistic connec-
tions to the DACS areas (Supplementary Table  2). 
The literature model augmented with the data-driven 
nodes formed the integrated model. As a final step 
in the construction of the DACS Network, the nodes 
and edges were manually reviewed and refined (eg, 
by additional specific literature curation), producing 
the final DACS Network model (Fig. 2).

Application of the DACS Network  
to an independent data set
Following network finalization, the DACS Network 
was applied to investigate a transcriptomic test data 
set, not included in the construction process, from 
a well-accepted model of senescence induction ie, 
oncogene-induced senescence through tamoxifen-
inducible HRAS G12V expression in lung fibroblasts 
(GSE28464)37 (Supplementary Table 1).46–48 This data 
set also met the boundary criteria for data set selec-
tion described above. Although the test data set did 
not reflect biological activity occurring in all areas 
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of the DACS Network, it enabled a detailed proof-
of-principle evaluation of a specific portion of the 
network (ie, relevant senescence sub-models) as a 
means to ensure that the nodes and edges placed into 
the network through manual curation provided an 
accurate reflection of currently known biology. The 
four senescence sub-models representing the biology 
most closely related to the experimental perturba-
tion (constitutively active HRAS by G12V mutation) 
were selected for investigation using this data set: 
oncogene-induced senescence (OIS), regulation of 
CDKN2A expression, regulation by tumor suppres-
sors, and transcriptional regulation of the senescence-
associated secretory phenotype (SASP). The OIS 
sub-model directly reflects the mechanism expected 
to be seen given the GSE28464 experimental pertur-
bation. The other three sub-models describe mecha-
nisms that are generally applicable to all modes of 
cellular senescence.

In total, the four senescence sub-models used for 
evaluation contain 259 unique nodes, 126 (49%) of 
which were eligible for prediction (meaning that they 
contain four or more downstream gene expression 
relationships and thus are capable of prediction as a 
hypothesis) by RCR. Eighty three of the 126 RCR-
capable nodes (66%) are predicted as HYPs in the 
test set, 79 of which (95%) are predicted in directions 
consistent with increased oncogene-induced senes-
cence that was experimentally observed.

In particular, the oncogene-induced senescence 
sub-model describes the upstream signaling path-
ways associated with the induction of OIS as well 
as the unique SASP proteins produced by cells fol-
lowing OIS.49 When GSE28464 was used to interro-
gate this sub-model, 30 of the 43 RCR-capable nodes 
(70%) comprising this sub-model were predicted as 
HYPs, with 28 of the 30 (93%) predicted in direc-
tions consistent with increased OIS (Table 2). These 
directionally consistent HYP predictions include 
increased HRAS mutated at G12V, oncogene-in-
duced senescence, and cell aging, all of which match 
the experimental perturbation from the test data set.37 
Increased p38 MAPK activity, FOXO1 activity, 
RAF1 activity, and HBP1 abundance are all involved 
in known pathways leading to OIS (Fig.  3).8,46,50,51 
Several SASP proteins were also predicted increased 
in abundance, including OSM, MIF, VEGFA, IL1A, 
LIF, PPBP and IFNG, consistent with what has been 

observed following OIS.49 The two directionally 
inconsistent predictions are for KRAS abundance 
and KRAS mutated at G12V (which can lead to OIS, 
but are predicted to be decreased). These inconsisten-
cies were further clarified by reviewing the underly-
ing State Change support for the KRAS HYPs. First, 
we performed a Gene Ontology (GO) biological 
process enrichment query on the State Changes sup-
porting both the HRAS mutated at G12V and KRAS 
mutated at G12V HYPs using the Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID). While the State Changes supporting the 
HRAS mutated at G12V HYP converged on GO bio-
logical processes indicative of cell cycle modulation 
known to be affected during cellular senescence, the 
State Changes supporting the KRAS at G12V HYP 
did not converge on any specific biological process 

Predicted in consistent directions

Predicted in inconsistent directions

Oncogene Induced Senescence HYPs Expected
Direction

Test Data set
GSE28464
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BNIP3L
cell aging
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RAF1
RAS Family Hs
SMARCB1
taof(ETS2)
taof(FOXO1)
VEGFA

KRAS
KRAS mutated at G12V

HRAS mutated at G12V

FOXO1
gtpof(Ras family Hs)

IL1A

kaof(p38 MAPK family Hs)

Notes: Expected direction is based on internal causality of the oncogene-
induced senescence submodel. Yellow = predicted increase in abundance 
or activity; blue = predicted decrease in abundance or activity. Submodel 
nodes that are shared with other senescence models are bolded.
Abbreviations: gtpof(X), GTP-bound activity of X; kaof(X), kinase activity 
of X; taof(X), transcriptional activity of X. 

Table 2. Nodes from the oncogene-induced senescence 
submodel of the DACS Network that are predicted as 
HYPs by RCR on the GSE28464 test data set.
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Figure 3. Graph showing the oncogene-induced senescence submodel as depicted using the BEL framework and colored according to the GSE28464 
test data set.
Notes: Yellow = predicted increase in abundance or activity; blue = predicted decrease in abundance or activity.
Abbreviations: catof(X), catalytic activity of X; exp(X), mRNA expression of X; gtpof(X), GTP-bound activity of X; kaof(X), kinase activity of X; paof(X), 
phosphatase activity of X; sec(X), cell secretion of X; taof(X), transcriptional activity of X.

(data not shown). In addition, underlying evidence 
for the KRAS HYP comes, at least in part, from trans-
formed cells that have already bypassed senescence 
during the transformation process, thus excluding the 
KRAS HYP from further consideration in the OIS 
sub-model.

The regulation of CDKN2A expression sub-
model includes direct transcriptional regulators 
of CDKN2A, a cyclin-dependent kinase inhibitor 
whose increased expression at the gene and protein 
levels are hallmarks of cellular senescence.52 When 
interrogated using the test data set, 17 of the 33 
RCR-capable nodes (52%) in this sub-model were 
predicted as HYPs, all in directions consistent with 

increased CDKN2A expression (Supplementary 
Table  3). Notably, the prediction for increased 
CDKN2A protein abundance was also supported 
by the observed increase in CDKN2A mRNA lev-
els in the test data set. Both positive (SMARCB1, 
HBP1, ETS1, ETS2, SP1, and PPARG) and negative 
(HDAC3 and GLI2) regulators of CDKN2A expres-
sion were predicted in directions consistent with 
their previously reported roles.51,53–57 Finally, mem-
bers of both the Polycomb Repressive Complexes 1 
and 2 (PRC1/2) were predicted decreased (YY1 and 
BMI1 for PRC1, EED and EZH2 for PRC2), consis-
tent with their known role as negative regulators of 
CDKN2A expression (Fig. 4).58,59
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Next, we interrogated the regulation by tumor sup-
pressors sub-model, which describes the cell cycle 
exit characteristic of senescence regulated by the 
E2F/Rb axis and CDK inhibitors.60 Thirty-eight of the 
49 RCR-capable nodes (78%) in this sub-model were 
predicted as HYPs in the test data set, all but two 
(95%) in directions consistent with cell cycle exit and 
increased senescence (Supplementary Table 4). The 
consistent HYPs include predictions for decreased 
abundance/activity of cell cycle activators (E2F fam-
ily members and CCND1) and conversely, increased 
abundance/activity of cell cycle inhibitors (RB1, 
CDKN1A, and CDKN2A). The content of the regu-
lation by tumor suppressors sub-model also included 
SASP proteins that are shared between multiple 
modes of senescence, and several of these are pre-
dicted increased at the HYP level as well, including 

CCL2, CSF2, CXCL1, HGF, IL1B, IL6ST, IL8, IL13, 
and TNFRSF1A (Fig. 5).49 The inconsistent HYPs are 
IL6, which is predicted to be decreased, and PTEN, 
which is predicted to be increased (Supplementary 
Table 4). Upon further exploration of the direction-
ality of the IL6 HYP, we noted that a large fraction 
of the supporting State Changes (74 out of 173) 
were IL6 targets related to cell proliferation in mul-
tiple myeloma, which falls outside of the network 
boundaries.61,62 Because many of these proliferative 
genes were observed to be downregulated (presum-
ably as a consequence of senescent cells exiting the 
cell cycle), this set of genes could account for the 
RCR prediction of decreased IL6. When the direc-
tionality of the IL6 HYP was re-evaluated excluding 
this set of genes, it was predicted increased in abun-
dance (Supplementary Fig. 2), consistent with its role 

Figure 4. Graph showing the regulation of CDKN2A expression submodel as depicted using the BEL Framework and colored according to the GSE28464 
test data set.
Notes: Yellow = predicted increase in abundance or activity; blue = predicted decrease in abundance or activity; red = observed increase in mRNA 
expression.
Abbreviations: catof(X), catalytic activity of X; exp(X), mRNA expression of X; taof(X), transcriptional activity of X.
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Figure 5. Graph showing the regulation by tumor suppressors submodel as depicted using the BEL framework and colored according to the GSE28464 
test data set.
Notes: Yellow = predicted increase in abundance or activity; blue = predicted decrease in abundance or activity; red = observed increase in mRNA 
expression. IL6 is shown as predicted increased in this figure, in contrast to the initial prediction by RCR (See Section 3.3 Application of the DACS Network 
to an Independent Data Set for additional detail and Supplementary Fig. 2).
Abbreviations: exp(X), mRNA expression of X; kaof(X), kinase activity of X; sec(X), cell secretion of X; taof(X), transcriptional activity of X. 

as a proinflammatory mediator. Due to those findings, 
the related literature evidence (Supplementary Fig. 2) 
will be excluded from future RCR analysis in this 
model. PTEN is a multifunctional protein and the pre-
diction for increased abundance may be reflective of 
its role in areas outside of senescence.

To further evaluate the mechanisms responsible 
for the expression of the SASP proteins, we interro-
gated the transcriptional regulation of the senescence-
associated secretory phenotype sub-model, which 
centers on the transcriptional activities of NFKB and 
CEBPB upstream of the mRNA expression of SASP 
proteins. Of the 23 RCR-capable nodes in this sub-
model, 16 (70%) are predicted as HYPs in GSE28464, 
and 15 (94%) are predicted in directions consistent 
with an increased SASP (Supplementary Table 5). In 
addition, the transcriptional activity of both NFKB 
and CEBPB are predicted to be increased, consistent 
with their roles as central transcriptional mediators of 
the SASP.63,64 SASP proteins such as CCL2, CCL5, 
CXCL1, IFNG, IL1A, IL13, IL8, IL6, and VEGFA 
are all predicted increased. Complementing the RCR 
predictions, six of these proteins (CCL2, CXCL1, 
IL1A, IL8, IL6 and VEGFA) are also observed 
increased at the mRNA level in GSE28464 (Supple-
mentary Fig. 3).

In summary, the evaluation of the transcriptomic 
profiling data set from human lung cells express-
ing oncogenic HRAS (GSE28464) using four rel-
evant sub-networks from the DACS Network reveals 

molecular processes known to be involved in the 
major hallmarks of oncogene-induced senescence, 
eg, decreased abundance/activity of cell cycle activa-
tors (E2F family members and CCND1), increased 
abundance/activity of cell cycle inhibitors (RB1, 
CDKN1A, and CDKN2A), and induction of SASP 
proteins via activation of the transcription factors 
NFKB and CEBPB.

Discussion
Comparison with other DACS-related 
computational networks
Several different modeling approaches have been 
used to build models of biological systems depending 
on the biological complexity being captured, the spe-
cific goals of the study, and the experimental details 
involved. The DACS Network was constructed using 
a prior knowledge of causal relationships from litera-
ture, and augmented with nodes derived from RCR, a 
data-driven method that infers pathway activity based 
on differentially expressed entities and knowledge of 
their upstream regulators. Here, we compare and con-
trast three previously published networks that share 
features with the DACS Network.65–67

Behrends et al performed a systematic proteomic 
analysis and utilized existing protein interaction data-
bases to construct an autophagy interaction network 
(AIN).65 Like the DACS Network, the AIN consists 
of functional sub-networks, representing unique 
biological areas of autophagy. In contrast to the 
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protein-protein interactions of the Behrends AIN, the 
DACS Network shows directionality through mecha-
nistic causal relationships between proteins and other 
entities including genes, protein activities, biological 
processes, complexes, etc. Additionally, the DACS 
Network incorporates transcriptomic data through the 
integration of computationally derived nodes to infer 
pathway activity.

Caron et al manually constructed a comprehensive, 
detailed network of mTOR signaling based on 522 
published articles and a protein interaction network 
(PIN) using 85 key mTOR proteins and protein-protein 
interactions from multiple databases.66 Comparable 
to the DACS Network, the mTOR network represents 
biochemical modifications, directionality, biological 
entities, and annotations (cell lines, cited literature 
references). While the integrated mTOR network 
provides a highly granular view of mTOR signaling, 
the DACS Network covers a wider range in addition 
to basic mTOR signaling.

Finally, Passos et  al utilized several ‘omics’ 
approaches to investigate cellular senescence.67 Using 
target gene inhibition, in silico interactome analysis 
based on the BioGrid database, and statistical infer-
ence, they identified a signaling pathway involving 
TP53, CDKN1A, GADD45A, MAPK14, GRB2, SRC, 
DAB2, TGFRB2, and TGFβ. Overlaying these results 
with those from previous gene expression analysis, they 
were able to confirm the upregulation of these pathway 
genes in senescent MRC5 fibroblasts. Similarly, the 
DACS Network uses transcriptomic data, but applies a 
computational approach to infer the activity of upstream 
controllers that fall in a pathway rather than overlay-
ing the genes onto the network itself. Although the 
Passos network depicts the interconnections between 
senescence-related entities, it is undirected, as BioGrid 
interactions lack inherent directionality.

Thus, although the DACS Network shares many 
features with other previously published networks, 
we believe the inherent computability conferred upon 
it by the BEL Framework and the ability to evalu-
ate biological mechanisms by RCR (as opposed to 
direct mapping of differentially expressed genes onto 
pathways) differentiates the DACS Network from 
previously existing resources. In addition, the broad 
scientific coverage of five distinct yet overlapping 
biological areas makes the DACS Network a unique 
resource for the scientific community.

The knowledgebase used to build the network 
model contains information curated from published 
literature. We concede that the peer review process is 
far from perfect and any errors that exist in the public 
literature could be translated to the knowledgebase. 
However, the prior knowledge encoded in the knowl-
edgebase has been subject to two additional layers of 
peer review by PhD level curators. We believe that 
any inaccuracies that exist in the knowledgebase 
constitute a minor fraction and occur without a sys-
tematic bias that would profoundly affect the results 
presented here.

While the results shown here indicate that net-
work models have utility in evaluating ‘omics’ data, 
there are some elements that could be improved in 
the future. The methodology depends on up-to-date 
prior knowledge of both the signaling pathways that 
are represented by the network models and the genes 
that are regulated by network components. As new 
discoveries in these areas are made and published, a 
process for maintaining the connectivity of the net-
work models will need to be put in place to ensure 
the networks constantly reflect the current state of the 
field; being dynamic and updatable, any new knowl-
edge can be added to the existing DACS network.

Future application in systems biology-
based risk assessment
Understanding how exposure to chemical products 
affects biological systems is a key first step in the 
development of effective risk assessment programs. 
Historically, chemical mechanism-of-action (MOA) 
studies used simple in vitro or in vivo models and 
measured a relatively limited number of biologi-
cal entities. Modern toxicological assessment using 
system-wide ‘omics’ approaches can now generate 
thousands of biological data points for a single experi-
ment, and the field of systems toxicology has evolved 
in order to distil discrete MOA information from this 
sea of data.68,69 Detailed mechanistic network mod-
els are needed to place the differential measurements 
obtained from molecular profiling data into the con-
text of known biology. These mechanistic models 
can then be used to better understand the impact of 
biologically active substances/toxicants and associ-
ated disease risks. We are currently developing an 
application of these network models to derive quanti-
tative measures of network perturbations to compare 
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the impact of biologically active substances, includ-
ing CS, on human systems in order to assess relative 
disease risk.

The biological mechanisms represented in the 
DACS Network, combined with its inherent comput-
ability, make it an ideal resource in systems toxicol-
ogy approaches. For example, the DACS Network 
could be used in combination with molecular profil-
ing data from human in vitro toxicological studies to 
characterize the degree to which a simple chemical 
entity induces a DNA damage response or initiates 
cell death pathways. In addition, the DACS Network 
could be used with molecular profiling data from 
rodents exposed to environmental toxicants in vivo 
in order to identify the mechanisms whose activa-
tion or suppression precedes the development of 
known genotoxic markers. In each case, the infor-
mation obtained by combining systems-level data 
with network-level analyses would provide invalu-
able mechanistic insight into the biological effects of 
potentially harmful exposures, and would serve to aid 
in the development of risk assessment pipelines.

Conclusions
We have presented here a network model that broadly 
covers the biology within five distinct yet overlapping 
cellular processes: DNA damage and the main cell 
fates resulting from cellular stress. The computability 
enabled by BEL and the broad coverage of toxicolog-
ically relevant biology make the DACS Network an 
exceptional, open-source tool for evaluating modern 
‘omics’ data.
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Supplementary Materials

Table S1. Data sets analyzed by RCR for model augmentation and evaluation. 

Model building data sets Model evaluation data set
Process DNA damage Senescence Senescence
Data set ID GSE6206 E-MEXP-1968 GSE13330 GSE19018 GSE28464
PubMed ID 19584263 19363488 19155301 Unpublished 21512002
Species Mouse Mouse Human Human Human
Context In vitro In vitro In vitro In vitro In vitro
Cell type Embryonic  

fibroblasts
Dermal  
fibroblasts

Foreskin BJ  
fibroblasts

IMR90 lung  
fibroblasts

IMR90 lung fibroblasts

Perturbation Cisplatin  
(16 μM)

UV irradiation  
(4 J/m2)

Bleomycin (100 μg/mL)
Long term culture

Long term culture  
in 20% oxygen

Tamoxifen-inducible HRAS 
G12V expression

Timepoint(s) 24 hr 6 hr after UV  
exposure

24 hr
Late passage

48 population  
doublings (old)

Day 4 post HRAS G12V 
induction

Control Untreated Non-irradiated  
(0 J/m2)

Early passage (young) 30 population  
doublings (young)

Day 0

# State  
changes

3684 472 3355
2799

2257 3691

Notes: Four data sets relating to two different DACS Network areas (DNA damage and Senescence) were analyzed by RCR for the data-driven phase of 
model construction (Model Building Data Sets). One senescence data set was analyzed by RCR for model evaluation. This table provides a summary of 
the experimental details and comparisons used for each data set as well as the number of gene expression State Changes observed in each data set.

Senescence

DNA damage response

Autophagy
Necroptosis

Apoptosis

Figure S1. The DACS Network.
Notes: Graphical representation of the five central biological areas covered by the DACS Network. An agglomerated view of all subnetwork nodes 
and edges relating the mechanisms involved in the cellular DNA damage response (green) and the induction of senescence (teal), necroptosis (red), 
autophagy (magenta), and apoptosis (purple), forming an interconnected network of shared and non-overlapping biology.
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Data-Driven Nodes Added to DACS Network Expected
Direction

DNA Damage Data Sets Senescence Data Sets
GSE13330 RS GSE13330 SIPS GSE19018E-MEXP-1968GSE6206

ATF2
BACH1
BIRC5
BNIP3L

catof(proteasome complex (sensu Eukarya) Hs)
catof(PTGS2)

CCL5
CCND1

CTNNB1
DDIT3

DNMT3A
ENO1
EP300
ETS2
FHIT

gtpof(RAC1)
gtpof(RHOA)
gtpof(RHOB)

HDAC1
HDAC3
IFNA1
IL1A
IRF1
IRF3
IRF5

kaof(MAP2K1)
kaof(PKC Family Hs)

kaof(RAF1)
MAP2K1

MYC
PKC Family Hs

PPARG
proteasome complex (sensu Eukarya) Hs

PTGS2
RAC1
RAF1

RASSF1
RHOA
RHOB

SMARCB1
SP1

taof(ATF2)
taof(BACH1)

taof(CTNNB1)
taof(EP300)
taof(ETS2)
taof(IRF1)
taof(IRF3)
taof(IRF5)

taof(PPARG)
taof(SP1)

taof(TFDP1)
taof(TP63)
taof(TP73)
taof(XBP1)
taof(YY1)
TFDP1
TP63
TP73

TWIST1
VHL
XBP1
YY1

Submode I

DNA Damage—Double—strand break response

Senescence—Stress—induced premature senescence
Apoptosis—NFKB signaling

Senescence—Oncogene—induced senescence
Senescence—Stress—induced premature senescence
Senescence—Stress—induced premature senescence
Senescence—Transcriptional regulation of the SASP

DNA Damage—Double—strand break response
Senescence—Regulation by tumor suppressors

Apoptosis—ER stress—induced apoptosis
Senescence—Replicative senescence

Senescence—Regulation by tumor suppressors
Apoptosis—MAPK signaling

Senescence—Oncogene—induced senescence
DNA Damagee—single—strand break response

Apoptosis—MAPK signaling
DNA Damagee—single—strand break response
DNA Damagee—single—strand break response
Senescence—Regulation by tumor suppressors
Senescence—Regulation of p16INK expression
Senescence—Regulation by tumor suppressors

Senescence—Transcriptional regulation of the SASP
Senescence—Regulation by tumor suppressors
Senescence—Regulation by tumor suppressors

Senescence—Replicative senescence
Senescence—Oncogene—induced senescence

Apoptosis—PKC signaling
Senescence—Oncogene—induced senescence
Senescence—Oncogene—induced senescence
DNA Damage—Double—strand break response

Apoptosis—PKC signaling
Senescence—Regulation of p16INK expression

Senescence—Stress—induced premature senescence

Senescence—Stress—induced premature senescence
Apoptosis—MAPK signaling

Senescence—Oncogene—induced senescence
DNA Damage—Double—strand break response
DNA Damage—Double—strand break response
DNA Damage—Double—strand break response
Senescence—Regulation of p16INK expression
Senescence—Regulation of p16INK expression

DNA Damage—Double—strand break response
Senescence—Stress—induced premature senescence

Senescence—Regulation by tumor suppressors
Apoptosis—MAPK signaling

Senescence—Oncogene—induced senescence
Senescence—Regulation by tumor suppressors
Senescence—Regulation by tumor suppressors

Senescence—Replicative senescence
Senescence—Regulation of p16INK expression
Senescence—Regulation of p16INK expression
Senescence—Regulation by tumor suppressors

DNA Damage—Componenets affecting TP63 activity
DNA Damage—Componenets affecting TP73 activity

Apoptosis—ER stress—induced apoptosis
DNA Damage—Componenets affecting TP53 activity

Senescence—Regulation by tumor suppressors

DNA Damage—Componenets affecting TP63 activity
DNA Damage—Componenets affecting TP73 activity

Senescence—Stress—induced premature senescence
Senescence—Stress—induced premature senescence

Apoptosis—ER stress—induced apoptosis
DNA Damage—Componenets affecting TP53 activity

Notes: These data-driven nodes were added to the indicated submodels of the DACS Network based on their mechanistic connections to the processes 
reflected by the submodels. Expected direction is based on internal causality of the indicated submodels. Yellow = predicted increase in abundance or 
activity, blue = predicted decrease in abundance or activity.
Abbreviations: catof(X), catalytic activity of X; gtpof(X), GTP-bound activity of X; kaof(X), kinase activity of X; taof(X), transcriptional activity of X.

Table S2. Data-driven nodes that were predicted as HYPs by RCR on the GSE6206, E-MEXP-1968, GSE13330 RS, 
GSE13330 SIPS, and GSE19018 building data sets.
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Regulation of CDKN2A HYPs Expected
Direction

Test Data set
GSE28464

Predicted in consistent directions

ETS1
CDKN2A

ETS2
HBP1
PPARG
SMARCB1
SP1
taof(ETS2)
taof(PPARG)
taof(YY1)
YY1
BMI1
EED
EZH2
GLI2
HDAC3
taof(GLI2)

Notes: Expected direction is based on internal causality of the regulation 
of CDKN2A expression submodel. Yellow = predicted increase in 
abundance or activity, blue = predicted decrease in abundance or 
activity. Submodel nodes that are shared with other senescence models 
are bolded.
Abbreviation: taof(X), transcriptional activity of X.

Table S3. Nodes from the regulation of CDKN2A expres-
sion submodel of the DACS Network that are predicted as 
HYPs by RCR on the GSE28464 test data set.

BRCA1
Predicted in consistent directions

Regulation by Tumor
Suppressors HYPs

Expected
Direction

Test Data set
GSE28464

CDKN1A
CDKN2A
CDKN2A NP_000068
Cell aging
CSF2
CXCL1
HGF
IFNA1
IL6 *
IL13
IL1B
IL6ST

ING1
IRF1

RAF1
RB1
RBL2
replicative cell aging
taof(IRF1)
taof(RB1)
TNFRSF1A
CCND1
E2F1
E2F2
E2F3

taof(E2F family Hs)
taof(E2F1)
taof(E2F2)
taof(E2F3)
TFDP1

PTEN
Predicted in inconsistent directions

ENO1

IRF3
Kaof(RAF1)
Oncogene induced senescence

IL8

CCL2

Notes: Expected direction is based on internal causality of the regulation 
by tumor suppressors submodel. Yellow = predicted increase in abundance 
or activity, blue = predicted decrease in abundance or activity. Submodel 
nodes that are shared with other senescence models are bolded. *IL6 
is shown as predicted increased in this table, in contrast to the initial 
prediction by RCR (See Section 3.3 Application of the DACS Network to 
an Independent Data Set for additional detail and Supplementary Fig. 2). 
Abbreviations: kaof(X), kinase activity of X; taof(X), transcriptional 
activity of X. 

Table S4. Nodes from the regulation by tumor suppres-
sors submodel of the DACS Network that are predicted as 
HYPs by RCR on the GSE28464 test data set.
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CCL2
Predicted in consistent directions

Transcriptional Regulation of the SASP HYPs
Expected
Direction

Test Data Set
GSE28464

CXCL1
IFNG

IL6 *
IL13
IL1A
IL8
kaof(p38 MAPK family Hs)
NFKB Complex Hs
RELA
taof(CEBPB)
taof(NFKB Complex Hs)
VEGFA

CCL5

IL1 Family Hs

CEBPB

Notes: Expected direction is based on internal causality of the transcriptional regulation of the SASP submodel. Yellow = predicted increase in abundance 
or activity, blue = predicted decrease in abundance or activity. Submodel nodes that are shared with other senescence models are bolded. *IL6 is shown 
as predicted increased in this table, in contrast to the initial prediction by RCR (See Section 3.3 Application of the DACS Network to an Independent Data 
Set for additional detail and Supplementary Fig. 2).
Abbreviations: kaof(X), kinase activity of X; taof(X), transcriptional activity of X. 

Table S5. Nodes from the transcriptional regulation of the senescence-associated secretory phenotype (SASP) submodel 
of the DACS Network that are predicted as HYPs by RCR on the GSE28464 test data set.

Score: 107
Contra: 62

Score: 55
Contra: 26

Subtract proliferative
genes in PMIDs

12791645 and 16188230

IL6 IL6

Figure S2. Directionality investigation for the IL6 HYP in the DACS Network Model test data set.
Notes: The scored IL6 HYP is shown for the DACS Network evaluation data set GSE28464 before (left) and after (right) removal of proliferation-related 
genes in multiple myeloma as reported in two previously published studies. Circles represent observed gene expression State Changes (red for increased, 
green for decreased), and edges connecting the central IL6 HYP node to State Changes represent literature-derived causal relationships between IL6 and 
its downstream target genes. Solid lines indicate relationships that support the HYP prediction (counted as “Score”) and dotted lines indicate relationships 
that are contradictory to the HYP prediction (counted as “Contra”). When proliferation-related genes are retained in the IL6 HYP, RCR produces a 
prediction for decreased IL6 abundance. Excluding this set of proliferation-related genes results in an RCR prediction for increased IL6 abundance.
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Figure S3. Graph showing the transcriptional regulation of the senescence-associated secretory phenotype (SASP) submodel as depicted using the BEL 
framework and colored according to the GSE28464 test data set.
Notes: Yellow = predicted increase in abundance or activity, blue = predicted decrease in abundance or activity, red = observed increase in mRNA 
expression. IL6 is shown as predicted increased in this figure, in contrast to the initial prediction by RCR (See Section 3.3 Application of the DACS Network 
to an Independent Data Set for additional detail and Supplementary Fig. 2).
Abbreviations: exp(X), mRNA expression of X; kaof(X), kinase activity of X; taof(X), transcriptional activity of X.
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Additional Files

Additional File 1 Reverse Causal Reasoning.pdf

Additional File 2 DACS Network.xlsx

Additional File 3 DNA Damage-Agglomerated.cy.xgmml

Additional File 4_Autophagy-Agglomerated.cy.xgmml

Additional File 5_Apoptosis-Agglomerated.cy.xgmml

Additional File 6_Necroptosis-Agglomerated.cy.xgmml

Additional File 7_Senescence-Agglomerated.cy.xgmml
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