
 

Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor 1 

growth and metastasis 2 

Matthew G. Jones1,18, Dawei Sun2,3,18, Kyung Hoi (Joseph) Min4,5,6, William N. Colgan4,5, Luyi 3 
Tian2, Jackson A. Weir2,7, Victor Z. Chen8,9, Luke W. Koblan4,5, Kathryn E. Yost4,5, Nicolas 4 
Mathey-Andrews5,10,11, Andrew J.C. Russell2,3, Robert R. Stickels2, Karol S. Balderrama2, 5 
William M. Rideout III10, Howard Y. Chang1,13,14, Tyler Jacks5,10, Fei Chen2,3,#, Jonathan S. 6 
Weissman4,5,10,15,#, Nir Yosef16,#, Dian Yang8,9,17,19,# 7 

 8 
1 Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. 9 
2  Broad Institute of MIT and Harvard, Cambridge, MA, USA 10 
3 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA 11 
4 Whitehead Institute for Biomedical Research, Cambridge, MA, USA 12 
5 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA 13 
6 Department of Electrical Engineering and Computer Science, Massachusetts Institute of 14 
Technology, Cambridge, MA, USA 15 
7 Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA 16 
8 Department of Molecular Pharmacology and Therapeutics, Columbia University, New York 17 
City, NY, USA 18 
9 Department of Systems Biology, Columbia University, New York City, NY, USA 19 
10 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of 20 
Technology, Cambridge, MA, USA 21 
11 Harvard Medical School, Boston, MA, USA 22 
13 Department of Genetics, Stanford University, Stanford, CA, USA 23 
14 Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA 24 
15 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 25 
USA 26 
16 Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, 27 
Rehovot 7610001, Israel 28 
17 Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA 29 
18 These authors contributed equally. 30 
19 Lead Contact 31 
 32 
# Co-correspondence: : chenf@broadinstitute.org (F.C.), weissman@wi.mit.edu (J.S.W.), 33 
niryosef@berkeley.edu (N.Y.), dy2491@cumc.columbia.edu (D.Y.) 34 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.21.619529doi: bioRxiv preprint 

mailto:chenf@broadinstitute.org
mailto:weissman@wi.mit.edu
mailto:niryosef@berkeley.edu
mailto:dy2491@cumc.columbia.edu
https://doi.org/10.1101/2024.10.21.619529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

ABSTRACT 35 
Tumor progression is driven by dynamic interactions between cancer cells and their surrounding 36 
microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial 37 
insights into how intrinsic changes within cancer cells and extrinsic alterations in the 38 
microenvironment cooperate to drive different stages of tumor progression. Here, we integrate 39 
high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how 40 
tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a 41 
Kras;p53-driven mouse model of lung adenocarcinoma. We find that rapid tumor expansion 42 
contributes to a hypoxic, immunosuppressive, and fibrotic microenvironment that is associated 43 
with the emergence of pro-metastatic cancer cell states. Furthermore, metastases arise from 44 
spatially-confined subclones of primary tumors and remodel the distant metastatic niche into a 45 
fibrotic, collagen-rich microenvironment. Together, we present a comprehensive dataset 46 
integrating spatial assays and lineage tracing to elucidate how sequential changes in cancer cell 47 
state and microenvironmental structures cooperate to promote tumor progression. 48 
 49 
INTRODUCTION  50 

Tumor progression is driven by the dynamic interactions between cancer cells1,2 and the 51 
their surrounding microenvironment3,4. In this process, as cancer cells accumulate genetic and 52 
epigenetic alterations, the microenvironment exerts selective pressures through factors such as 53 
spatial constraints5,6, signaling molecules7, nutrient and oxygen availability8,9, and immune 54 
infiltration3,10 among other phenomena. In turn, tumor growth remodels the surrounding 55 
microenvironment, for example, by restructuring the extracellular matrix and altering the 56 
composition and state of infiltrating stromal cells11. Systematically characterizing the cell intrinsic 57 
and extrinsic effects that drive tumor subclonal selection, cellular plasticity, and metastasis will 58 
not only provide insights into the principles of tumor evolution but also carry clinical implications.  59 
To accomplish this, one must study a tumor’s evolutionary dynamics alongside its 60 
microenvironmental composition in the native spatial context. 61 

Integrating tumor phylogenetic analysis, the study of lineage relationships of cancer cells 62 
within a tumor12–17, with spatial information provides a comprehensive framework for 63 
understanding the interplay between tumor microenvironment and progression. Specifically, 64 
spatially resolved phylogenetic studies enable one to approach key questions in cancer evolution 65 
such as, what are the major spatial communities that exist in tumors, and how do these relate to 66 
tumor stage? From which spatial niches do subclonal expansions arise during tumor progression, 67 
and how does this relate to tumor plasticity and the capacity to seed metastases? And, how does 68 
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the spatial growth pattern of tumor progression shape the surrounding microenvironment? Early 69 
studies reconstructing tumor phylogenies from multi-region sampling of patient tumors uncovered 70 
the spatial heterogeneity of genetic changes within tumors and have demonstrated the dynamics 71 
of tumor growth and spatially-constrained origins of metastatic dissemination18–24. More recently, 72 
spatial genomics approaches have further elucidated how the spatial distribution of genome 73 
alterations leads to clonal outgrowth, dispersion of subclones with distinct driver mutations, 74 
interactions with the immune system, and metastasis25–29. While these studies have greatly 75 
enhanced our understanding of how tumors grow in space and time, they can be limited in their 76 
ability to either resolve high-resolution spatial organization, infer deeper phylogenetic 77 
relationships of cancer cells, or simultaneously measure the microenvironmental composition and 78 
gene expression. 79 
   The development of molecular recording technologies that install evolving lineage-tracing 80 
barcodes30–40 and associated computational tools41–46 enable the reconstruction of high-resolution 81 
phylogenies for studying tumor evolution13. Typically, these lineage-tracing technologies employ 82 
genome-editing tools, such as CRISPR/Cas9, to introduce heritable and irreversible mutations 83 
progressively at defined genomic loci, which can be transcribed and thus profiled with single-cell 84 
RNA-seq. In cancer, initial studies applied this technology to track the metastatic dynamics of 85 
cancer cell lines transplanted into mice47–49. Previously, we described a lineage-tracing enabled 86 
genetically-engineered mouse model of KrasLSL-G12D/+;Trp53fl/fl-driven lung adenocarcinoma (KP-87 
Tracer) to continuously track tumor evolution from nascent transformation of single cells to 88 
aggressive metastasis50. In this system, intratracheal delivery of Cre recombinase using viral 89 
vectors simultaneously induces Cas9-based lineage tracing and tumor initiation. This model 90 
recapitulates the major steps of the evolution of human lung adenocarcinoma, both molecularly 91 
and histopathologically51–55. Using this system, we recently identified subclonal expansions, 92 
quantified tumor plasticity, traced metastatic origins and routes, and disentangled the effect of 93 
genetic drivers on tumor evolution. However, as our previous applications have relied on studying 94 
dissociated single cells, it has remained unclear how key tumor evolutionary properties are 95 
associated with microenvironmental changes.  96 

Here, we present an integrated lineage and spatial platform for tracking tumor evolution in 97 
situ by applying high-resolution spatial transcriptomics to our lineage tracing-enabled KP-Tracer 98 
model. Using two complementary spatial transcriptomics assays – Slide-seq56,57 with spot-based 99 
coverage at 10𝜇m near-cell resolution of large tissue fields-of-view, and Slide-tags58 with higher 100 
molecular sensitivity and spatial profiling of individual nuclei – we produce a comprehensive 101 
spatial transcriptomics dataset of Kras;p53-driven lung adenocarcinoma evolution. Integrating 102 
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these spatial transcriptomics data with inferred cancer cell lineages uncovered robust spatial 103 
communities associated with tumor progression, including the formation of a hypoxic tumor 104 
interior during rapid tumor subclonal expansion. Our analysis additionally reveals that this hypoxic 105 
environment is associated with pervasive tissue remodeling characterized by fibrosis, priming of 106 
immune cells, and the emergence of a pro-metastatic epithelial-to-mesenchymal transition (EMT). 107 
Together, this study provides a scalable platform for studying the relationship between tissue 108 
architecture and tumor progression, revealing key insights into the ecological and evolutionary 109 
dynamics underpinning tumor evolution at unprecedented resolution. 110 
 111 
RESULTS 112 
An integrated lineage and spatial platform for studying tumor evolution 113 

To study tumor evolution while preserving the native spatial context of cancerous and 114 
stromal tissue, we integrated spatial transcriptomics methods with Cas9-based lineage-tracing 115 
technology in our previously described KP-Tracer model of lung adenocarcinoma50.  This model 116 
is built upon the well-characterized model of Kras;Trp53-driven lung adenocarcinoma51,52,54,55 and 117 
is equipped with a Cre-inducible Cas9-based evolving lineage tracer that is able to continuously 118 
record high-resolution cell lineages over months-long timescales32,41. Introduction of Cre into 119 
individual lung cells in the adult animal both induces the oncogene mutations (i.e., expression of 120 
KrasG12D and homozygous loss of p53) and initiates Cas9 expression. Cas9 then introduces 121 
irreversible and heritable insertions and deletions (“indels”) at defined genomic “target sites”, each 122 
discernable by a random 14bp integration barcode (“intBC”) and expressed as a polyadenylated 123 
transcript. As most sequencing-based spatial transcriptomics assays capture polyadenylated 124 
transcripts from tissue sections56–60, applying these assays to the KP-Tracer model yields 125 
simultaneous measurement of spatially-resolved cell transcriptional states and lineage 126 
relationships.    127 

We initiated lung tumors and lineage-tracing in alveolar type II (AT2) cells (a major cell of 128 
origin for lung adenocarcinoma) by intratracheally delivering adenovirus expressing Cre 129 
recombinase under the control of an AT2 cell-specific, surfactant Protein C (SPC) gene 130 
promoter61. Twelve to sixteen weeks post tumor initiation, tumor bearing lungs were harvested for 131 
cryopreservation, and then sectioned and applied to spatial transcriptomics arrays (Figure 1A; 132 
Methods). To comprehensively profile the spatiotemporal evolution of tumor progression, we 133 
utilized two complementary spatial transcriptomics technologies: Slide-seq56,57 that captures 134 
transcriptomic states of “spots” at near-cellular 10𝜇m resolution in continuous, large fields-of-view 135 
(up to 1cm x 1cm); and Slide-tags58 that sparsely samples individual nuclei for transcriptomic 136 
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profiling and provides accurate spatial localization for a subset of these nuclei (typically ~50-70%). 137 
Together, this combination marries the scale of Slide-seq and true single-nucleus resolution of 138 
Slide-tags to jointly measure spatially resolved cell lineage and unbiased transcriptomic states in 139 
the native tumor microenvironment. 140 
 With these two technologies, we comprehensively profiled tumor-bearing lungs across 141 
various stages of progression with 44 Slide-seq arrays and 5 Slide-tags arrays (Figure S1A-C; 142 
Methods; Supplementary Table 1). The resulting datasets provided spatial profiling of distinct 143 
domains in tumor-bearing tissues characterized by the expression of canonical marker genes and 144 
corroborated by paired H&E: for example, in the tumor-bearing lung we found that Cxcl15 and 145 
Scgb1a1 marked epithelial-like domains, representing alveolar and club cells, respectively. 146 
Moreover, histologically aggressive regions were marked by Vim (characteristic of mesenchymal-147 
like cancer cells) and Arg1 (characteristic of immunosuppressive myeloid cells62) (Figure 1B). 148 
Altogether, these datasets provide high-resolution views into the microenvironmental context and 149 
organization of tumors.  150 
 151 
Computational tools enable the inference of spatially resolved cancer cell phylogenies 152 

As the KP-Tracer system expresses lineage tracing target-sites as poly-adenylated 153 
transcripts, we next turned to evaluating the recovery of these target sites from the 154 
complementary spatial transcriptomics platforms. Reassuringly, we detected target-site 155 
transcripts robustly across tens-of-thousands of spots or nuclei in these spatial datasets, with 156 
Slide-tags data having more consistent detection of target-sites as expected (Figure 1C; Figure 157 
S1D-E). 158 

While Slide-tags provided true single-cell measurements and thus were amenable to 159 
previously-described lineage reconstruction approaches41,44, there were two predominant 160 
analytical challenges in reconstructing tumor phylogenies of tens-of-thousands of spots observed 161 
in Slide-seq data. First, Slide-seq captures RNA molecules with near-cellular resolution, meaning 162 
that each spot may contain RNAs originating from multiple cells57; similarly, cells with distinct 163 
lineage states can be captured in a single spot, which we term “conflicting states”. As prior 164 
phylogenetic reconstruction algorithms for Cas9-lineage tracing data presume mapping of cells 165 
to single states, we first implemented new Cassiopeia-Greedy41 and Neighbor-Joining63 variants 166 
that could use many conflicting states during reconstruction (Methods). We also tested the effects 167 
of three strategies for preprocessing conflicting states via simulation: (1) a strategy that used all 168 
conflicting states observed in a spot along with the abundance of each state in that spot (“all 169 
states”); (2) all conflicting states observed in a spot, but without considering their abundance 170 
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(“collapse duplicates”); or (3) a strategy that used only the most abundant state (“most abundant”). 171 
We found that the second strategy (“collapse duplicates”) performed most robustly (Figure S1F; 172 
Methods). 173 

A second challenge is that Slide-seq assays (and to a lesser extent Slide-tags) have an 174 
increased missing data rate relative to droplet-based single-cell assays64. As expected, we 175 
observed overall lower target-site transcript capture (and thus higher missing data) in Slide-seq 176 
datasets (Figure S1D,G). We hypothesized that spatial relationships could be used to overcome 177 
this sparsity, which was supported by our observations that indel states were coherent within 178 
small spatial neighborhoods (Figure S1H-I). We therefore developed an inferential approach that 179 

predicted missing lineage-tracing states from spatial neighbors (within 30𝜇m of a target node) 180 
with sufficient recovery (at least 3 UMI supporting a target site intBC-indel combination; Figure 181 
1D). We first tested the feasibility of this approach using simulations of lineage tracing data on 182 
spatial arrays using Cassiopeia (Methods). We found that missing lineage-tracing barcodes could 183 
consistently be recovered at high accuracy (Figure S1J), and that spatial imputation followed by 184 
tree inference by a hybrid algorithm consisting of the Cassiopeia-Greedy and Neighbor-Joining 185 
algorithms resulted in the best reconstructions, especially in high-dropout regimes (Figure S1K-186 
L; Methods). Next, we tested our ability to recover held-out target site data from real Slide-seq 187 
data and similarly found that missing data could be robustly recovered by spatial predictions, 188 
resulting in a median accuracy of 90% on imputing held-out data across all experiments, matching 189 
our simulation results (random predictions had a median accuracy of 67% and yielded 29% fewer 190 
imputations; Figure S1M). As expected, more frequent alleles had higher imputation accuracy 191 
(Figure S1N; Methods). Over multiple iterations of this imputation algorithm, we found that we 192 
could recover up to 58% of missing data (4-58%, on average 31% across datasets), resulting in 193 
comparable missing data rates to previous reports using single-cell approaches that have enabled 194 
robust tree reconstruction and biological insights (Figure 1D, Figure S1O). Though we only retain 195 
high-confidence imputations, and our benchmarks point to the promise of this spatial imputation 196 
in this context, there are notable caveats especially in the case of cell migration (see Limitations 197 
of this Study). Combining Slide-seq data and validation from orthogonal trees provided by Slide-198 
tags establish a foundation for studying the spatial lineages of cancer cells. 199 

Together, these computational improvements enabled us to build lineages of cancer cells 200 
in the native context of a tumor’s microenvironment at unprecedented resolution (Figure 1E). Our 201 
lineages revealed phylogenetic relationships in structured spatial environments and enabled us 202 
to explore the spatial localization of increasingly related subclones within the same tumor (Figure 203 
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1E, Figure S1P). With these data and approaches, we turned to investigating the relationship 204 
between changes to the microenvironmental architecture and tumor progression. 205 
 206 
Spatial transcriptomics reveal the ecosystems of lung adenocarcinoma 207 

While recent efforts have studied the composition of tumors in this model using single-cell 208 
approaches50,54,55, it has remained challenging to profile the spatial organization of these cell 209 
types. To address this, we leveraged the complementary insights gained from the high sensitivity, 210 
true single-nucleus measurements of Slide-tags and the broad field-of-view of Slide-seq to 211 
perform a systematic analysis of tumor spatial organization across stages of progression 212 
observed in our 49 spatial transcriptomics arrays representing more than 100 tumors. 213 

Focusing first on the true single nuclei profiled with Slide-tags, we performed fine-grained 214 
annotation of clusters consisting of normal epithelial, stromal, immune, and tumor cells 215 
(determined by canonical marker genes and the presence of active lineage-tracing edits) (Figure 216 
2A-B; Figure S2A; Methods). In addition to annotating previously described tumor and normal 217 
epithelial cells in this model50,55, we identified a previously undescribed tumor cell state 218 
characterized by the expression of neuronal genes such Piezo2 and Robo1, the endothelial 219 
marker Pecam1, maintenance of the lung-lineage transcription factor Nkx2-1, and absence of Vim 220 
(Figure S2B-C). Although this cell type expressed active lineage tracing marks in our system,  it 221 
is likely that this cell type was excluded in previous studies50,55,65 by purifying cancer cells against 222 
CD31 expression (also known as Pecam1, expressed in this population) prior to transcriptomic 223 
profiling; this highlights the advantage of spatial transcriptomics in profiling all cells and 224 
communities, eliminating potential biases arising from tissue dissociation and preparation. In the 225 
immune and stromal compartment, we observed large macrophage, fibroblast, and endothelial 226 
populations with lower representation of B cells and dendritic cells (Figure 2A; Figure S2A). 227 
Among macrophages, we detected SiglecF+ tissue-resident alveolar macrophages and three 228 
distinct tumor-associated macrophage (TAM) populations: Vegfa+ TAMs, immunosuppressive 229 
Arg1+ TAMs, and proangiogenic Pecam1+ TAMs (Figure 2A). We additionally detected a diverse 230 
set of cancer-associated fibroblasts (CAFs): a mesothelial-like Wt1+ population, an inflammatory-231 
like CAF (“iCAF”) population expressing the complement gene C7 and Abca8a, and a 232 
myofibroblast-like CAF (“myCAF”) population expressing Postn (Figure 2A, Figure S2A). 233 

To explore the spatial localization of these diverse cell states, we assigned spatial 234 
locations to Slide-tags nuclei and spatially projected cell identities. Consistent with previous 235 
characterizations of Slide-tags spatial mapping rates14, we found that approximately 50% of nuclei 236 
could be confidently assigned to a spatial location (Figure S2D). Across the five Slide-tags arrays, 237 
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we observed a distinct pattern where less aggressive, “early-stage” tumor cell states (i.e., AT2- 238 
and AT1-like cancer cells, indicated by expression of active lineage marks and distinct gene 239 
expression from normal AT2 and AT1 cells) co-localized on the periphery of tumor sections 240 
consisting of more aggressive “late stage” tumor cells (Figure 2C, Figure S2E). Similar to 241 
previous work in this model66, we also found that distinct immune and stromal cell types exhibited 242 
differential infiltration – for example, Alveolar Macrophages and iCAFs were typically found 243 
outside tumors, whereas Arg1+ TAMs and myCAFs were more likely to be found within tumors 244 
(Figure 2C, Figure S2E).   245 

The spatially-localized transcriptional signatures observed with Slide-tags motivated us to 246 
pair this approach with Slide-seq assays to survey the spatial gene expression communities 247 
across large tissue areas in tumors. We thus turned to the 44 tissue sections assayed with Slide-248 
seq that collectively represent more than 100 tumors at various tumor stages.  To identify modules 249 
of genes that were recurrently spatially co-expressed across multiple samples, we employed the 250 
Hotspot33 algorithm (Methods). Our analysis revealed 11 recurrent spatial gene modules, 251 
hereafter referred to as “communities” (Figure 2D-E), that we annotated by inspecting the genes 252 
contained within communities and evaluating the expression level of community genes (captured 253 
in a “community score”) in cell types identified by Slide-tags data (Figure S2F-G). 254 

The genes contained within these transcriptional communities represent a variety of co-255 
localized gene expression states: for example, an early-stage alveolar-like community contained 256 
genes marking epithelial cells such as Sftpc and Cxcl15 (“C1: Alveolar”), a hypoxic community 257 
contained canonical marker genes of hypoxia such as Slc2a1 (also known as Glut1) (“C10: 258 
Hypoxia”), and an epithelial-to-mesenchymal (EMT) community contained genes such as 259 
Vim,  up-regulation of Myc signaling, and metastasis-related genes such as Hmga2 (“C3: EMT”; 260 
Figure 2D-E, Figure S2G). In addition to fibroblast (C5), B cell (C6), and endothelial (C7) 261 
communities, we identified two distinct immunoregulatory-related communities. The first 262 
community contained genes associated with scavenger-like macrophages like Marco and Mrc1 263 
(“C8: Scavenger Mac”); a second community contained genes characteristic of inflammation such 264 
as B2m, Stat1, and Ifit1 (“C9: Inflammatory”). As these communities describe genes co-expressed 265 
in spatial proximity, they provide insights into possible intercellular interactions. For example, the 266 
EMT and hypoxic communities (C3 and C10) contained genes associated with macrophage 267 
recruitment (e.g. Csf1) and polarization to immunosuppressive states that have been previously 268 
reported to promote aggressive cancer phenotypes (e.g., Arg162 and Spp167), while the 269 
Inflammatory community (C9) contained Cxcl9 that has been previously reported in anti-tumor 270 
macrophage polarization67 (Figure S2G). 271 
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         To inspect the distribution of these communities across large tissue sections profiled with 272 
Slide-seq, we quantified community scores for each spot and assigned spots to the community 273 
with the highest score (Figure 2E-F, Figure S2H-I). In comparing histology from an adjacent layer 274 
to the community scores, we found co-localization between areas indicating high tumor grade (as 275 
indicated by histology) and high scores for EMT, hypoxic, and fibrotic communities (C3, C10, C5; 276 
Figure S2H). We next asked how the distribution of community assignments varied over tumor 277 
stages using a gene set signature we previously identified to robustly associate with tumor 278 
progression (termed a “fitness signature”)50 (Figure 2F; Figure S2I; Methods). Specifically, this 279 
fitness signature contains genes that are associated with subclonal expansions in this model, and 280 
their collective activity (i.e., “score”) reflects tumor progression towards an aggressive, pro-281 
metastatic state. Consistent with the definition of this signature, after ranking tumors by their 282 
fitness signature score and inspecting the proportion of community assignments, we observed 283 
that early-stage tumors were dominated by epithelial, endothelial, and inflammatory communities 284 
(C1, C7, and C8, respectively) but that late-stage tumors had larger fractions of EMT, hypoxic, 285 
and fibroblast communities (C3, C10, and C5, respectively; Figure 2F, Figure S2I). Moreover, we 286 
found that overall abundances of EMT, hypoxic, and fibroblast community assignments (C3, C10, 287 
and C5, respectively) were correlated across all tumors; conversely, they were anticorrelated with 288 
the abundances of alveolar and inflammatory communities (C1 and C8, respectively) (Figure 2G).  289 
         Together, these analyses unite the unique advantages of Slide-tags and Slide-seq assays 290 
to provide a consensus set of spatial communities that highlight differential immune and stromal 291 
activation and localization patterns across tumor progression in KP tumors. These observations 292 
motivated us to next integrate our phylogenies to understand how the spatiotemporal dynamics 293 
of these communities are associated with tumor plasticity and subclonal expansion. 294 
 295 
Rapid tumor subclonal expansion contributes to a hypoxic niche with decreased cancer 296 
cell plasticity 297 

Integrating cell state information with high-resolution phylogenies can offer new insights 298 
into various aspects of tumor evolution, such as the historical record of subclonal growth rates 299 
(i.e, “phylogenetic fitness”) or the kinetics of tumor cell state transitions (which can be quantified 300 
as a “clonal plasticity” score for each cell). In our previous work, we described a model whereby 301 
KP-Tracer tumor progression is driven by the loss of an initial AT2-like cell state and 302 
accompanying increases in single-cell clonal plasticity and transcriptional heterogeneity; in turn, 303 
these high-plasticity cells provide a diverse pool of transcriptional states from which high-fitness, 304 
low-plasticity subclones with increased metastatic ability and expression for EMT markers like 305 
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Vim and Hmga2 are selected50. Consistent with this previous work, the tumors studied with this 306 
spatial-lineage platform showed an overall distribution where transient increases in plasticity are 307 
followed by the selection of low-plasticity, high fitness subclones (Figure S3A). Using this 308 
platform, we sought to understand how our previously described model unfolds spatially and 309 
associates with changes to the surrounding microenvironment. 310 

As the measurement of phylogenetic fitness reports on the history of subclonal growth, 311 
spatially-resolved phylogenies are well suited to understanding the growth patterns in tumors and 312 
their molecular consequences22,68. In one representative Slide-seq example (S-seq 40), we found 313 
an expanding subclone with high phylogenetic fitness localized to a tumor interior characterized 314 
by late-stage Hypoxic and EMT communities (C10 & C3) while the tumor periphery had lower 315 
phylogenetic fitness and was marked by the Alveolar community (C1) (Figure 3A). This co-316 
localization of high phylogenetic fitness with hypoxic regions was supported by three lines of 317 
evidence: first, we found that phylogenetic fitness was correlated with the orthogonal, previously-318 
described fitness signature50 (Pearson’s r = 0.4; Figure S3B). Second, in a systematic analysis 319 
of all Slide-seq tumors, we found that the EMT and Hypoxic communities were most strongly 320 
correlated with phylogenetic fitness (Figure S3C). Finally, across all high-resolution Slide-tags 321 
arrays, we similarly found that the late-stage states (e.g., EMT and Endoderm-like) were most 322 
likely to be found in regions that had previously undergone subclonal expansion (Figure S3D). 323 
These orthogonal data collectively support the observation that the co-localization of expansion 324 
and hypoxia is consistent across tumors and is not an artifact of tree reconstruction or the near-325 
cell resolution of Slide-seq.  326 

The localization of expanding subclones characterized by aggressive gene expression 327 
states in a representative Slide-seq example (S-seq 40) prompted us to hypothesize that rapid 328 
subclonal expansions may create a layered environment whereby expanding subclones dominate 329 
a core surrounded by non-expanding cells (Figure 3A-B). Focusing first on this representative 330 
Slide-seq example, we observed that multiple low-fitness areas of Tumor 1 could be grouped 331 
together in a phylogenetic subclade despite being geographically distant (though many indels 332 
were shared across the tree, these low-fitness, distant cells were marked by the shared absence 333 
of indels marking the expanding region) (Figure 3A-B; Figure S3E). Though this pattern could 334 
be generated many ways (e.g., independent migration of several subclones), the most 335 
parsimonious interpretation suggests that these scattered low-fitness cells were in close spatial 336 
proximity during the early stage of tumor growth but were later pushed to the tumor periphery 337 
because of a subclonal expansion event. To investigate the consistency of this phenomenon, we 338 
next quantified the phylogenetic fitness of individual cancer cells derived from high-resolution 339 
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Slide-tags arrays on multiple tumors and inspected the spatial distribution of subclonal expansion. 340 
In this analysis, we also found that the tumor core in Slide-tags data was more likely to contain 341 
cells with more aggressive gene expression states (e.g., Endoderm-like and EMT states) and 342 
higher phylogenetic fitness as inferred from reconstructed trees (Figure 3C-D p < 1e-5, wilcoxon 343 
rank-sums test; Figure 2C; Figure S2E). 344 

The observed data supporting a model in which subclonal expansion creates an 345 
aggressive, hypoxic interior led us to next explore whether the transitions between gene 346 
expression states also occur in a spatially coherent manner. As demonstrated in our previous 347 
work, integrating high-resolution lineage tracing offers a unique opportunity to quantitatively 348 
measure the frequency of cell state transitions, or “single-cell clonal plasticity”50,69. Starting in the 349 
representative Slide-seq example (S-seq 40), we observed that low-plasticity clones in Tumor 1 350 
co-localized with high-fitness regions in the tumor interior whereas the high-plasticity regions of 351 
Tumor 2 (which lacked a subclonal expansion) appeared to lack spatial organization (Figure 3A). 352 
Consistent with this, we found that the high-fitness Hypoxic and EMT communities, and related 353 
states, were associated with lower plasticity across all Slide-seq and Slide-tags datasets (Figure 354 
S3F-G). To better understand how transient increases in plasticity contribute to the subclonal 355 
expansions observed across Slide-seq datasets (Figure S3A), we further examined the transition 356 
to subclonal expansion in arrays profiled with Slide-tags (Figure S4H-J). Across our Slide-tags 357 
data, we found there was little spatial organization of high-plasticity cells in tumors without 358 
detectable subclonal expansion (as measured by Moran’s I autocorrelation statistic70), whereas 359 
low-plasticity cells were spatially localized to the tumor center in tumors after expansion (Figure 360 
S3I-J; Methods).  This suggests that subclonal expansion, and its associated molecular changes, 361 
are important for coherent spatial organization during tumor progression.  362 

Collectively, these data support a model whereby the tumor microenvironment is 363 
sequentially remodeled by subclonal expansion, culminating in a hypoxic core and eventually the 364 
emergence of a late-stage, pro-metastatic EMT state. As evidenced by examples of tumors across 365 
various stages, this model is characterized by the exclusion of early-stage communities (e.g., C1: 366 
Alveolar) to the tumor periphery while subclonal expansions contribute to the acquisition of a low-367 
plasticity, high-fitness Hypoxic community (C10) and eventual transition to an EMT community 368 
(C3) (Figure 3E; Figure 2F; Figure S2I).  369 

 370 
Subclonal expansion is accompanied by immunosuppressive and fibrotic 371 
microenvironmental remodeling 372 
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As our Slide-seq data suggest that the microenvironment is remodeled during subclonal 373 
expansion, we next exploited Slide-tags data to dissect the expansion-associated cell state 374 
transitions at single-nucleus resolution. After quantifying phylogenetic fitness on trees inferred 375 
from Slide-tags data, we stratified nuclei into high- and low-fitness groups and inspected the cell 376 
type abundances in their spatial neighborhoods (Figure 3F; Figure S3K; Methods). As expected, 377 
we found that the EMT cancer cell state was most consistently enriched in neighborhoods 378 
surrounding high-fitness nuclei (Figure 3F). With respect to differential enrichment of specific 379 
immune and stromal populations, we found that Arg1+ TAMs and myCAF populations were 380 
consistently enriched in spatial neighborhoods of high-fitness cells whereas iCAFs and other 381 
TAMs were not (Figure 3F). To more systematically probe the polarization states of macrophages 382 
and fibroblasts associated with subclonal expansions, we performed differential expression within 383 
these cell types in spatial neighborhoods of high- and low-fitness cells (Figure 3G-H). In addition 384 
to high Arg1 expression, macrophages in spatial neighborhoods of high-fitness cells were 385 
characterized by the presence of the hypoxia-induced factor Egnl3, the Fcg-receptor Fcgr2b, the 386 
macrophage scavenger receptor Mrc1, and enriched for programs indicating increased 387 
endocytosis and complement activity (Figure 3G; Table S1). Fibroblasts associated with spatial 388 
neighborhoods of high-fitness cells were characterized by higher expression of genes implicated 389 
in hypoxia, collagen synthesis, and fibrosis such as Vcan, Fndc1, Cald1 and Vegfa (Figure 3H; 390 
Table S1). 391 

To inspect the generalizability of these patterns, we returned to the comprehensive dataset 392 
of 44 Slide-seq arrays. Indeed, a systematic analysis of our Slide-seq arrays revealed that spatial 393 
neighborhood surrounding high-fitness, low-plasticity spots were most enriched for EMT, Hypoxic, 394 
and Fibrotic communities (C3, C10, and C5, respectively) and depleted for Alveolar, Endothelial, 395 
and Inflammatory communities (C1, C7, and C9, respectively) (Figure S3L-M; Methods). 396 
Moreover, consistent with our finding in this mouse model, reanalysis of published spatial 397 
transcriptomics data of human lung adenocarcinoma40 demonstrated that expression of the 398 
hypoxia-reporter SLC2A1 (also known as GLUT1) in tumors was associated with cell proliferation 399 

(as measured by MKI67), TGF𝛽 signaling, EMT (SNAI2), and immunosuppressive macrophage 400 
polarization (FCGR2B) (Figure S3N-O). 401 

Together, these differential gene expression programs suggest a model whereby 402 
subclonal expansion promotes a hypoxic tumor interior that polarizes immune and stromal cells 403 
into pro-tumor immunosuppressive and fibrotic states and facilitates the emergence of a pro-404 
metastatic cancer cell state. Indeed, in returning to our previous Slide-seq analysis of community 405 
program assignments across tumor progression, we observed that the Hypoxic community (C10) 406 
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appears prior to EMT (C3) when ranked by the transcriptional fitness signature (Figure 2F; Figure 407 
S2I). In further support of this, immunofluorescence staining of KP-Tracer tumors revealed that 408 
hypoxia (as evidenced by the canonical hypoxia marker GLUT1 [Slc2a1] protein levels71,72) 409 
preceded the emergence of immunosuppressive ARG1+ immune cells (Figure 3I).  410 
 411 
Spatially resolved lineages reveal the evolution of metastasis-initiating niches in the 412 
primary tumor 413 

Metastasis, the ultimate stage of tumor progression, accounts for approximately 90% of 414 
cancer-related mortality and is associated with pervasive microenvironmental remodeling73–77. 415 
However, it has remained challenging to delineate the specific microenvironmental features 416 
associated with tumor evolutionary dynamics during metastasis progression. Outstanding 417 
questions include: do the niches surrounding subclones giving rise to metastases differ from those 418 
surrounding other subclones? How do these gene expression programs change during metastatic 419 
spread? Our spatial-lineage platform is well-suited to identify the spatial localization of metastasis-420 
initiating subclones and characterize the microenvironmental remodeling associated with each 421 
step of the metastatic cascade. 422 

We began by performing spatial transcriptomics on a KP-Tracer mouse with multiple 423 
primary lung tumors and widespread metastases in the mediastinal lymph node, rib cage, and 424 
diaphragm (Figure 4A, Figure S4A). To maximize the probability of detecting metastasis-initiating 425 
subclones in primary tumors, we sampled multiple representative layers of the tumor-bearing lung 426 
at approximately 200-500um intervals, enabling us to study multiple large primary tumors from 427 
top-to-bottom. Tumor segmentation of Slide-seq data from these sections and coarse-grained 428 
spatial alignment determined by shared lineage states revealed four major tumors that could be 429 
tracked across layers (Figure 4B). 430 

Our spatial-lineages in the large Slide-seq assays provide an opportunity to both compare 431 
the trajectory of multiple tumors and understand the transcriptional evolution of the niche 432 
surrounding the metastasis-initiating subclone in a single primary tumor.  To do so, we first 433 
identified the spatial localization of subclones giving rise to metastasis by inspecting the allelic 434 
similarities between primary tumors and metastases (Figure 4C). This analysis revealed that 435 
metastases from all 3 locations were phylogenetically related to a spatially coherent subclone in 436 
primary Tumor 2 (“T2”). T2 could be identified in each layer independently and could be thus 437 
tracked across all sampled layers of this primary tumor (Figure S4B-C). This pattern was 438 
consistent in matched Slide-tags data, overlapped with subclonal expansions identified from our 439 
phylogenies, and was associated with regions exhibiting poorly differentiated histological features 440 
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(Figure 4C-E; Figure S4C-F). Because all metastases shared indels with an expanding subclone 441 
that could be found across layers, it is most likely that all metastases arose after subclonal 442 
expansion. 443 

To understand the phylogenetic and gene expression programs underlying metastatic 444 
potential in this region of T2, we segmented this tumor into a niche surrounding the cells giving 445 
rise to metastases (“T2-Met”) or otherwise (“T2-NonMet”) and compared their gene expression 446 
patterns (Figure 4D-E; Figure S4D-F; Methods). The T2-Met niche had higher proportions of the 447 
EMT and Hypoxic communities (C3 & C10, respectively) and lower proportions of the 448 
Gastric/Endoderm and Alveolar communities (C11 & C1, respectively) (Figure 4F). The T2-Met 449 
niche additionally down-regulated genes associated with Gastric and Endoderm states (e.g., 450 
Gkn2 and Meg3), and had higher expression of genes marking cancer cell EMT (e.g., Vim), 451 
scavenger macrophages (e.g., Mrc1 and Msr1), immunosuppressive macrophages (e.g., Arg1 452 
and Fcgr2b), TGF𝛽 signaling (e.g., Tgfb1 and Smad4), and fibrosis (e.g., Cthrc1 and Postn) 453 
(Figure 4G). Orthogonal analysis with Slide-tags data corroborated these findings, as Arg1+ 454 
TAMs and myCAFs were most enriched in spatial neighborhoods of cells in the primary tumor 455 
related to metastases (Figure S4G).  Moreover, immunofluorescence staining confirmed that 456 
ARG1+ cells co-localized with the metastasis-initiating VIM+ region of the T2 primary tumor 457 
(Figure S4H). Together, these results nominate several key molecular processes as potential 458 

drivers of the pro-metastatic niche, including fibrosis, TGF𝛽 signaling, and intercellular 459 
interactions between cancer cells, activated fibroblasts, and Arg1+ immunosuppressive 460 
macrophages. 461 
 462 
Metastatic colonization is accompanied by increased collagen deposition and fibrosis 463 
 Beyond the evolution within the primary tumors, we next investigated whether the 464 
microenvironments at distant metastatic sites are remodeled to resemble, or diverge from, the 465 
metastasis-initiating niche within the primary tumor. Comparing the niches surrounding 466 
metastases and the T2-Met subclone in the primary tumor, we found that metastases contained 467 
proportionally more regions annotated by stromal or immune communities and showed 468 
specifically higher representation of the Fibrotic community (C5) (Figure 4F). As these 469 
communities represent several gene programs and may mask fine-scaled cell type changes, we 470 
further characterized the differential gene expression changes distinguishing niches of the primary 471 
tumor and metastases (Figure 4G). While metastases up-regulated genes also found to 472 
distinguish the T2-Met niche – such as the EMT markers Vim and Hmga2 and TGF𝛽-related 473 
genes – metastases displayed large up-regulation of genes associated with collagen deposition 474 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.21.619529doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.21.619529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

(e.g., Col1a1 and Col12a1) and myogenesis (Tnnt3 and Ncam1) (Figure 4G). After quantifying 475 
the activity of these gene expression programs in Slide-seq spots, we confirmed that these 476 
aggregated gene expression signals were spatially localized to tumor regions: metastatic tumors 477 
generally resembled the metastasis-initiating subclone in the primary tumor (for example with 478 
respect to TGF𝛽 signaling: log2FC = -0.14, t-test p=1.0; Figure 4H) but substantially up-regulated 479 
collagen-related genes as compared to the primary tumor  (log2FC = 3.81, t-test p<1e-5) (Figure 480 
4I). Consistent with this finding in Slide-seq data, immunofluorescence staining showed a marked 481 
increase in COL3A1 protein in metastases as compared to primary tumors (Figure S4I). 482 
Collectively, these results complement recent findings that TGF𝛽 signaling is critical for EMT and 483 
metastatic seeding in this model74, and highlight that while certain expression programs – such 484 
as TGF𝛽 signaling – precede metastasis in the metastasis-initiating subclone, the resulting 485 
metastatic tumor is remodeled to have increased fibrosis and collagen-related gene program 486 
activity.  487 
 488 
DISCUSSION 489 

In this study, we integrated high-resolution spatial transcriptomics with Cas9-based 490 
lineage tracing in a genetically engineered mouse model of lung adenocarcinoma to dissect the 491 
dynamic interplay between tumor evolution and microenvironmental remodeling in a spatially 492 
resolved fashion. Our analysis uncovered spatial communities associated with different stages of 493 
tumor progression; revealed relationships between tumor growth, plasticity and 494 
microenvironmental remodeling; and identified metastasis-initiating subclones that informed on 495 
the spatiotemporal evolution of gene expression along the metastatic cascade. These results 496 
present an unprecedented spatial map of lung adenocarcinoma evolution, showcasing the power 497 
of integrating spatially resolved transcriptomics and lineages to dissect the complex tumor 498 
dynamics underlying cancer progression. 499 

The insights into spatiotemporal dynamics offered by this spatial-lineage platform 500 
contributes new dimensions to our previous model of KP tumor evolution (Figure 4J). Our 501 
previous results provided several lines of evidence that tumors, following the initial loss of an AT2-502 
like state, are characterized by a cancer-cell-intrinsic increase in clonal plasticity, leading to gains 503 
in transcriptional heterogeneity and subsequent subclonal expansion50. In the present study, we 504 
find that rapid subclonal expansion pushes early-stage cells to the tumor periphery and 505 
contributes to the formation of a hypoxic microenvironment in the tumor core. This hypoxic niche 506 
promotes additional microenvironmental remodeling characterized by Arg1+ immunosuppressive 507 
myeloid subsets and myCAF-like fibroblasts; for example, by recruiting myeloid cells through 508 
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hypoxia-induced chemokine secretion (e.g., Ccl2, Ccl6, and Csf1) and polarizing immune and 509 
stromal cells through hypoxia-induced signaling cascades (e.g., Hif1a and Vegfa) as previously 510 
suggested78–82 (Figure S2A,G; Figure 3G-H). In turn, this hypoxic, immunosuppressive, and 511 
fibrotic niche may contribute to another wave of cancer cell state transitions and the emergence 512 
of a pro-metastatic EMT state, for example through TGF𝛽 signaling as shown in our analysis 513 
(Figure 4G-H) and detailed in a recent study74. As these cells metastasize, the metastatic 514 
environment is further remodeled to an enhanced fibrotic niche marked by increased collagen 515 
deposition. 516 

Epigenetic remodeling is a hallmark of cancer and has been shown to play a critical role 517 
in cancer progression and drug resistance83–85. Our proposed model of tumor progression 518 
provides key insights into how cancer-intrinsic alterations and external signals integrate to 519 
regulate tumor cell states. Building on previous work in this model which has shown that tumor 520 
progression is driven by epigenetic rather than somatic changes50,54, our analysis adds more 521 
granularity into this process and suggests an appealing hypothesis that epigenetic remodeling 522 
can be disentangled into two distinct phases. First, following the loss of the AT2-like state, cancer 523 
cells enter a permissive epigenetic phase characterized by increased plasticity and transcriptional 524 
heterogeneity. As high-plasticity regions of these tumors do not appear to be spatially coherent 525 
(Figure 3A, Figure S3H-I), this suggests that this phase of epigenetic remodeling is mostly driven 526 
by cell-intrinsic changes accompanying the loss of the AT2-like state. 527 

In contrast, the second phase of epigenetic changes follows subclonal expansions that 528 
drive microenvironmental remodeling towards a hypoxic state characterized by 529 
immunosuppressive and fibrotic communities. As several lines of evidence suggest that hypoxia 530 
precedes the formation of the EMT state (Figure 2F, Figure S2I, Figure 3E), we postulate that 531 
these environmental changes contribute to the induction and selection of an epigenetically-stable, 532 
pro-metastatic EMT state. This hypothesis aligns with prior reports associating hypoxia with 533 
genomic instability and EMT22,86–88, including in human lung adenocarcinoma89, and here our 534 
spatial-lineage data provide new evidence linking subclonal expansion as a mechanism driving 535 
hypoxia and tumor progression. In addition to our observation that human lung adenocarcinoma 536 
tumors contain spatially-defined hypoxic regions90 (Figure S3N-O), hypoxia has also been shown 537 
to play critical roles in lung adenocarcinoma91 and other cancers (e.g., glioma92 and clear cell 538 
renal cell carcinoma22); thus, further dissecting the relationships between subclonal expansions 539 
and hypoxia in these cancers may reveal opportunities for therapies spanning multiple cancer 540 
types. Together, these findings provide fundamental insights into how cancer cell states are 541 
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regulated by both intrinsic and extrinsic changes and highlight the possible therapeutic 542 
ramifications of this regulation. 543 

While our study elucidates new aspects of how tumor evolution unfolds spatially, it also 544 
sets the foundation for further studies. First, mechanistic studies will be needed to dissect how 545 
the hypoxic niche polarizes immune and stromal subsets, and how this might lead to an 546 
aggressive, mesenchymal tumor state. As we have previously reported that plasticity plays an 547 
important role in tumor progression28,50,55,83, one area of research will be how hypoxia affects the 548 
high-plasticity cell states in lung cancer. Second, the platform we developed here can be adapted 549 
to study the spatiotemporal dynamics of tumor evolution in other models or under different 550 
perturbations. Notably, our platform is also amenable to modeling the effect of additional genetic 551 
perturbations as Cas9 is continuously expressed for tracing50. Third, while we introduced new 552 
computational approaches for phylogenetic reconstruction approaches that address the sparsity, 553 
resolution, and scale of these data, there remain opportunities to build new algorithms specifically 554 
tailored to the spatial aspect of data and statistically infer how spatial organization affects 555 
phylogenetic patterns.  556 

In summary, our study unites the insights provided by spatially resolved lineages and 557 
transcriptomics to investigate the fundamental patterns of tumor growth and its interactions with 558 
the microenvironment. Our analyses lead to a comprehensive model of how a tumor grows from 559 
a single, transformed cell into a large and complex ecosystem and provided new evidence for 560 
how tumor expansion-associated microenvironmental remodeling may contribute to a distinct 561 
wave of cell state reprogramming towards pro-metastatic states. As one of the most 562 
comprehensive datasets of spatial tumor evolution to date, we anticipate that this resource will 563 
help pioneer new computational methods and quantitative and predictive models of tumor 564 
evolution. 565 
 566 
Limitations of the study 567 

While our study reveals new aspects of tumor progression, there are limitations in the 568 
interpretation and extensibility of the approaches applied here. First, a single slide section may 569 
not represent the entirety of clonal dynamics in a tumor. To minimize this potential bias, we 570 
corroborated phylogenetic patterns with histology, orthogonal gene expression signatures derived 571 
from our previous single-cell lineage-tracing data (derived from unbiased sampling of whole 572 
tumors) and analyzing representative sections at different depths of tumors from a tumor-bearing 573 
lung in Figure 4. As scaling spatial transcriptomics experiments becomes more affordable, future 574 
studies can more densely sample three-dimensional structure to entirely account for this bias.  575 
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Second, as a consequence of profiling tumor sections, we observe less indel diversity in spatial 576 
lineage tracing data than in previous applications with unbiased sampling, leading to lower 577 
resolution phylogenetic relationships. This may be ameliorated by optimizing the lineage-tracing 578 
kinetics and adapting tools for recording past molecular signaling events93,94. Third, the molecular 579 
sparsity and resolution of Slide-seq data pose a challenge in reconstructing phylogenies and 580 
detecting smaller spatial neighborhoods. While we provide a spatial imputation algorithm to 581 
account for these technical issues, and benchmark its effectiveness in a variety of simulated and 582 
held-out experiments, we anticipate that this imputation approach may have limitations in cases 583 
where lineage data is not spatially coherent, for example in systems with higher degrees of cell 584 
migration. In these scenarios, either alternative technologies with improved capture and resolution 585 
or new algorithms for performing spatial imputation and detecting robust spatial communities will 586 
be necessary. Finally, the trees presented in this study are only estimates of true phylogenetic 587 
relationships, and may not truly reflect cell division histories; when possible, our study uses 588 
orthogonal data and approaches to substantiate all claims. 589 
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DATA AND CODE AVAILABILITY 644 
Custom code for the analysis of spatially-resolved lineage-tracing data is available on Github 645 
through Cassiopeia (https://github.com/YosefLab/Cassiopeia) and at 646 
https://github.com/mattjones315/KPSpatial-release. All raw and processed data will be made 647 
available on GEO and other public repositories. 648 
 649 
SUPPLEMENTARY TABLES 650 
Table S1: Fitness-neighborhood differential expression and GO Term analyses. 651 
   652 
METHODS 653 

EXPERIMENTAL MODELS AND SUBJECT DETAILS 654 

KP-Tracer mouse was generated by generating chimeric mice from blastocyst injection of 655 
engineered, lineage tracer enabled mouse embryonic stem cells harboring conditional alleles 656 
KrasLSL-G12D/+;Trp53fl/fl; Rosa26LSL-Cas9-P2A-mNeonGreen as previously described50. Eight-to-twelve-657 
week-old KP-Tracer mice were infected intratracheally with ad5-SPC-Cre virus (1x10^8 Pfu) 658 
purchased from University of Iowa viral vector core for tumor initiation. This enables specific tumor 659 
initiation and lineage-tracing in Alveolar Type II (AT2) cells, the major cell-type of origin of lung 660 
adenocarcinoma. All studies were performed under an animal protocol approved by the 661 
Massachusetts Institute of Technology (MIT) Committee on Animal Care. Mice were assessed for 662 
morbidity according to MIT Division of Comparative Medicine guidelines and humanely sacrificed 663 
prior to natural expiration. 664 

METHODS DETAILS 665 

Sample processing 666 
Tumor-bearing lungs were harvested and re-inflated with ~2ml of 50% OCT (1:1 mix with 667 

PBS) and 1:100 of RNase inhibitor (NEB M0314L). After cleaning up excess blood and liquid, the 668 
whole tissue was embedded in 100% OCT and frozen using dry ice-methanol bath. Frozen 669 
samples were kept at -80C until sectioning for further analysis. 670 

Spatial transcriptomics with Slide-seqV2 671 
For 3 mm and 5.5 mm arrays. Fresh frozen tissues were cryo-sectioned at a thickness 672 

of 10 μm using a Cryostat (CM1950, Leica) set at −17 to −18 °C. The tissue sections were 673 
carefully transferred onto precooled arrays, which were placed on top of a glass slide inside the 674 
cryostat. A finger was briefly placed underneath the slide to melt the tissue and adhere it to the 675 
array. Immediately after, the tissue and array were transferred together into a 1.5 ml or 2 ml 676 
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Eppendorf tube containing 200 μl (for 3 mm arrays) or 500 μl (for 5.5 mm arrays) of hybridization 677 
buffer (6x SSC with 2 U μl–1 Lucigen NxGen RNase inhibitor, Lucigen, 30281). The samples were 678 
incubated in the hybridization buffer for 15 minutes to 1 hour at room temperature, allowing the 679 
RNA to bind to the oligonucleotides on the beads. After incubation, the tissue and array were 680 
briefly dipped into 1x Maxima RT buffer to wash off the hybridization buffer and then transferred 681 
to the reverse transcription (RT) reaction mixture (1x Maxima RT buffer, 1 mM dNTPs (NEB, 682 
N0477L), 2 U μl–1 Lucigen NxGen RNase inhibitor, 2.5 μM template switch oligonucleotide, 10 683 
U/μL Maxima H Minus reverse transcriptase (Thermofisher Scientific, EP0753)). The tissue and 684 
array were incubated in 200 μl (for 3 mm arrays) and 500 μl (for 5.5 mm arrays) of the RT reaction 685 
mixture for 30 minutes at room temperature, followed by 1.5 hours at 52 °C. To digest the tissue, 686 
200 μl (for 3 mm arrays) or 500 μl (for 5.5 mm arrays) of tissue digestion buffer (200 mM Tris-Cl 687 
pH 8, 400 mM NaCl, 4% SDS, 10 mM EDTA and 32 U ml–1 proteinase K (NEB, P8107S)) was 688 
added to the reaction mixture and incubated at 37 °C for 30 minutes. Following digestion, 200 μl 689 
(for 3 mm arrays) or 500 μl (for 5.5 mm arrays) of wash buffer (10 mM Tris pH 8.0, 1 mM EDTA 690 
and 0.01% Tween-20) was added, and a P200 pipette was used to carefully triturate the beads 691 
off the array. The beads were centrifuged at 3000g for 2 minutes, followed by three washes with 692 
wash buffer. To remove RNA strands, the beads were incubated in 0.1N NaOH for 5 minutes, 693 
followed by a wash with wash buffer and 1x TE buffer, and centrifuged again at 3000g for 2 694 
minutes. Second-strand synthesis was performed by mixing the beads with 200 μl (for 3 mm 695 
arrays) or 500 μl (for 5.5 mm arrays) of second-strand synthesis mixture (1x Maxima RT buffer, 696 
1 mM dNTPs, 10 μM dN-SMRT oligonucleotide and 12.5U μl–1 Klenow enzyme (NEB, M0210)) 697 
and incubating at 37 °C for 1 hour. The beads were then washed three times with wash buffer 698 
and once with water. cDNA amplification was carried out by resuspending the beads in 200 μl (for 699 
3mm arrays) or 1.2 ml (for 5.5 mm arrays) of cDNA amplification mixture (1x Terra Direct PCR 700 
mix buffer (Takara Biosciences, 639270), 1.25 U μl-1 of Terra polymerase (Takara Biosciences, 701 
639270), 2.5 μM TruSeq PCR handle primer and 2.5 μM SMART PCR primer). The reaction was 702 
divided into 50 μl aliquots and amplified using the following PCR program: 95 °C for 3 min; four 703 
cycles of 98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min; nine cycles of 98 °C for 20 s, 67 °C for 704 
20 s and 72 °C for 3 min; 72 °C for 5 min; hold at 4 °C. The cDNA product was purified twice using 705 
SPRI beads (Beckman Coulter, B23318) at a 0.8x bead-to-sample ratio, eluting in a final volume 706 
of 20 μl (for 3mm arrays) and 60 μl (for 5.5 mm arrays). A total of 1 ng (for 3 mm arrays) or 3x 1ng 707 
(for 5.5 mm arrays) of cDNA was used for Illumina sequencing library construction. The Nextera 708 
XT kit (Illumina, FC-131-1096) was used for tagmentation, followed by amplification with TruSeq5 709 
and N700 series barcoded index primers. Libraries were cleaned with SPRI beads according to 710 
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the manufacturer’s instructions at a 0.6x bead-to-sample ratio and resuspended in 10 μl of water 711 
per reaction. Lineage tracing target site libraries were amplified from cDNA and prepared fpr 712 
Illumina sequencing using previously described protocols50. 713 

For Curio 1 cm arrays. The buffers and enzymes used were the same as those described 714 
for the 3 mm and 5.5 mm arrays but adjusted for scale. In brief, hybridization, dipping, washing, 715 
RT reaction and tissue digestion were performed using the reservoirs provided by Curio with 500 716 
μl volume for each step. After tissue digestion the beads were divided into 2 tubes for wash buffer 717 
washes and combined for cDNA amplification. A total of 4.8 ml of cDNA amplification mixture was 718 
prepared, and the reaction was divided into 50 μl aliquots for cDNA amplification in 96-well PCR 719 
plates, following the same PCR program as outlined previously. cDNA was purified twice using 720 
0.8x SPRI beads and eluted in a final volume of 80 μl. 8x 1ng cDNA products were used for 721 
Illumina sequencing library preparation through tagmentation with a Nextera XT kit, followed by 722 
amplification and cleanup as stated above. Lineage tracing target site libraries were amplified 723 
from cDNA and prepared fpr Illumina sequencing using previously described protocols50. 724 
 725 
Spatial transcriptomics with Slide-tags 726 

Fresh frozen tissues were cryo-sectioned at 20 μm thickness using a Cryostat set at −17 727 
to −18 °C. Precooled 6 mm square custom-made biopsy punches were used to punch and isolate 728 
regions of interest from the tissue sections. The isolated tissue regions were carefully transferred 729 
onto a precooled array, which was placed on top of a glass slide. A finger was briefly placed 730 
underneath the slide to melt the tissue onto the array. Immediately after, the tissue, array, and 731 
slide were placed on ice, and approximately 10 μl of dissociation buffer (82 mM Na2SO4, 30 mM 732 

K2SO4, 10 mM glucose, 10 mM HEPES, 5 mM MgCl2) was gently pipetted onto the tissue to 733 

ensure it was fully covered. The array was then exposed to an ultraviolet (UV) light source (0.42 734 
mW mm-2, Thorlabs, M365LP1-C5, Thorlabs, LEDD1B) for 1 minute to cleave spatial barcode 735 
oligonucleotides off the beads. After photo-cleavage, the array was incubated on ice for 7.5 736 
minutes before being transferred to a well of a 12-well plate. To release the tissue from the array, 737 
1 ml of extraction buffer (dissociation buffer with 1% Kollidon VA64, 0.2% Triton X-100, 1% BSA, 738 
666 U ml-1 RNase-inhibitor) was gently dispensed onto the array, and the buffer was carefully 739 
triturated up and down over the tissue 10–15 times. This process was repeated until the tissue 740 
was completely released from the array. The array was then discarded, and mechanical 741 
dissociation of the tissue was performed by triturating the supernatant 100–150 times using a 1 742 
ml pipette to fully release the nuclei from the tissue. The extraction buffer containing the nuclei 743 
was transferred to a 15 ml tube. The well was washed three times with 1 ml of wash buffer 744 
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(dissociation buffer with 1%BSA and 1: 100 RNase-inhibitor) and the washes were pooled into the 745 
same 15 ml tube. The final volume of the wash buffer was adjusted to 10 ml. The nuclei were 746 
centrifuged at 600g for 10 minutes at 4 °C. After centrifugation, 9.5 ml of the supernatant was 747 
carefully removed. The pellet was resuspended and passed through a precooled 40 μm cell 748 
strainer (Corning, 431750) into a 1.5 eppendorf tube. The 15 ml tube and cell strainer were 749 
washed with 1 ml of wash buffer, and the nuclei were pelleted again by centrifuging at 600g for 750 
10 minutes at 4 °C. After centrifugation, the supernatant was carefully removed, leaving 751 
approximately 50 μl of wash buffer for nuclei resuspension. To determine cell count, 2 μl of 752 
resuspended nuclei was mixed with 18 μl of 1: 100 diluted DAPI, and the nuclei were manually 753 
counted using a C-Chip Fuchs-Rosenthal disposable hemocytometer (INCYTO, DHC-F01-5). 754 
Based on the cell count, up to 25,000 nuclei were processed using the Chromium Next GEM 755 
Single Cell 3’ Reagent Kits v3.1 (with Feature Barcode technology for Cell Surface Protein, 10x 756 
Genomics, PN-1000268). Lineage tracing target site libraries were amplified from cDNA and 757 
prepared fpr Illumina sequencing using previously described protocols50. 758 

 759 
H&E staining 760 

H&E was performed with a Leica ST5010 Autostainer XL and Leica CV5030 Fully 761 
Automated Glass Coverslipper. Bright-field images were taken using the Leica Aperio VERSA 762 
Brightfield, Fluorescence & FISH Digital Pathology Scanner under a ×10 objective. Tumor grade 763 
was analyzed in H&E-stained sections using an automated deep neural network developed by 764 
Aiforia. 765 

 766 

Sequencing 767 
Sequencing was performed at using NovaSeq S4. For Slide-seq gene expression libraries: 768 

read1: 50bp, read2: 50bp, index1: 8bp was used. For Slide-seq Target Site libraries: read1: 44bp, 769 
read2: 260bp, index1: 8bp was used. For Slide-tags gene expression libraries: read1: 28bp, 770 
read2: 90bp, index1: 10bp, index2: 10bp was used. For Slide-tags gene expression libraries: 771 
read1: 28bp, read2: 260bp, index1: 8bp setting was used. 772 

 773 
Immunofluorescence staining & imaging 774 

15 μm-20 μm tissue sections were fixed in 4% PFA at room temperature for 10-15 min. 775 
The sections were washed twice in 1x PBS. Antigen retrieval was performed by boiling 1X IHC 776 
Antigen Retrieval Solution (ThermoFisher Scientific, 00-4955-58) and incubating tissue sections 777 
inside for 30 min until the solution cooled down, followed by washing tissue sections with 1x PBS 778 
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and incubated in 0.3% PBST (0.3% Triton X-100 in PBS) at room temperature for 10 min. Three 779 
times of 1x PBS wash was then performed. Blocking (0.5% BSA and 0.1% Triton X-100 in 1x 780 
PBS) was performed at room temperature for 1 hour. Tissue sections were incubated with primary 781 
antibodies: VIM (1: 200, Biotechne, AF2105), CD31 (1: 200, Biotechne, AF3628), ARG1 (1: 200; 782 
Cell Signaling Technology, 93668), GLUT1 (1: 100; AbCam, ab195020), CD45 (1: 200, Cell 783 

Signaling Technology, 70257), and COL3A1 (1: 200, Proteintech, 22734-1-AP) at 4 °C overnight. 784 

Tissue sections were washed three times with 1x PBS and further incubated with secondary 785 
antibodies (donkey anti-goat 405, 1: 1000, ThermoFisher Scientific, A-48259; donkey anti-mouse 786 
647, 1: 1000, ThermoFisher Scientific, A-31571; donkey anti-rabbit 647, 1: 1000, ThermoFisher 787 
Scientific) at room temperature for 2-3 hours. Tissue sections were then washed three times with 788 
1x PBS, mounted and imaged using Dragonfly 201-40 High Speed Confocal Imaging Platform. 789 
 790 

QUANTIFICATION AND STATISTICAL ANALYSIS 791 

Slide-seqV2 gene expression quantification and quality-control 792 
A python implementation of Kallisto-bustools95 (kb_python, version 0.27.3 available at 793 

https://github.com/pachterlab/kb_python) was used for transcript quantification and processing 794 
from raw FASTQs produced with Slide-seq. Specifically, we utilized the count procedure 795 
implemented in Kallisto that quantifies the number of UMIs in a Slide-seq library that map to each 796 
transcript sequence in the provided reference (here, mm10). To account for the unique read 797 
structure of the Slide-seq library, we invoked the count procedure with the flag -x 798 
"0,0,8,0,26,32:0,32,41:1,0,0". To determine a whitelist of barcodes to use during quantification, 799 
we matched barcodes identified with kallisto to the spatial barcodes and their coordinates 800 
observed during in situ sequencing of the Slide-seq array during fabrication56,57. We then used a 801 
custom script to assign spatial coordinates, identified during in situ sequencing of the Slide-seq 802 
array prior to running the assay, to quantifications from the kallisto pipeline and returned an 803 
AnnData structure containing the spatially-resolved transcript abundances for each spot. To 804 
supplement the barcode filtering during the kallisto pipeline, we applied an extra filter requiring at 805 
least 150 UMIs observed in a spot.  For most analyses, we utilize log-normalized counts where 806 
each cell’s UMI total is scaled to the median library size and a log1p transformation is applied. 807 
When scaled counts are used, we additionally use Scanpy’s scale function with a max value of 808 
10. 809 
 810 
Slide-tags gene expression quantification and quality-control 811 
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Similar to Slide-seq processing, we utilized the python implementation of Kallisto-812 
bustools95 (kb_python, version 0.27.3 available at https://github.com/pachterlab/kb_python) to 813 
quantify transcript abundance from FASTQ data. As this data represents reads from sequencing 814 
single-nuclei with the 10X V3 kit, we utilized the --umi-gene, --workflow nucleus, and -x 10XV3 815 
flags. Similar to the Slide-seq analysis, we utilized the mm10 transcriptome reference. 816 
 After transcript quantification, we applied several quality-control procedures. First, we 817 
removed background gene expression signal from ambient RNA by applying Cellbender96 818 
(version 0.3.0, available at https://github.com/broadinstitute/CellBender) to the unfiltered gene 819 
expression counts. We used default settings for all libraries, except for 10X Library 9 where we 820 
used the following flags: --empty-drop-training-fraction 0.15, --total-droplets-included 20000, --821 
learning-rate 0.0001, and --epochs 300. After running Cellbender, we applied further cell-filters to 822 
remove outliers with high mitochondrial or ribosomal content (between 5-15% for libraries). We 823 
further inspected the count distribution in each library and removed nuclei with excessively high 824 
UMI content (approximately 20,000 UMIs). All quality-control was performed with Scanpy97 825 
(version 1.10.0, downloaded via pip). For most analyses, we utilize log-normalized counts where 826 
each cell’s UMI total is scaled to the median library size and a log1p transformation is applied. 827 
When scaled counts are used, we additionally use Scanpy’s scale function with a max value of 828 
10.  829 
 830 
Slide-seq lineage tracing target-site data processing 831 

To begin processing target-site data, we trimmed reads from Slide-seq libraries using 832 
cutadapt98 (version 4.1) with the following flags: -m :250 --max-n 0.2 --discard-untrimmed -O 10 -833 
-no-indels --match-read-wildcards -e 2 -j 16 --action retain -G AATCCAGCTAGCTGTGCAGC. We 834 
then applied Cassiopeia41 (version 2.0.0, available at https://github.com/YosefLab/Cassiopeia) to 835 
trimmed FASTQs using the “slideseq2” chemistry and specific parameters for Slide-seq libraries. 836 
First, to account for the possibility of multiple cells observed in a given spot, we allowed allele 837 
conflicts (allow_allele_conflicts = True) and did not enable doublet filtering. While we performed 838 
intBC whitelist correction, we did not perform additional error correction to remove intBCs with 839 
conflicting alleles (this is similarly motived by the fact more than one cell can be observed in a 840 
given spot). We additionally relaxed the UMI/cell threshold to account for reduced capture of Slide-841 
seq assays (min_umi_per_cell = 2). Finally, we utilized the “likelihood” method for UMI collapsing, 842 
with max_hq_mismatches = 3 and max_indels = 2. Other settings remained default. This pipeline 843 
produced a cleaned allele table, reporting the set of intBCs and alleles for each observed spot, 844 
that was used for tree reconstruction. 845 
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 846 
Slide-tags lineage tracing target-site data processing 847 
Cassiopeia41 (version 2.0.0, available at https://github.com/YosefLab/Cassiopeia) was used to 848 
process FASTQs containing target-site data. As Slide-tags represents single-nucleus data, we 849 
utilized default settings except for a more relaxed UMI/cell cutoff (min_umi_per_cell = 5) to reflect 850 
the reduced sensitivity of single-nucleus sequencing. As a part of default settings, we corrected 851 
cell barcodes to those observed after quality-control filtering, corrected intBCs to a whitelist for 852 
the corresponding mESC (E1) with a distance threshold of 1, and performed UMI (with a maximum 853 
distance of 2) and intBC error correction (minimum UMI support of 5) to correct for conflicting 854 
target sites observed in the same nuclei. Doublets were filtered out using the default conflicting 855 
threshold of 35%. This pipeline produced a cleaned allele table, reporting the set of intBCs and 856 
alleles for each observed spot, that was used for tree reconstruction. 857 
 858 
Slide-tags spatial barcode processing 859 
Spatial mapping of Slide-tags nuclei was achieved as previously described58. Briefly, reads from 860 
spatial barcode FASTQ files were filtered for those containing the spatial barcode universal primer 861 
constant sequence and cell barcode sequences from a called cell barcode whitelist generated by 862 
the gene expression pipeline (see above section entitled “Slide-tags gene expression 863 
quantification and quality-control”). Spatial barcode sequences were matched with a whitelist of 864 
in situ sequenced spatial barcodes, assigning spatial coordinates to each true spatial barcode. 865 
The set of spatial barcodes and the corresponding x,y coordinates for each cell barcode were 866 
clustered with DBSCAN99 (implemented in the R package dbscan, version 1.1−11). For cell 867 
barcodes with a single cluster of spatial barcodes, spatial barcodes not contained in the cluster 868 
were filtered out and a UMI-weighted centroid of the remaining spatial barcodes represented the 869 
x,y coordinates of the cell barcode. DBSCAN parameters were determined from a sweep of 870 
minPts values (3 to 15) under a constant eps = 50. The chosen minPts positioned the highest 871 
proportion of cell barcodes. 872 
 873 
Spatial imputation of lineage-tracing data 874 

To recover lineage-tracing data for reconstruction on spatial assays, we performed 875 
spatially-informed imputation of target site data. To begin, we first created a character matrix from 876 
the allele tables constructed from target-site lineage tracing processing. In this character matrix, 877 
denoted as Χ, each row corresponds to a cell (or spot) and each column corresponds to a 878 
particular cut site in an integration barcode (intBC). For clarity of notation, we refer to each cut-879 
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site/intBC pair as a character, and thus in our system a character matrix will have (|intBCs| x 3) 880 
columns. The entry Χ[𝑖, 𝑗] denotes the edit (which we refer to as a “state”) observed at the ith 881 
cell/spot in the jth character. The missing data rate refers to the proportion of entries in this 882 
character matrix that do not have data that pass our quality-control filters. 883 

To perform spatial imputation, we first constructed a spatial nearest-neighbor graph (𝑁) 884 
such that each spot was connected to all other spots within 30𝜇m of the spot. For each missing 885 

entry in character matrix,  𝑖, 𝑗 we queried the frequency of states at character j in all neighbors of 886 

spot	i in 𝑁. If the concordance of a particular state was higher than 80% in these neighbors, then 887 
we replaced the entry 𝑋[𝑖, 𝑗] with this state. To minimize the effect of nearby stromal cells in a 888 
neighborhood – which should not have active lineage-tracing – we did not allow this state to be 889 
0, the uncut state. To maximize the alleles were used during spatial imputation, we required each 890 
state to be supported by at least 3 UMIs. We reported this procedure for each missing entry in the 891 
character matrix for a total of 5 iterations which continued to remove missing data from the 892 
character matrices with no apparent reduction in accuracy in simulations or held-out real data 893 
(Figure S1J-N).  894 
 895 
Benchmarks of imputation and reconstruction accuracy 896 

To benchmark the accuracy of spatial imputation and downstream effects on tree 897 
reconstruction, we utilized two different strategies: 898 

• Synthetic data: First, we utilized the Cas9-based lineage-tracing simulation framework in 899 
Cassiopeia41 (version 2.0.0, available at https://github.com/YosefLab/Cassiopeia). 900 
Specifically, we simulated trees using Cassiopeia’s BirthDeathSimulator with the following 901 
parameters: 5000 extant cells, and utilized a LogNormal birth-waiting distribution 902 
parameterized by log	(𝑓) where f is a fitness coefficient that accumulates with each cell 903 
division (in each cell division, a new coefficient 𝑓 ∼ 	𝑁(0, 0.25) is drawn and added to the 904 
base fitness) and a standard deviation of 0.5. Then, we simulated lineage tracing data 905 
onto the tree with Cassiopeia’s Cas9LineageTracingDataSimulator with desired mutation 906 
proportion of 0.7, 100 states, 39 cut sites (representing our system with approximately 13 907 
intBCs, each with 3 cut-sites), and no missing data rates at this point. Then, we simulated 908 
spatial coordinates on each tree using the ClonalSpatialDataSimulator over a shape of 909 
(1,1,1) and sampled a 2D slice from this 3D simulation at random. Finally, we subsampled 910 
from this spatial array using the UniformLeafSubsampler in Cassiopeia with a rate of 0.4 911 
(resulting in lineages with 2,000 observations) and induced random dropout at various 912 
rates: [0.1, 0.25, 0.5, 0.6, 0.7, 0.9]. We simulated 10 trees for each parameter combination. 913 
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As the spatial array simulated does not exactly match that from Slide-seq, we applied a 914 
modified k-nearest-neighbor graph construction approach, linking together spots to their 915 
closest 10 neighbors and performed spatial imputation (see section titled “Spatial 916 
imputation of lineage-tracing data”). We required concordance of 0.8 for the selected state 917 
and at least 5 votes. Since this simulated data does not include any normal cells, we do 918 
allow the imputation of the state 0. We reported the accuracy of this imputation strategy in 919 
Figure S1J). Then, we compared the tree reconstructing accuracies using the 920 
triplets_correct function in Cassiopeia for reconstructions with or without imputation and 921 
for different reconstruction strategies: modified Neighbor-Joining, Cassiopeia-Greedy, or 922 
a hybrid of these two approaches (see section “Phylogenetic reconstruction”). 923 

• Simulated held-out Slide-seq data: In the next experiment, we assessed the accuracy of 924 
recovering target-site data that was held-out from real Slide-seq data. To do this, for a 925 
given Slide-seq array, we masked out 10% of the observed data (supported by at least 3 926 
UMIs) and performed spatial imputation in neighborhoods of 30𝜇m using the strategy 927 
described previously (see section titled “Spatial imputation of lineage-tracing data). 928 
Similarly, we required a concordance of 0.8 and at least 5 votes in support of the imputed 929 
allele. We only considered samples where at least 10 states were imputed. Random 930 
predictions were obtained by shuffling the node labels in the neighborhood graph. We 931 
reported the average accuracy and total number of imputed values over five replicates in 932 
Figure S1M.  933 

 934 
Simulation benchmarks of lineage-tracing pre-processing 935 

As a feature of the Slide-seq is that multiple cells may be observed in one spot57, multiple 936 
conflicting alleles can be observed for a given target site in a single spot. Typically, this would 937 
break the assumption of the Cassiopeia reconstruction pipeline (in single-cell approaches, we 938 
assume that only one allele can be tied to a given intBC and perform error correction or filtering 939 
otherwise). However, we implemented new reconstruction algorithms that can handle multiple 940 
conflicting states in each spot (see section entitled “Phylogenetic reconstruction”) and simulated 941 
the effects of various pre-processing techniques. 942 
 First, we simulated trees on two-dimensional surfaces where various proportions of cells 943 
would be grouped together based on their spatial location. To do so, we simulated simple binary 944 
trees of 2000 cells and overlaid lineage-tracing data with Cassiopeia’s 945 
Cas9LineageTracingDataSimulator function using the following parameters: 39 characters, a 946 
mutation proportion of 0.5, and no missing data. We then merged together cells using 947 
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Cassiopeia’s SupercellularSampler method with rates of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]. We simulated 948 
32 replicates. 949 
 For each replicate, we pre-processed character matrices according to three strategies. 950 
Here, the entry of the ith cell and jth character (denoted as Χ[𝑖, 𝑗]) would contain a set of states 951 

X[𝑖, 𝑗] = {𝑠!, 𝑠", … , 𝑠#}, each state occurring at some frequency f(𝑠$) = 𝑓$. In the first strategy 952 
(“collapse duplicates”) we take the unique set of states so that X[𝑖, 𝑗] = {𝑠!, 𝑠", … , 𝑠#!}	𝑠. t. 𝑓$ =953 

1	∀		i ∈ 	𝑘′; in the second strategy (“most common”) we take the most common state, such that 954 
X[𝑖, 𝑗] = 	𝑎𝑟𝑔𝑚𝑎𝑥%&'!(	∀'∈#𝑠,; and the third strategy (“all states”) we do not perform any filtering. In 955 

Figure S1F we report the tree reconstruction error (measured with normalized Robinson-Foulds 956 
distance) for trees reconstructed with Neighbor-Joining63.  957 
 958 
Phylogenetic reconstruction on Slide-seq data 959 
 To enable phylogenetic reconstruction on Slide-seq data in which multiple cells can be 960 
contained in a single spot and thus conflicting alleles are present, we implemented a Hybrid 961 
Cassiopeia-Greedy & Neighbor-Joining algorithm that could utilize conflicting allele states. 962 
 For Cassiopeia-Greedy, we modified the splitting decision rule to account for all states 963 
observed in a spot. Cassiopeia-Greedy is a simple, heuristic-based algorithm for reconstructing 964 
phylogenies that iteratively finds the most common state in a given population and splits samples 965 
into groups based on the presence or absence of the state. It is based on a perfect-phylogeny 966 
reconstruction algorithm100 and has an efficient runtime of O(mn) for a population of n samples 967 
and m characters. Here, we changed the procedure to find the state with the highest frequency 968 
by allowing each sample to carry multiple states in a character. The runtime of this algorithm is 969 
still polynomial in the size of the sample population – O(n(ms)) where in the worst case scenario 970 

every single state is observed in every single character; given the size of the spatial array, this is 971 

exceedingly uncommon and typically 1-3 cells are captured per spot57. 972 
 For Neighbor-Joining, we utilized the standard algorithm63 but with a modified distance 973 
map that accounts for multiple states per spot. Specifically, we implemented a new dissimilarity 974 
metric that takes in two sets of states 𝑆! and 𝑆" and computes all the pairwise allelic dissimilarities 975 
and reports a linkage similar to hierarchical clustering. Here, we use the modified allelic 976 
dissimilarity for two states 𝑠$ , 𝑠- to compute distances between pairs of states, previously 977 

described41,47,50: 978 
 	979 
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ℎ,&'",'#( =	M
2		𝑖𝑓	𝑠$ ≠ 𝑠- ≠ 0
1		𝑖𝑓	𝑠$ ≠ 𝑠- 		𝑎𝑛𝑑	(𝑠$ = 0	𝑜𝑟	𝑠- = 0)
0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 980 

	981 
In the case where weights are passed in, then the dissimilarity function is computed as follows: 982 

ℎ,&'",'#( =	

⎩
⎨

⎧
w/𝑤- 		𝑖𝑓	𝑠$ ≠ 𝑠- ≠ 0
𝑤$ 		𝑖𝑓	𝑠$ ≠ 𝑠- 		𝑎𝑛𝑑	𝑠- = 0
𝑤- 	𝑖𝑓	𝑠$ ≠ 𝑠- 	𝑎𝑛𝑑	𝑠$ = 0
0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 983 

Then, we utilized a single linkage function such that only the smallest modified allelic dissimilarity 984 
across all pairs of states in 𝑆! and 𝑆" was used. This is to maintain such that if the same state is 985 
observed in two spots, the dissimilarity returned is 0.  986 
 For the hybrid reconstruction, we utilized the modified Cassiopeia-Greedy algorithm 987 
described above until subpopulations of size 1000 cells were found, at which point Neighbor-988 
Joining with the modified dissimilarity metric was used to resolve phylogenetic relationships. We 989 
utilized state probabilities inferred from all Slide-seq and Slide-tags datasets and used the weight 990 
− log(𝑝$) for state 𝑠$ during tree reconstruction.  991 
 992 
Phylogenetic reconstruction on Slide-tags data 993 

We utilized the standard Cassiopeia-Hybrid41 algorithm for reconstructing Slide-tags 994 
phylogenies. Briefly, this approach applies the heuristic-based Cassiopeia-Greedy algorithm to 995 
reconstruct relationships between the major subclones and then applies the maximum-996 
parsimony-based Cassiopeia-ILP algorithm to solve fine-grained phylogenetic structure in smaller 997 
populations. As previously described in detail41, Cassiopeia-ILP proceeds by building a potential 998 
graph of all possible ancestral states (constrained in size by a user-defined parameter) and solves 999 
for the maximum-parsimony phylogeny by reconstructing a Steiner Tree on this data structure. 1000 
The Steiner Tree problem is solved via an Integer Linear Program (ILP) allowed a certain time to 1001 
converge. Here, the transition between Cassiopeia-Greedy and -ILP algorithms is determined by 1002 
the distance to the latest common ancestor (LCA) of a subpopulation.  1003 

We applied the Cassiopeia-Hybrid algorithm with state priors inferred from all 1004 
samples41,47,50, determined the switch between Greedy and ILP algorithms using an LCA cutoff of 1005 
20, devised a potential graph of 10000 nodes with a maximum distance of 15 across nodes 1006 
(maximum_potential_graph_lca_distance=15), and allowed the ILP 12600s to converge.  1007 
 1008 
Slide-tags cell type annotation 1009 
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After performing quality-control on Slide-tags gene expression data, we assigned cell 1010 
types first by integrating Slide-tags data with an annotated single-cell gene expression reference 1011 
dataset of KP-Tracer tumors50 with scANVI101. To do so, first identified 4,750 variable genes using 1012 
Scanpy’s97 highly_variable_genes function using the flavor=“seurat_v3” and raw counts. We then 1013 
trained an scVI model102,103 on the joint dataset and these variable genes using 3 layers and 70 1014 
latent dimensions over 1000 epochs. Then, we transferred  labels from the single-cell reference 1015 
dataset to the Slide-tags nuclei with scANVI utilizing 200 samples per label and 100 epochs. 1016 
Through this, we used the gene_likelihood=“nb” setting in training models and used the 1017 
technology – Slide-tags or single-cell – variable to signify batch.  1018 

After training this model, subset to the scANVI embeddings to the Slide-tags data only and 1019 
re-clustered the data with Scanpy97 using the Leiden algorithm104 and resolution 1.2. We then split 1020 
clusters into those that appeared to derive from tumor/epithelial cells or those that derived from 1021 
the stroma.  To call tumor or epithelial clusters, we evaluated if a cluster had an abundance of 1022 
tumor nuclei (defined as nuclei with target site data and at least 20% of their sites containing 1023 
indels) or expressed the epithelial-lineage marker Nxk2-1. Immune cell clusters were identified 1024 
based on the marker Cd45 (Ptprc) and other stromal cells were identified by expression of Pdgfra, 1025 
Col1a1, or Col5a1 (fibroblasts) or Pecam1 (endothelial cells). For each subsetted dataset 1026 
(tumor/epithelia or stromal), we reclustered the data and annotated cell types based on 1027 
annotations predicted with scANVI and differentially expressed genes identified with Scanpy’s 1028 
rank_genes_group function (using the Wilcoxon test).  1029 

 1030 
Assessment of Slide-tags tumor cell type signatures in previous KP-Tracer data 1031 
 To test the portability and accuracy of the tumor clusters identified in Slide-tags, we 1032 
assessed the activity of gene signatures in the previous KP-Tracer data50. Specifically, we for 1033 
each cell-type identified in Slide-tags, we computed the top 100 differentially-expressed genes 1034 
using the Wilcoxon test in Scanpy97 and further filtered genes to have a log-fold change > 1 and 1035 
an FDR-corrected p-value <= 0.01, and an AUROC of at least 0.6. We then used these genes to 1036 
define a transcriptional signature for each Slide-tags cell type.  each of these signatures, we 1037 
scored the activity in cell types identified in Slide-tags data and the previous KP-Tracer dataset 1038 
using the score_genes function using n_bins=30 and ctrl_size equal to the number of genes in 1039 
the gene set. Signatures were computed on scaled, log-normalized counts.  The result of this 1040 
analysis is presented in Figure S2B.  1041 
 1042 
Slide-seq spatial community detection and scoring 1043 
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To identify spatial communities in Slide-seq data, first applied the Hotspot105 algorithm for 1044 
detecting spatially autocorrelated gene sets on each sample. In the spatial mode, this algorithm 1045 
constructs a nearest neighbor graph based on spatial coordinates, computes an autocorrelation 1046 
statistic for each gene, and then identifies modules of genes that have significant pairwise 1047 
autocorrelation values. Here, we applied Hotspot with 20 neighbors, and FDR threshold of 0.01 1048 
to identify spatially autocorrelated genes, and a minimum module size of 50 genes.  1049 

Then, to identify robust modules of genes that appear across tumors, we assessed the 1050 
Jaccard overlap between all pairs of modules across all tumors and filtered out modules that did 1051 
not have a Jaccard overlap of at least 0.2 with at most one other module. We then performed Z-1052 
normalization on these Jaccard statistics and clustered these using hierarchical clustering (using 1053 
the “ward” method on Euclidean distances) and identified 11 clusters, representing robust spatial 1054 
modules. 1055 

As these robust modules are collections of modules across all samples we analyzed, we 1056 
distilled these down to a set of genes – representing what we call a “spatial community” in this 1057 
study – by taking genes that appear in at least 25% of the modules in the robust module. Using 1058 
these genes in the spatial community, we compute the activity of these communities for each spot 1059 
(termed “community scores”) using the score_genes function in Scanpy97 with ctrl_size=100 and 1060 
n_bins=30. We computed these scores on scaled, log-normalized gene expression counts. To 1061 
obtain community assignments for each spot, we took the community with the highest score. 1062 
 1063 
Tumor segmentation 1064 

To segment tumors, we utilized the SpatialData106 package and the napari-spatialdata 1065 
viewer for interactive annotation. To identify tumor areas on a sample, we overlaid phylogenetic 1066 
subclones and the number of target-site UMIs detected and manually segmented areas that 1067 
appeared to be (a) phylogenetically related and (b) had elevated target-site UMIs indicative of 1068 
tumor regions. We saved these annotations and used the segmentations to perform downstream 1069 
analysis on a tumor-by-tumor basis.  1070 
 1071 
Fitness signature calculation 1072 

To quantify fitness signature scores, we utilized a gene set that was found to be associated 1073 
with changes in fitness from our previous single-cell KP-Tracer study50. Using this gene set, we 1074 
quantified the transcriptional activity for each spot in Slide-seq data by applying the score_genes 1075 
function in Scanpy97 with ctrl_size=100 and n_bins=30. We computed these scores on scaled, 1076 
log-normalized gene expression counts. 1077 
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 1078 
Phylogenetic fitness inference 1079 

We quantified fitness on Slide-seq and Slide-tags phylogenies by utilizing the LBIFitness  1080 
fitness estimator in Cassiopeia41. This function wraps a fitness estimator based on the “local 1081 
branching index” as previously described107. This procedure has been previously used in our 1082 
system50. Primed by the true single-cell resolution of Slide-tags trees, we estimated branch 1083 
lengths using the IIDExponentialMLE branch length estimator in Cassiopeia. This function 1084 
implements a function that provides maximum-likelihood branch lengths on a tree topology given 1085 
the pattern of edits observed in the leaves and an assumptions about the irreversibility of Cas9 1086 
editing108. Using the branch lengths determined by this maximum-likelihood procedure, we 1087 
estimated single-cell fitness on Slide-tags trees. 1088 
 Due to the increased missingness on Slide-seq trees and the fact that MLE-based branch 1089 
length approaches have not been benchmarked on Slide-seq data, we performed a more 1090 
conservative branch length estimation, as done previously50. Here, branches had a length of 1 if 1091 
they had any mutations along them, otherwise they had a branch length of 0. Using these branch 1092 
lengths, we estimated single-cell fitness on Slide-seq trees. 1093 

Single-cell clonal plasticity quantification 1094 
 To estimate single-cell clonal plasticity on phylogenies, we applied approaches described 1095 
in our previous studies50,69. Specifically, on Slide-tags data where we have true single-cell data 1096 
and associated cell type identities, we applied the score_small_parsimony procedure to all nodes 1097 
in a tree using meta_item=“cell_type” and normalized by the number of leaves in the subtree 1098 
induced by the node. Then, we computed plasticity for each cell by averaging together all the 1099 
normalized parsimonies. 1100 
 Since we do not have true single-cell resolution for Slide-seq data, we employed the L2 1101 
plasticity score described in our previous study50, using community scores. Specifically, let 𝐶$ be 1102 
the vector of community scores associated with spot 𝑖. For this spot 𝑖 we found its closest 1103 

phylogenetic neighbors (denoted by set N) and then computed the L2-Plasticity (𝐿20(𝑖)) for this 1104 

spot by the average Euclidean distance to the vector of community scores for these neighbors: 1105 
 1106 

𝐿21(𝑖) =
1
|𝑁|

^_|𝐶$ − 𝐶#|_"
#∈2

 1107 

 1108 
All scores were unit scaled. 1109 
 1110 
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Differential expression and abundance in neighborhoods of high-fitness cells 1111 
To identify changes in gene expression and spatial communities associated with fitness, 1112 

we first stratified cells into high- and low-fitness groups. In Slide-seq data, we computed single-1113 
cell fitness scores (see section above entitled “Phylogenetic fitness inference”) and identified a 1114 
threshold separating two modes using scipy.signal.argrelmin in the merged fitness distributions 1115 
and split spots into high-fitness groups and low-fitness groups based on this threshold. Only 1116 
tumors with at least 200 observations with lineage-tracing data were used. As each fitness 1117 
distribution is normalized within individual tumors to be unit-scaled, this approach finds a global 1118 
pattern in high- and low-fitness cells. Then, we constructed a neighborhood graph connecting 1119 

each spot to all other spots within 30𝜇m. The community scores for all communities were 1120 
computed in these neighborhoods and the distributions in neighborhoods of high- and low-fitness 1121 
cell were reported in Figure S3L. 1122 

In Slide-tags data, high and low-fitness cells were similarly determined from the 1123 
distribution of all fitnesses using scipy.signal.argmin. As Slide-tags is sparser than Slide-seq, we 1124 
constructed neighborhoods using the closest 20 cells (an example is shown in Figure S3K). We 1125 
then identified the differentially-expressed genes in neighborhoods of high- and low-fitness cells 1126 
of all Macrophage and Fibroblast subsets using the t-test as implemented in Scanpy’s97 1127 
rank_genes_groups function. For the Macrophage analysis, we evaluated the Alveolar 1128 
Macrophages, Arg1+ TAMs, Pecam1+ TAMs, and Vegfa+ TAMs; for the Fibroblast analysis we 1129 
evaluated the Wt1+ fibroblast, iCAF-like and myCAF-like populations. Genes expressed in fewer 1130 
than 50 cells were filtered out, and the differential expression statistics for the top 10,000 genes 1131 
were computed. Genes with an absolute log2-fold-change > 1 and an FDR-corrected p-value < 1132 
0.01 were marked as significantly differentially expressed. To compute enrichments in these 1133 
neighborhoods, we computed the frequency of cell types in neighborhoods of high- and low-1134 
fitness cells and divided by the expected fraction of these cell types given the overall distribution 1135 
and size of the Slide-tags array. 1136 

GO Term analysis of differentially-expressed genes was performed using gseapy109 1137 
(version 1.1.3) with the following gene sets: “WikiPathways_2019_Mouse”, “Reactome_2022”, 1138 
“GO_Biological_Process_2023”, “GO_Molecular_Function_2023”, and “KEGG_2019_Mouse”.  1139 
Significant terms are reported in Supplementary Table 2.  1140 

 1141 
Differential expression in neighborhoods of high-plasticity cells in Slide-seq 1142 

Similar to the fitness-based analysis (see section entitled “Differential expression in 1143 
neighborhoods of high-fitness cells”), we stratified cells into high- and low-plasticity groups. After 1144 
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quantifying the L2-clonal plasticity score in Slide-seq data, we determined a threshold separating 1145 
high- and low-plasticity regions if a cell had greater plasticity than the 60th percentile or less than 1146 
the 40th percentile, respectively. Then, we constructed a neighborhood graph connecting each 1147 
spot to all other spots within 30𝜇m. The community scores for all communities were computed in 1148 
these neighborhoods and the distributions in neighborhoods of high- and low-plasticity cells were 1149 
reported in Figure S3M. 1150 

 1151 
Coarse-grained alignment of Slide-seq data 1152 
 To track the three-dimensional structure of clones across sampled layers in Figure 4, we 1153 
utilized the non-imputed processed target-site data (see section entitled “Slide-seq lineage tracing 1154 
target-site data processing”).  To maximize fidelity of slide registration, we enforced hard quality-1155 
control cutoffs, requiring each spot be supported by at least 7 UMIs and then subsequently each 1156 
intBC-allele to be supported by at least 5 UMIs. We filtered out spots that had less than 20% of 1157 
their sites reporting indels, or more than 70% missing data. We then computed modified allelic 1158 
distances (see section above entitled “Phylogenetic reconstruction on Slide-seq data”) between 1159 
all pairs of spots across layers. Modified allelic distances here are normalized by the number 1160 
characters shared between two spots (thus are normalized to values between 0-2). For 1161 
computational reasons, we did not allow ambiguous alleles (taking only the most frequent allele 1162 
per intBC in a spot) as the distance calculation is memory- and time-intensive. Using this distance 1163 
matrix, we computed allelic evolutionary couplings using compute_evolutionary_coupling function 1164 
in Cassiopeia with the following parameters: minimum_proportion = 0.0002, number_of_shuffles 1165 
= 100. We then normalized the evolutionary coupling as previously described50, as so: 1166 
  1167 

𝐸a(𝑖, 𝑗) = 𝑒
34($,-)

789(4[$!,-!]) 1168 
 1169 
Where E(i,j) denotes the allelic evolutionary coupling between spot i and j and max(E[i’, j’]) 1170 
indicates the maximum value across all evolutionary couplings.  Clusters identified via hierarchical 1171 
clustering of the normalized allelic evolutionary coupling matrix were used as registered Tumor 1172 
IDs in Figure 4B.  1173 
 1174 
Detection of metastasis-initiating subclones 1175 
 To detect metastasis-initiating subclones in primary tumors, we created a shared character 1176 
matrix between all lung sections profiled with 1cm x 1cm Curio arrays and Slide-seq samples of 1177 
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metastases. We filtered out spots that did not have at least 2 UMIs intBC-alleles that were not 1178 
supported by at least 2 UMIs. We further filtered out spots that had fewer than 20% of their target-1179 
sites cut and more than 70% missingness. For computational reasons, we did not allow 1180 
ambiguous alleles (taking only the most frequent allele per intBC in a spot) as the distance 1181 
calculation is memory- and time-intensive. We then computed a shared metastatic parental allele 1182 
state by taking states that were shared amongst 60% of spots in metastases profiled with Slide-1183 
seq. From this parental state, we computed the modified allelic distance (normalized by the 1184 
number of shared characters) to all spots in the lung sample. We performed a similar analysis in 1185 
paired Slide-tags data, computing the normalized modified allelic distances from all nuclei to the 1186 
metastatic parental allele state.  1187 
 1188 
Differential expression across metastatic cascade 1189 
 We identified gene expression changes across niches associated with the metastatic 1190 
cascade by employing the distances computed in the section above entitled “Detection of 1191 
metastasis-initiating subclones”. We identified the metastasis-originating subclone as localizing 1192 
to T2, so T1, T3 and T4 were determined to be Primary tumors without any relationship to the 1193 
metastases. Focusing on T2, we further segmented it into a metastasis-initiating subclone (T2-1194 
Met) and other subclones (T2-NonMet). Specifically, we assigned cells to a metastatic subclone 1195 
if their normalized modified allelic distance was less than 0.8. Then, using these assignments, we 1196 
performed watershed segmentation with a custom procedure. Specifically, we binned signal into 1197 
bins of 100 adjacent spots, applied a Gaussian filter with a sigma of 1.5 (with the Python package 1198 
skimage) and then applied an Otsu threshold and dilation. We then applied an exact distance 1199 
transform with scipy.ndimage.distance_transform_edt and computed a Watershed mask over 1200 
peaks identified with skimage.feature.peak_local_max with a goal of identifying one tumor. This 1201 
segmented subclone was labeled as T2-Met, and the remainder of the tumor was called T2-1202 
NonMet. We then performed differential expression across the library-size-normalized, logged 1203 
counts of four groups (Primary tumors without metastatic relationship; T2-Met; T2-NonMet; and 1204 
metastases) using a t-test implemented in Scanpy’s97 rank_genes_groups and reported the log2-1205 
fold-change in Figure 4G. 1206 
 Signature scores for TGF𝛽 signaling were computed using MSigDB’s 1207 
“HALLMARK_TGF_BETA_SIGNALING” signature. Signature scores for collagen were computed 1208 
for a custom gene set consisting of Acta2, Col1a1, Col2a1, Col3a1, Col5a1, and Col12a1. 1209 
Significance was computed using a one-sided t-test assessing if signature scores were higher in 1210 
the metastatic tumor as compared to the primary tumor.  1211 
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Differential cell type abundance in metastatic neighborhoods 1212 
  Similar to analyses stratifying Slide-tags cells into neighborhoods of high- and low-fitness 1213 
cells, we stratified cells into neighborhoods of cells closely related to metastases. As with 1214 
determining cells related to metastases in Slide-seq data, we computed the distance to the 1215 
parental metastatic allele and assigned cells with distances smaller than 0.8 as related to 1216 
metastases. Then, we reconstructed spatial neighborhoods of the closest 20 cells and quantified 1217 
cell type enrichments based on the frequencies of cell types in these neighborhoods and the 1218 
overall frequency in a Slide-tags array. 1219 

 1220 
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Figure 1. An integrated lineage and spatial platform enables high-resolution analysis of 
tumor evolution in vivo. 

(A) Schematic of experimental workflow for integrated, spatially resolved lineage and cell state 

analysis. In KP-tracer mice, oncogenic KrasG12D/+;Trp53-/- mutations and Cas9-based lineage 

tracing were simultaneously activated upon administration of adenovirus carrying SPC 

promoter-driven Cre recombinase. After 12-16 weeks, mice were sacrificed, and 

cryopreserved tumor-bearing lungs were sectioned for spatial profiling with Slide-seq and 

Slide-tags technologies. Libraries were prepared and sequenced to study spatially resolved 

lineages and transcriptional patterns. S-seq 30 is used as a representative example for total 

UMI capture in a spatial array. Biorender was used to create parts of this schematic. 

(B) Representative H&E staining and spatially resolved gene expression data for a lung 

section carrying three tumors (black line). Log-normalized, scaled counts for epithelial-like 

(Cxcl15 and Scgb1a1), immunosuppressive myeloid (Arg1), and mesenchymal cells (Vim) are 

shown.  

(C) Distribution of the number of target-site UMIs for Slide-seq and Slide-tags data. Ln(1+x) 

counts are shown. 

(D) Schematic of spatial imputation of lineage-tracing data in 30𝜇𝑚 neighborhoods (left) and 

representative examples of missingness left after each of 5 iterations of spatial imputation. 

(E) Representative spatially resolved lineages in spatial array S-seq 25 profiling a lung section 

carrying 9 distinct tumors. Reconstructed lineages are displayed for a representative tumor, 

T2. Successive nested subclones displaying both shared and distinct lineage states in unique 

colors are indicated on the phylogenetic tree and mapped spatially. Lineages marked in black 

spots not included in the designated subclone. Overall, spots that are more related in lineage 

tend to be spatially coherent. 
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Figure 2. Diverse spatial gene expression communities emerge during KP-tracer tumor 
progression. 

(A-B) UMAP projections of Slide-tags data on tumor bearing lungs from KP-Tracer mice, 

annotated by cell type. (A) Slide-tags data corresponding to all stromal and immune cell types: 

Cd45+ immune cells and other non-epithelial stromal cells. (B) Slide-tags data corresponding 

to all cancer and normal epithelial cells. Inset indicates where cancer cells are found in this 

projection. 

(C) Representative spatial projections of early-stage and late-stage cancer cell states, and 

immune cell types from Slide-tags analysis of KP-Tracer tumor bearing lung (shown on S-tags 

3). Colors correspond to those in UMAP projections in (A-B). 

(D) Heatmap of Z-scored Jaccard overlap between genes contained in spatial gene 

expression communities. Each row or column is a community, defined as a set of spatially 

autocorrelated genes identified with Hotspot, and robust spatial gene expression communities 

are determined by hierarchical clustering and indicated by annotated blocks. The Slide-seq 

sample from which a community is identified is indicated by unique colors on the top of the 

heatmap. Representative genes specific to each spatial community are highlighted at the 

bottom of the heatmap. 

(E) Community scores of selected spatial communities projected onto a representative Slide-

seq dataset of a tumor bearing lung with 4 major tumors (S-seq 43). Tumor boundaries are 

indicated with black lines (top). Zoom in of region showing community assignments and scores 

for a selection of communities (bottom). 

(F) Proportion of gene expression community assignments across all KP lung tumors in the 

Slide-seq dataset, ordered by increasing fitness signature scores. Each bar indicates a single 

segmented tumor in the Slide-seq dataset. Top: communities that are more related to tumor 

or epithelial programs. Bottom: communities that are related to stromal and immune programs. 

(G) Heatmap reporting Pearson correlation of community abundances across all tumors in the 

Slide-seq data.   
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Figure 3. Subclonal expansions associate with microenvironmental remodeling towards a 
hypoxic, fibrotic, and immunosuppressive state. 

(A) A representative Slide-seq array containing two tumors (S-seq 40) is shown with spatial 

projections of tumor annotations, selected gene expression community assignments, 

phylogenetic fitness, and L2 clonal plasticity. 

(B) Reconstructed phylogeny and spatial localization of phylogenetic subclades for Tumor 1 

from the representative Slide-seq dataset (S-seq 40) example shown in (A). The phylogeny is 

annotated by subclonal clade assignment (inner color track) and phylogenetic fitness (outer 

color track). 

(C) Cumulative density distributions for normalized Euclidean distance to nearest non-tumor 

cell (i.e., tumor boundary) for five selected major cancer cell states across all Slide-tags 

arrays. Cancer cells in high-fitness-associated cell states (e.g. EMT, Endoderm-like, Gastric-

like) locate further away from the tumor boundary than those in low-fitness-associated states 

(AT2-like, AT1-like). Distance is normalized to unit scale (0-1). 

(D) Distribution of normalized Euclidean distances to nearest non-tumor cell (i.e., tumor 

boundary) for high-fitness and low-fitness cells (defined here as having phylogenetic fitness 

greater than the 90th or less than the 10th percentiles, respectively). High-fitness cells are 

significantly further away from the tumor boundary (p<1e-5, wilcoxon rank-sums test).   

(E) Representative Slide-seq examples showing the evolution of the spatial gene expression 

communities following tumor progression (left to right). Selected community assignments are 

displayed, and full proportion of assignments are reported in 1D heatmaps under each spatial 

dataset.  

(F) Clustered heatmap of enrichments of cell type abundances in spatial neighborhoods of 

high- and low-fitness cells in 5 Slide-tags arrays. Values > 1 indicate that a cell type is more 

abundant (i.e., enriched) in neighborhoods of cells with high fitness. Cell type names are 

identical to those reported in Figure 2A-B.  

(G-H) Differential expression analysis of (G) macrophage and (H) fibroblast polarization states 

in neighborhoods of high- and low-fitness cells from Slide-tags arrays. Each dot is a gene, 

and significant hits (log2|FC| >= 1 and false-discovery-rate adjusted p-value < 0.05) are 

reported in red and blue. Red genes are up-regulated in neighborhoods of high-fitness cells, 

and blue genes are down-regulated. Significant GO terms are reported in Supplementary 
Table 1.  

(I) H&E and paired immunofluorescence staining of endothelial-cell marker CD31, immune 

cell marker CD45, hypoxia-reporter GLUT1, and immunosuppressive myeloid marker ARG1 
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in representative KP tumors. The interior of large, late-stage tumors is marked with a decrease 

of endothelial cells (CD31) and increases of hypoxia (GLUT1) and immunosuppressive 

myeloid cells (ARG1, CD45). Scale bars = 1mm. 
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Figure 4. Tracing the evolution of subclonal niches across the metastatic cascade. 
(A) Schematic of spatial transcriptomics workflow from a KP-Tracer mouse with large primary 

lung tumors and paired metastases from the lymph node, rib cage, and diaphragm. Multiple 

lung sections with four large primary tumors were harvested and subjected to both Slide-seq 

and Slide-tags assays. Biorender was used to create parts of this schematic. 

(B) Coarse-grained alignment of Slide-seq spatial transcriptomics data (based on lineage-

tracing edits) from four representative layers (Layer 1 – Layer 4) of a KP tumor bearing lung 

at approximately 200-500𝜇m intervals from different z position. (Left) A clustered heatmap of 

allelic evolutionary coupling scores across all Slide-seq datasets from the tumor-bearing lung 

identifies the four major tumors. Each row or column is a single tumor from one Slide-seq 

dataset. (Right) 3D reconstruction of aligned datasets, annotated by one of four major tumors. 

Individual tumors are labeled in different colors.   

(C) Representative spatial projection (S-seq 43) of allelic distances – summarizing how 

different lineage-tracing edits are between cells – for each spot with lineage-tracing data. 

Distance was computed to a consensus metastatic parental allele and normalized between 

0 and 2.  

(D-E) The metastasis-initiating subclone in T2 was segmented from cells with high 

relatedness to metastatic tumors and labeled in red. (E) H&E staining of T2. 

(F) Proportion of gene expression community across representative stages of the metastatic 

cascade, including primary lung tumors (T1,3,4) without relatedness to metastases, the 

metastasis-initiating (M) and non-metastatic-initiating (NM) subclones in the primary tumor 

(T2) that gave rise to metastases, and four metastases. Top: communities that are more 

related to tumor or epithelial programs. Bottom: communities that are related to 

stromal/immune programs. 

(G) Heatmap of gene expression log2-fold-changes between environmental niche (primary 

tumors without metastatic relationship, non-metastasis-initiating (NM) and metastasis-

initiating (M) subclones within T2, and metastases). Genes are manually organized into 

ontologies. 

(H-I) Spatial projection of gene expression scores of the Hallmark TGF𝛽 and Collagen gene 

signatures on the metastasis-initiating primary tumor and selected metastases. Tumor 2 on 

S-seq 43 is used as the representative layer. 

(J) A schematic model of KP tumor evolution and microenvironmental remodeling. 
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SUPPLEMENTARY FIGURES 
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Figure S1. Characterization of spatial-lineage platform and benchmarking of 
computational approaches. Related to Figure 1.  

(A) Number of spots that pass quality-control for all Slide-seq array. 3mm, 5mm, and 1cm 

arrays are uniquely colored. 

(B) Number of gene expression UMIs for each Slide-seq array. Ln(1+UMI) is reported for each 

dataset. 3mm, 5mm, and 1cm arrays are uniquely colored. 

(C) Number of gene expression UMIs for each Slide-tags array, and one representative Slide-

seq array. Each array is sequenced across multiple 10X libraries; assignment of 10X 

library to array is annotated. Distributions are split between cells that are confidently 

mapped and those that are not. Ln(1+UMI) is reported. 

(D) Distribution of number of target-site UMIs marking the top X percentile for whole-cell (KP-

Tracer), Slide-seq, or Slide-tags datasets. Ln(1+UMI) is reported. 

(E) Distribution of number of observations (cells or spots) that pass target-site quality-control 

in whole-cell (KP-Tracer), Slide-seq, or Slide-tags datasets. Log2 of the number of 

observations is reported. 

(F) Normalized Robinson-Foulds reconstruction error for simulated trees with increasing 

ratios of pooled cells and different pre-processing techniques. A ratio of p indicates that 

simulated lineage-tracing data of p% of cells are combined into a single observation to 

simulate multiple-cell capture in spatial transcriptomics (Methods).  

(G) Relationship between percentage of missing lineage-tracing data in a cell or spot and the 

log-number of UMIs (ln(1+x)) for Slide-seq and Slide-tags data.  

(H) Representative example of spatial coherence of lineage-tracing data on S-seq 27. For a 

selected spot (shown as a star), normalized allelic distance is reported for all spots with 

confident lineage-tracing data. Allelic distance is normalized between 0 and 2. 

(I) Distribution of allelic distances to spots within a 30𝜇𝑚 neighborhood of a spot versus 

outside this neighborhood. Distribution over all spots in S-seq 27 is reported. 

(J) Distribution of spatial imputation accuracy in lineage-tracing data simulated on a two-

dimensional array. 

(K) Triplets-correct accuracy of reconstructed phylogenies simulated on a spatial array for 

various amounts of missing data rates, with and without spatial imputation. 

(L) Triplets-correct accuracy of reconstructions with modified Neighbor-Joining and hybrid 

Cassiopeia-Greedy / Neighbor Joining algorithms for data simulated on a spatial array 

with various amounts of missing data, after spatial imputation.  
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(M) Accuracy of spatial imputation and number of imputed states after holding-out 10% of all 

lineage-tracing data in Slide-seq datasets. Datasets where at least 10 imputations are 

made are shown. Median accuracy of random predictions is reported in a red dashed line. 

(N) Allele frequency of held-out data in a given tumor binned by imputation correctness. 

(O) Overview of missing data reduction across all Slide-seq datasets after five rounds of 

spatial-imputation.  

(P) Phylogeny and lineage tracing heatmap of tree reconstructed in Figure 1E. Subclones of 

interest are annotated in the same colors as in Figure 1E. Unique colors of the heatmap 

indicate unique insertions or deletions (“indels”), white indicates missing data, and gray 

colors indicates no indel detected.  
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Figure S2. Profiling of cell types and spatial communities underlying tumor progression. 
Related to Figure 2.  

(A) Summary of gene markers for each stromal cell population identified in Slide-tags. Each 

row corresponds to a stromal or immune cell-type cluster and each column corresponds 

to a marker gene. Dot size indicates the proportion of cells expression that gene, and color 

indicates the average gene expression value (unit scaled between 0 and 1).   
(B) Clustered heatmap of transcriptional score of marker genes identified from Slide-tags data 

of tumor and epithelial cell types applied to previous KP-Tracer data. Scores are Z-

normalized. 
(C) Annotation of Slide-tags tumor and epithelial UMAP projection with the Neuronal-like cell-

type, and log-normalized gene expression patterns of selected genes: Vim, Nkx2-1, 

Pecam1, Piezo2, and Robo2. 
(D) Proportion of cells that are confidently mapped in each Slide-tags array. 
(E) Proportion of cells for each cell type that are found within the tumor boundary across Slide-

tags arrays. 
(F) Clustered heatmap of transcriptional scores for each spatial community, identified from 

Hotspot analysis of Slide-seq data, for each Slide-tags cell type cluster. Scores are Z-

normalized. 
(G) Clustered heatmap showing selected genes for each spatial community. Red colors 

indicate that a gene is found within that module.  
(H) Community scores for each spatial community and paired H&E for a representative Slide-

seq community. 
(I) Clustered heatmap of community scores for each tumor in the Slide-seq dataset ordered 

by increasing fitness signature scores. Scores are Z-normalized. 
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Figure S3. Characterization of subclonal tumor and microenvironmental dynamics. 
Related to Figure 3.  

(A) Joint distribution of mean tumor clonal plasticity and fitness signatures across Slide-seq 

datasets. 

(B) Relationship between phylogenetic fitness, estimated from inferred trees, and 

transcriptional fitness signature score (Pearson’s correlation = 0.4) 

(C) Correlation of phylogenetic fitness, estimated from inferred trees, and community scores 

for cancer-associated communities (C1: Alveolar; C3: EMT; C4: Stress; C10: Hypoxic; and 

C11: Gastric/Endoderm). Correlations are ordered in decreasing order. 

(D) Fraction of cells found in expanding regions of Slide-tags phylogenies, summarized for 

each cancer cell-type.  

(E) Reconstructed phylogeny and lineage tracing heatmap of representative tumor presented 

in Figure 3A-B. Unique colors of the heatmap indicate unique insertions or deletions 

(“indels”), white indicates missing data, and gray colors indicates no indel detected. Color 

bars indicate the subclonal clade and fitness, identical to those reported in Figure 3A-B. 

(F) Distribution of L2 clonal plasticity (Methods) quantified in Slide-seq phylogenies 

summarized across spots annotated by cancer-dominated communities. 

(G) Distribution of single-cell clonal plasticity scores computed in Slide-tags phylogenies, 

stratified by cancer cell-types, and reported across tumor-array combinations.   

(H) Representative spatial localization of phylogenetic expansion (top) and single-cell clonal 

plasticity scores (bottom) in a single Slide-tags array (S-tags 3). Scale bar indicates 1mm. 

(I) Distribution of autocorrelation values, computed by Moran’s I, of single-cell clonal plasticity 

scores for tumors with or without expansions. Higher autocorrelation values indicate that 

values have higher spatial coherence. Autocorrelations are reported across all Slide-tags 

datasets. 

(J) Distance to nearest non-tumor cell (i.e., tumor boundary) for high- and low-plasticity cells 

across all Slide-tags arrays. Cells with high-plasticity are closer to the tumor boundary (p 

< 1e-5, wilcoxon rank-sums test). 

(K) Representative example demonstrating the stratification of neighborhoods of high- and 

low-fitness cells in Slide-tags data, and comparison to spatial localization of the EMT state. 

Scale bar indicates 1mm.  

(L) Distribution of average community scores in 30𝜇𝑚 neighborhoods of high- or low-fitness 

spots in Slide-seq data. Each observation corresponds to a tumor. Significance is 
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indicated above each comparison (n.s. = not significant; * = p<0.1; ** = p<0.05; *** = p < 

0.01). 

(M) Distribution of average community scores in 30𝜇𝑚 neighborhoods of high- or low-plasticity 

spots in Slide-seq data. Each observation corresponds to a tumor. Significance is 

indicated above each comparison (n.s. = not significant; * = p<0.1; ** = p<0.05; *** = p < 

0.01). 

(N) Representative example of spatial log-normalized gene expression values for selected 

genes in a human lung adenocarcinoma (LUAD) spatial transcriptomics dataset (see 

Methods). 

(O) Overall distribution of log-normalized gene expression values of selected genes co-

expressed in hypoxic (SLC2A1+) or epithelial-like (SFTPC+) tumor spots across all LUAD 

samples in dataset shown in (M). Ontologies are indicated underneath genes. Hypoxia+ 

spots have higher expression of proliferation (MKI67), immunosuppressive myeloid 

(FCGR2B and C1QB) and EMT (SNAI2 and TGFB1) markers. Statistical significance 

between gene expression distributions is shown for each comparison (n.s. = not 

significant; * = p<0.1; ** = p<0.05; *** = p < 0.01). 
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Figure S4. Profiling of metastases and microenvironmental evolution during metastasis. 
Related to Figure 4. 

(A) Summary of metastases identified in Slide-seq spatial transcriptomics dataset. Each 

sample is annotated the metastatic site (LN: lymph node; Dia: Diaphragm). Two 

metastases in the lymph node (S-seq 30) were not found to be related to the primary tumor 

studies in Figure 4 and thus removed from comparative analysis.  

(B) Spatial projection of allelic distances for each spot with lineage-tracing data to consensus 

metastatic parental allele across all four layers profiled in Slide-seq. Allelic distances are 

normalized between 0 and 2.  

(C) Spatial projection of allelic distances for each cell with lineage-tracing data to consensus 

metastatic parental allele across paired Slide-tags arrays. Allelic distances are normalized 

between 0 and 2.  

(D) H&E staining, spatial mapping of allelic distances to consensus metastatic parental allele 

state, and spatial localization of phylogenetic expansion for T2 in representative dataset. 

Allelic distances are normalized between 0 and 2. 

(E) Reconstructed phylogeny of T2 from all layers with phylogenetic expansion annotated in 

red. 

(F) Reconstructed phylogeny and lineage tracing heatmap of T2 from all layers. Unique colors 

of the heatmap indicate unique insertions or deletions (“indels”), white indicates missing 

data, and gray colors indicates no indel detected. Clades participating in expansion shown 

in (E) are shown in red.  

(G) Clustered heatmap of enrichments of cell type abundances in spatial neighborhoods of 

cells related to metastases in Slide-tags arrays.  

(H) Immunofluorescence imaging of ARG1 and VIM in a section of the tumor-bearing lung 

close to Layer 3. Leading edge of the metastasis-initiating subclone is indicated with 

yellow dashed line. Scale bar indicates 1mm.  

(I) H&E and immunofluorescence imaging of COL3A1 in a section of the metastasis-initiating 

primary tumor (Layer 2) and related metastasis. Scale bar indicates 1mm.  
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