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MOTIVATION Understanding the basic principles of sensory information processing requires good knowl-
edge of structure and geometry of perceptual spaces and the ability to place stimuli on a corresponding
map of that space. Measuring perceptual distances between multiple pairs of stimuli in animals allows
us to reveal the structure of the perceptual space, allowing future measurement and manipulation of neural
activity to reveal the neural mechanisms responsible for shaping this space.
SUMMARY
Perceptual similarities between a specific stimulus and other stimuli of the same modality provide valuable
information about the structure and geometry of sensory spaces. While typically assessed in human behav-
ioral experiments, perceptual similarities—or distances—are rarely measured in other species. However, un-
derstanding the neural computations responsible for sensory representations requires the monitoring and
often manipulation of neural activity, which is more readily achieved in non-human experimental models.
Here, we develop a behavioral paradigm that enables the quantification of perceptual similarity between sen-
sory stimuli using mouse olfaction as a model system.
INTRODUCTION

Perceptually similar objects are represented by similar patterns

of neuronal activity in the brain (Johnson et al., 2002). Thus, for

an ensemble of sensory objects, both their relative perceptual

distances and the structure of their perceptual space—its

dimensionality and topology—should be reflected in the corre-

sponding space of their neural representations. For example,

the perceptual proximities between different spectral colors re-

veals the circular organization of hue in two-dimensional space

(Shepard, 1962, 1980), and the perceptual similarity between

different sounds underlies the helical organization of musical

tone (Shepard, 1965). Such information about perceptual space

is indispensable for the understanding of neural-coding mecha-

nisms underlying sensory perception.

However, it is usually difficult to perform both perceptual and

neural measurements in the same model organism. Most at-

tempts to measure perceptual similarities between stimuli

have been performed in psychophysical studies with either hu-

man or non-human primate subjects (but see Ghirlanda et al.,

2003; Guttman and Kalish, 1956). Recent technological prog-

ress makes the mouse an attractive model for recording
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(Buzsaki et al., 1996; Svoboda et al., 1997) and manipulating

(Chong et al., 2020; Emiliani et al., 2015; Gill et al., 2020; Packer

et al., 2015; Zhang et al., 2007) neural activity at different

temporal and spatial scales. However, a lack of behavioral

methods for measuring perceptual distances prevents the

linking of neural activity with perceptual space in the same

species.

Here, we develop a robust and high-throughput method for

estimating perceptual distances between multiple pairs of sen-

sory stimuli in mice, using olfaction as a model system. The

choice of olfaction is dictated by twomain factors. First, olfaction

is a highly relevant sensory modality for rodents, which makes it

easier to train animals on demanding behavioral paradigms.

Second, olfaction is one of the least explored primary sensory

systems, and our understanding of the structure of olfactory

perceptual space is still limited (Gerkin and Castro, 2015; Gerkin,

2021; Mamlouk and Martinetz, 2004; Meister, 2015; Zhou et al.,

2018). Individual odorants (chemical molecules) are character-

ized by thousands of physicochemical features, and the majority

of stimuli experienced by animals in the wild are complex odor

mixtures. How multidimensional sensory space is represented

in the brain remains unknown.
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In human psychophysics, odor perceptual space has been

characterized using multiple approaches including semantic de-

scriptors (Dravnieks et al., 1985; Koulakov et al., 2011; Wise

et al., 2000), analog ratings of perceptual qualities (Keller et al.,

2017; Secundo et al., 2015), and analog ratings of perceptual

similarity between odor pairs (Snitz et al., 2013). Among them,

only similarity ratings between odors can be obtained in non-hu-

manmodel animals including rodents. In rodent experiments, the

cross-habituation paradigm has been used to assess if pairs of

odors are perceptually similar or not (Cleland et al., 2002). How-

ever, the paradigm is low throughput and requires many animals

for each odor pair. Due to this limitation, it is challenging to

collect sufficient pairwise similarity measurements to recover

the structure of perceptual space. If a sufficient volume of simi-

larity measurements could be collected, standard algorithms

for embedding such data in low-dimensional perceptual spaces

could be applied to recover the structure of olfactory perception.

RESULTS

To overcome this limitation, we designed a behavioral paradigm

that allows us to perform high-throughput measurement of

perceptual distances across many odor pairs. We used a de-

layed match-to-sample (DMTS) behavioral paradigm, where

mice are trained to respond differently depending on whether

two sequentially presented odors are the same or different.

The probability that a trained mouse responds as if two pre-

sented odors within a trial are the same (or different) is taken to

reflect the pairwise perceptual similarities (or distances) of those

two odors.

The DMTS paradigmwas originally developed for pigeons and

monkeys (Etkin and D’Amato, 1969; Grant, 1975) and has been

used to study short-term memory in primates and, more

recently, visual perception (Koopman et al., 2017). The olfactory

DMTS task was initially established for freely moving rodents

(Otto and Eichenbaum, 1992) and was recently used with

head-fixed rodents to study short-term memory (Liu et al.,

2014; Taxidis et al., 2020; Wu et al., 2020). In those olfactory

DMTS experiments, only a small number of stimuli (usually two

odors) were used. Introducing new odors required new, time-

consuming training, and thus testing many odor pairs—a

requirement for mapping perceptual space—would be impracti-

cally time consuming (Wu et al., 2020).

In contrast to previous studies, we trained mice to perform the

task using a general rule that is independent of the specific iden-

tity of the odors, thus preventing mice from forming behavioral

strategies that are only applied to specific odors. This allows

us to use the task for high-throughput measurement of pairwise

odor perceptual distances—similar to that undertaken in human

studies. We collected behavioral data for 276 odor pairs and

demonstrated that these data yielded consistent estimates of

perceptual similarity between odors as well as a metric space

for odor perception.

The behavioral paradigm was designed to make animals

compare two odors that were presented within the same trial.

Head-fixed mice received two sequential odor presentations

(1 s duration each, and 5 s inter-stimulus interval) followed by a

1 s response window (Figure 1A and S2). If two odor stimuli
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were the same (a match trial), mice were rewarded for licking a

center water spout during the response time window (go

response). If not (a non-match trial), the correct response was

to suppress licking (no-go response) (Figure 1B). In non-match

trials, mice were rewarded for no-go responses with a drop of

water from a side water spout. Although two water spouts

were used, licking or not licking the side water spout did not

affect the reward contingency.

Odors in each trial were pseudo-randomly chosen from a

panel of monomolecular odors and their binary mixtures

(Table S1). To discouragemice from comparing two odors based

on their intensity, each odor was presented at either a high or low

concentration (5-fold difference) randomly selected at each trial.

Trained mice exhibited differential lick responses between

match and non-match trials (Figure 1C), with the probability of

a no-go response being 0.31 ± 0.02 and 0.65 ± 0.04, respectively

(mean ± SD, across all odor identities and all mice) (Figure 1D).

(For the effect of odor concentration in match trials, see

Figure S2.)

We collected data from 10 mice over 308 sessions (75,195 to-

tal trials after excluding the first 5 trials of each session) for a

panel of 8 monomolecular odors and 16 binary mixtures (Fig-

ure 2A). The probability of an error in non-match trials varied

across different odor pairs, and we assumed that the error rate

should increase with, and thus be a measure of, odor perceptual

similarity. Thus, we propose a distance metric as the probability

of correct responses in non-match trials (Pnogo) normalized by

the probability of error responses on match trials for identical

odors in a way similar to previous work (Shepard, 1987):

DðA; BÞ = 1 � 1 � PnogoðA; BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 � PnogoðA; AÞ

��
1 � PnogoðB; BÞ

�q
(Equation 1)

The distance metric is chosen to be equal to zero for identical

odors and increasesasodorsbecame lesssimilar. Thedistribution

of the distances for all measured odor pairs is presented in Fig-

ure 2B. For data-visualization purposes, we applied multidimen-

sional scaling (MDS) (Borg and Groenen, 1997; Kruskal, 1964a,

1964b) to the distance matrix and presented an odor-odor dis-

tance graph in the resulting three-dimensional space (Figure 2C).

If the proposed metric is a distance metric in a mathematical

sense, it should satisfy several conditions: (1) identity ðDðA;
AÞ = 0Þ, (2) non-negativity ðDðA; BÞ > 0Þ, (3) triangle inequality

ðDðA; BÞ %DðA; CÞ +DðC; BÞÞ, and (4) symmetry ðDðA; BÞ =

DðB; AÞÞ. The identity condition is satisfied by definition (see

Equation 1). Using data presented in Figure 2A, we tested both

non-negativity for every pair of odors (Figure 2D) and triangle

inequality for every triplet of odors (Figure 2E). Both conditions

were satisfied for the vast majority of cases. Of the small propor-

tion of cases where distance turned out to be negative (0.7%)

and triangle inequality was not satisfied (4.8%), many might be

a result of sampling error due to the finite number of trials

collected for each odor pair. Confidence intervals constructed

using a bootstrap method allowed us to apply a null-hypothesis

testing framework to these questions, and indeed, we could only

reject the conditions of non-negativity for one odor pair (0.36%)
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Figure 1. Characterization of task perfor-

mance

(A) The sequence of events in a delayed match-to-

sample task trial.

(B) Schematics of two trial types. Left panel: match

trials—the correct behavior response is licking a

center port (go), followed by a water reward pro-

vided from the same port. Right panel: non-match

trials—the correct behavior response is not licking

the center port (no-go), followed by a reward pro-

vided from a side lick port. Licking to the side port

during the response window does not affect out-

comes.

(C) Lick patterns in example trials for matched (right

two columns) and non-matched (left two columns)

trials. Lick patterns for individual trials are shown as

single rows on both center- and side-port raster

plots. Licks are shown as black ticks.

(D) Probability of a no-go choice by odor identity.

Trials are assigned to a specific odor identity

whether that odor was presented first or second in

the trial. Circles correspond to individual mice, and

bars are averages across mice (n = 10 mice, 75,195

trials, odor set #1; Table S1).
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and the triangle inequality for a small fraction (1.7%) of odor

triplets.

To test the symmetry condition, we asked how frequently

DðA; BÞ was significantly different in magnitude from DðB; AÞ).
Under the null hypothesis that they were equal, the observed dif-

ference D = DðA; BÞ � DðB; AÞ should be approximately nor-

mally distributed around zero, with variance equal to the twice

the variance of the distance. The rejection criterion (for a =

0:05) was given by the dashed lines in Figure 2F. 17% of odor

pairs showedD outside this boundary (5% expected by chance),

thus while the symmetry condition was well satisfied for majority

of odor pairs, it might not hold for all of them.

To further test theassumption thatourproposeddistancemetric

reflected a perceptual distance between odors, we performed a

series of analyses with binary mixtures. Unlike the tests above,

whichdid not exploit the composition of the stimuli, theseanalyses

assessed relationships between mixtures and their components.

For humans, the most common outcome of perceiving a binary

mixture is an average of the qualitative odor descriptors for the

componentmolecules (Ferreira, 2012).Thus,wefirsthypothesized

that the distance between two odors should be greater than be-

tween one of them and their binary mixture: DðA; ABÞ< DðA; BÞ.
Second, we assumed that the distance between two binary

mixtures sharing a common component should be less than the
Cell R
distance between odors not sharing a com-

mon component: DðAC; BCÞ<DðA; BÞ
(Figure 2G). We found that both of these as-

sumptions were satisfied on average (Fig-

ure 2G) and for each odor pair (Figure 2H).

(DðA; BÞ>DðA; ABÞ: p = 0.0039, DðAC;
BCÞ<DðA; BÞ: p = 0.0039, n = 10mice,Wil-

coxon signed-rank test after Bonferroni

correction of p values.)

From human studies, we also know that
chemical similarity, on average, correlates with perceptual simi-

larity (Snitz et al., 2013). To test this in our data, we divided odors

into two groups: acids and non-acids. The average perceptual

distance between acids was significantly smaller than between

acids and non-acids (median distance within acids [163 pairs]:

0.47, median distance between acids and non-acids [220 pairs]:

0.66 [p < 10-33, Mann-Whitney U-test]; Figure 2F).

Our analyses of binary mixtures and odors from different

chemical groups provided encouraging evidence that our metric

can be used to measure distances in perceptual space. We

further performed a series of experiments and analyses to

confirm that the behavioral responses primarily depended on

odor identity rather than other aspects of the task including an

odor concentration, a short-term memory, a long-term drift

in performance, and an odor presentation sequence.

To investigate the influence of different variables on choice

behavior, we fitted logistic regression models, which were de-

signed to predict a choice based on the distance metric, DðA;
BÞ, and other behavioral variables such as (1) concentrations

of the 1st and 2nd odors in the trial: Xconc1; Xconc2 = 0 or 1 for

the low or high concentrations; (2) a phase of data collection,

Xtrials = 0 or 1 for the 1st versus 2nd half the session; and (3) a

sequence of odor presentation, Xseq = � 1 or 1 for A/B and

B/A odor presentations in non-match trials and Xseq = 0 for
eports Methods 2, 100233, June 20, 2022 3
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Figure 2. Validation of the behavioral readout as a measure of a perceptual distance

(A) Matrix and distribution (insert) of probabilities of a no-go choice for each of odor pair.

(B) Perceptual-distance matrix calculated from the matrix in (A).

(C) MDS embedding of odors calculated from the distance matrix in (B).

(D) Non-negativity test: cumulative distribution of estimated perceptual distances for all odor pairs. Gray area is a bootstrap-estimated standard deviation; values

>0 are consistent with a metric space.

(E) Triangle inequality test: Cumulative distribution of the expressionDðA; BÞ+DðB; CÞ � DðA; CÞ for all odor triplets. Gray area is bootstrap-estimated standard

deviation; values >0 are consistent with a metric space.

(F) Symmetry test: raster plot of distances DðA; BÞ versus DðB; AÞ. Gray area reflects the 95% confidence interval for the difference; values inside the gray area

are consistent with a metric space.

(legend continued on next page)
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Figure 3. Perceptual distances are driven by

odor identity and show consistency across

individuals

(A) Absolute value of regression coefficients in the

logistic regression model (Equation 2) for an odor

identity (odor), a concentration of the first (conc 1)

and the second (cons 2) presented odors, earlier

versus later trials in a session (trials), and a

sequence of odor presentation A/B versus B/A

(seq) (n = 10 mice, 75,195 trials).

(B) Same as in (A) for regression model including

variable delay, 3 versus 5 s (delay) (Equation 3) (n =

6 mice, 24,295 trials, odor set #3, Table S1).

(C) Comparison of perceptual distances across

animals. n = 276 odor pairs were ranked based on

perceptual distances calculated in Figure 2B (1 is

the shortest and 276 is the longest distance),

averaged across animals, and binned (bin size - 32

odor pairs). Perceptual distances for the same

odorant pairs within each bin averaged for each

animal (gray symbols) and across all animals (black

dots).

(D) Spearman correlation between perceptual dis-

tances (averaged within each bin) calculated for

individual animals and averaged across all animals,

as a function of bin size (gray symbols, individual

mice; black bars, averaged across all mice) (10

mice, 75,195 trials, odor set #1; Table S1).

Report
ll

OPEN ACCESS
match trials. To compare the regression coefficients, we

normalized the variances and subtracted the means of individ-

ual independent variables. The absolute value of the distance

metric regression coefficient was �5 times higher than that

for the concentration of the first odor and at least 10-fold larger

than all other regression coefficients, indicating that the dis-

tance metric had a much larger influence on choice behavior

than other task variables: DðA; BÞ versus Xconc1, p < 0.001;

DðA; BÞ versus Xconc2, p < 0.001; DðA; BÞ versus Xtrails,

p < 0.001; and DðA; BÞ versus Xseq, p < 0.001 (Tukey’s honestly

significant difference test) (Figure 3A). As expected from the

regression coefficient, logit(pnogo) (the left-hand side of Equa-

tion 2) increased as the distance metric DðA; BÞ increased (Fig-

ure S3A). In a separate experiment, we varied the delay be-

tween odor presentations (Xdelay = 0 or 1, for 3 and 5 s

delays) and repeated the regression analysis for a new dataset

adding the additional independent variable Xdelay. Again, we
(G) Top: a schematic illustrating perceptual distances between binary mixtures and their component odors.

match trials and three types of non-match trials corresponding to different odor- and binary-mixture trials. (

0.0039, n = 10 mice, Wilcoxon signed-rank test after Bonferroni correction of p values.

(H) Individual odor-pair scatterplots corresponding to the relationship shown in (G), top: D(A, AB) versus D(A,

75,195 trials).

(I) Distribution of the distances between acids (mean: Dmedian = 0.47) and between acids and non-acids (mea

Plots in (B)–(G) are based on raw data presented on a panel: n = 10mice, 75,195 trials, odor set #1. Plot i is bas

set #2: 6 mice, 24,295 trials, and odor set #3: 12 mice, 58,232 trials (Table S1).

Cell Re
found that the effect of distance metric

was significantly larger than that of the

delay: DðA; BÞ versus Xdelay, p < 0.001

(Figures 3B and S3B).

All experiments indicate that the pro-
posed metric reflects perceptual distance between two odors,

similar to what is observed in human experiments that solicit

explicit (dis-)similarity judgements. But are these distance rela-

tionships conserved across individuals? Potentially, eachmouse

might exploit different perceptual features or subsets of features

to make judgements in the DMTS paradigm. Comparison of dis-

tances across individual mice was challenging due to the small

number of trials for each individual mouse. To address this, we

first ranked all odor pairs based on their perceptual distances

averaged across all mice (like in Figure 2D) and binned them

with different bin sizes (4, 8, 16, 32, and 64 pairs), such that

each bin had a fixed set of odor pairs (the last bin was excluded

if the number of odor pairs was less than half of a bin size). We

then averaged distances for the odor pairs within each bin for

each mouse and examined the agreement across mice. The

result for bin size 32 is shown in Figure 3C. As mouse-averaged

perceptual distance increases, the perceptual distance for each
Bottom: average probabilities of a no-go choice for

D(A,B)>D(A,AB): p = 0.0039, D(AC,BC)<D(A,B): p =

B), bottom: D(AC, BC) versus D(A, B) (n = 10 mice,

n: Dmedian = 0.66) (p < 10-33, Mann-Whitney U-test).

ed the same data plus two additional datasets: odor

ports Methods 2, 100233, June 20, 2022 5
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mouse also increases. For each bin size, we also computed

within-bin average distances for each mouse and measured

the Spearman correlation coefficients between mice for these

bin averages (Figure 3D). As bin size increased, the Spearman

correlation also increased, reaching 1 for bin size equal to 64,

i.e., all individual mice were in agreement about the relative

distance ordering of the four quartiles determined from aver-

aging across mice. This is strong evidence for similarity between

perceptual spaces of individual mice, with remaining discrep-

ancies possibly explained by statistical noise and an insufficient

number of trials.

While in all our analysis we chose the specific distance metric

defined by Equation 1, this choice probably is not unique. Any

function that preserves the rank-order relationship from pnogo
(and which ideally includes terms to compensate for possible

behavioralbiases foreachodor) isacandidate for aperceptualdis-

tance metric. See results using an alternative distance metric in

Figure S4.

DISCUSSION

These experiments indicate that the behavioral readouts are

consistent with what is expected from an internal representation

of perceptual distance. Notably, we found that perceptual dis-

tances largely agree across different animals. This observation,

along with the possibility of testing many odors, makes our para-

digm a promising tool to investigate olfactory perceptual space.

Robust psychophysical measurements of perceptual distances

in mice will allow researchers to capitalize on advances in mouse

genetics and modern methods for recording and manipulating

neural activity. In addition, thesemethods have a lower implemen-

tation threshold in head-fixed animals than alternatives such as

cross-habituation in addition to providing higher throughput. We

expect that our behavioral paradigm will contribute to the study

of the neural coding of olfaction through direct comparison be-

tween perceptual representation of odors and corresponding

neuronal activity. Beyond research into mouse olfaction, this

paradigm allows sensory perception to be studied in generalized

settings that have analogs in human psychophysics.

Limitations of the study
Although the behavioral paradigm developed in this paper

enabled us to explore perceptual relationship between odors,

there are few limitations.

The number of odors used in the study is limited. The behav-

ioral measurements are noisy and require a large number of trails

(�100) per each stimuli pair. The number of trails scales like num-

ber of stimuli squared, which makes it difficult to significantly

expand the number of odors.

The perceptual-distance measurement is mostly sensitive for

similar odors or their mixtures. For majority of pure odor pairs,

the distances are large, and the method has poor resolution.

This may be solved bymeasuring distances between binary mix-

tures with different ratios, rather than pure odorants, which leads

to a significant increase of number of trials.

In the current paper, we did not explore three and more

component mixtures or natural odors, which significantly com-

plicates the odor-delivery system.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Cinnamaldehyde Sigma-Aldrich C80687-25G

Ethyl butyrate Sigma-Aldrich E15701-500ML

2-Methylbutyric acid Sigma-Aldrich 193,070-25G

2,2-Dimethylbutyric acid Oakwood Chemical 035,602-5g

Cyclopentanecarboxylic acid Sigma-Aldrich 537,683-100ML

2-Heptanone Sigma-Aldrich 537,683-100ML

Isobutyric acid Sigma-Aldrich I1754-100ML

Isovaleric acid Sigma-Aldrich 129,542-100ML

3-Heptanone TCI H0038

Methylvalerate Sigma-Aldrich 277,827-5G

Propionic acid Sigma-Aldrich 81,910-1L

Butyric acid Sigma-Aldrich B103500-100ML

(+)-a-Pinene Sigma-Aldrich P45680-100ML

Benzaldehyde Sigma-Aldrich B1334-100G

5-Methyl-2-Hexanone Sigma-Aldrich 537,705-1L

Valeric acid Sigma-Aldrich 110,140-1L

3-Methylvaleric acid Sigma-Aldrich 222,453-5G

3,3-Dimethylbutyric acid Sigma-Aldrich B88403-25G

4-Methylvaleric acid Sigma-Aldrich 277,827-5G

Hexanoic acid Sigma-Aldrich 153,745-2.5G

Experimental models: Organisms/strains

Mouse: C57BL/6J-Tg(Thy1-GCaMP6f)

GP5.11Dkim/J

The Jackson Laboratory Strain #:024,339

Deposited data

Mouse behavioral data This paper http://github.com/pyrfume/pyrfume-data

Software and algorithms

Python version 3.8 Python Software Foundation https://www.python.org

Voeyur software Smear et al., 2013 https://github.com/olfa-lab/Voyeur

Multidimensional scaling Borg and Groenen, 1997, Kruskal, 1964a https://scikit-learn.org/stable/modules/

generated/sklearn.manifold.MDS.html

Code for manuscript http://github.com/olfa-lab/

mouse-perceptual-distance

https://doi.org/10.5281/zenodo.6537497

Other

Arduino Mega 2560 microcontroller Arduino https://www.arduino.cc

Mass flow controller (0–1000 mL/min) Alicat Alicat MC-1SLPM-D/5M/5IN

Mass flow controller (0–100 mL/min) Alicat MC-100SCCM-D/5M/5IN

Inline manifold isolation valve NResearch 225T082

2-way normally closed isolation valve NResearch TI1403270

3-way isolation valve NResearch SH360T042

Precleaned Volatile Organic Analyte (VOA)

Sampling Vials

Restek 21,797

Capacitive touch sensor Sparkfun SEN-1024

Pinch valve Valcor SV74P61T
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dmitry

Rinberg (rinberg@nyu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Datasets are deposited into the Pyrfume project for odorant-linked datasets (https://pyrfume.org/) and it can be accessed at

http://github.com/pyrfume/pyrfume-data, archive name ’nakayama_2022’.

d Code for this manuscript can be obtained at http://github.com/olfa-lab/mouse-perceptual-distance

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon reason-

able request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Both male and female Thy1-GCaMP6f (GP5.11) mice (Stock No: 024,339) (Jackson laboratories) were used in the task. At the start of

behavioral training, mice were at least two months old and had 20 g body weight. Mice were housed under a 12-h inverted light/dark

cycle. All procedures were approved under a New York University Langone Health institutional animal care and use committee

(IACUC protocol # 16–00,197).

METHOD DETAILS

Animal surgeries
Prior to behavioral training, mice were implanted with a 3D-printed head-bar for head fixation in the behavioral apparatus. Mice were

anesthetized with isoflurane (2% for induction, 1.5% during surgery) and placed on a heated floor during surgery. Skin overlying the

skull was sterilized with betadine and incised to expose the skull. The periosteum was gently scraped away and the surface of the

skull was cleaned with hydrogen peroxide. The head-bar was fixed to the skull using C&B Metabond dental cement (Parkell).

Odor delivery
A two-cassette air-dilution olfactometer was used to prepare and deliver odors with specific concentrations (Figure S1)

(Shusterman et al., 2011). Each olfactometer cassette consisted of two mass flow controllers (MFCs): one was used for a clean

air line (0–1000 mL/min, Alicat MC-1SLPM-D/5M/5IN) and another was used for odor line (0–100 mL/min, Alicat, MC-100SCCM-

D/5M/5IN), four inline Teflon four-valve manifolds, (NReserach, 225T082), one on-off clean-air three port bypass valve (NResearch,

TI1403270), and eight odor vials. Odors were diluted in water and stored in amber volatile organic analysis vials (Restek, 21,797). In a

default state, both of clean air line MFCs were set at 400mL/min, and odor line MFCs at 100 mL/min. The air from the odor line MFCs

was flowing through the bypass valves, while all odor valves were closed. The combined flow from clean air lines and odor lines (total

1000 mL/min) was going through the final valve (NResearch, SH360T042), to an exhaust. A separate clean air line was setup with a

manual flow regulator at 1000mL/min and delivering a clean air through the final valve to the odor port. To deliver an odor, the bypass

valve on one of the cassettes was closed while simultaneously a pair of odor valves was opened. Air flow passed through the valve

headspace and merged with the clean air line, thus providing air dilution to odor accumulated in the headspace. To present a binary

mixture, both bypass valveswere closed and two pairs odor vials from two cassetteswere opened simultaneously. Concentrations of

an individual odor, or components of an odor mixture, were controlled by changing the flow rate of MFCs in the odor line, while keep-

ing the total flow constant. For example, to deliver a high concentration of odor, an air-line MFCwas set at 400 mL/min, and odor line

MFCs at 100 mL/min. To present a 5x lower concentration of an odor, flow through the odor line of one of the cassettes was set at

20 mL/min, and the air line of this cassette was set at 480 mL/min. After flow was stabilized (�1 s), the final valve was switched

between odorized flow and clean air flow, and odor was delivered to the odor port with <100 ms latency. At the end of stimulus

presentation, the final valve switched back and delivered clean air to the odor port once again.

Odor stimulus
Eight or tenmonomolecular odors and their binarymixtureswere used for eachexperiment. Set #1: 1)Cinnamaldehyde (CinAl), 2) Ethyl

butyrate (EB), 3) 2-Methylbutyric acid (2MBAcd), 4) 2,2-Dimethylbutyric acid (22DMBAcd), 5) Cyclopentanecarboxylic acid (CPAcd),

6) 2-Heptanone (2Hep), 7) Isobutyric acid (IBAcd), 8) Isovaleric acid (IVAcd); Set #2: 1) 3-Heptanone (3Hep), 2)Methylvalerate (MVT), 3)

EB, 4) Propionic acid (PpAcd), 5) Butyric acid (ButAcd), 6) (+)-a-Pinene (Pinene), 7) Benzaldehyde (BzAld), 8) 5-Methyl-2-Hexanone
Cell Reports Methods 2, 100233, June 20, 2022 e2
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(5M2H); Set #3: 1) 3Hep, 2) EB, 3) Valeric acid (ValAcd), 4) 3-Methylvaleric acid (3MVAcd), 5) 3,3-Dimethylbutyric acid (33DMBAcd), 6)

Pinene, 7) BzAld, 8) IVAcd, 9) 4-Methylvaleric acid (4MVAcd), 10) Hexanoic acid (HexAcd). All monomolecular odors were diluted in

deionized water and stored in vials during experiments. These odor dilutions were prepared daily and were placed in two different

cassettes. Each olfactometer contained four or five odors to enable the generation of binary mixtures by mixing odors from different

cassettes. The initial headspace concentration was estimated based on saturated vapor pressure from a given chemical at a specific

dilution. Following this, the odor was diluted between 10- and 100-fold using air dilution in the olfactometer. Specific dilutions (v/v) for

each experiment are presented in Table S1.

Behavioral setup
Mice were head-fixed and placed on a wheel allowing free running and experienced minimal stress (Figure S1). A mouse snout was

placed into a specially designed odor port (made of PTFE). The odor port was connected to the olfactometer, fromwhich odorized air

was delivered, and a vacuum line was present to quickly remove the odorized air during inter-stimulus intervals. Mice were trained to

register their behavioral judgments by licking water spouts, and licking was detected using a capacitive touch sensor (Sparkfun,

SEN-1204). Two water spouts were installed, one in the center and the other to the side of the position of a mouse snout in the

odor port. Water delivery was controlled by a pinch valve (Valcor, SV74P61T). All behavioral events (stimulus delivery, water delivery,

and lick detection) weremonitored and controlled by custom programs written in Python interfacing with a custom behavioral control

system (Janelia Research Campus) based on an Arduino Mega 2560 microcontroller.

Behavioral paradigm
The behavioral paradigm aims to train mice to judge whether two odors presented in each trial are the same or not. In each trial, mice

were presented with two sequential 1 s odor stimuli, separated by a delay period of 5 s. The odor stimuli were either the same (match

trails) or different (non-match trials). Mice were trained with a lick based go-nogo paradigm and instructed to report their behavioral

judgment during a 1 s response window, which occurs 0.5–1.5 s after the offset of the second odor presentation in each trial

(Figures 1A and 1B). Odor concentration for each presentation was randomized by adjusting the air flow. Only the center water spout

was used to evaluate behavioral response, and licking the side water spout had no effect on trial outcome. Mice were trained to lick

(go choice) the center water spout in match trials and to suppress licks (no-go choice) in non-match trials. At the end of a response

window, correct responses were followed by reward delivery in the center spout (go choice in match trials) or in the side water spout

(no-go choice in non-match trials).

Although we used two water spouts, our behavioral paradigm is different from a conventional two-alternative forced choice task

(2AFC). In our task animals don’t need to actively lick one of the lick spouts, and can instead passively receive reward after correct no-

go responses. Thismodification makes behavioral training easier in challenging stimulus conditions like our paradigm. Beyond easier

training of animals, our paradigm offers better interpretability of behavioral responses compared to conventional go-nogo (GNG)

paradigms. In the conventional GNG paradigm, nogo responses are performed both as correct behavioral responses and as a

consequence of low task engagement. In our paradigm, however, the passive side-port is placed in a different location and animals

often show anticipatory licks before correct non-match trials. Thanks to the anticipatory responses, we can potentially differentiate

nogo responses caused by a low level of task engagement from that caused by the correct behavioral response. Since the level of

anticipatory lick responses to the passive side port was variable across animals, we leave such analysis for future study. Thus, our

paradigm is a hybrid of 2AFC and GNG tasks and facilitates easier training of animals than in 2AFC tasks and better interpretability of

behavioral readouts than in GNG tasks.

Behavioral training
The training procedure consisted of multiple steps outlined below:

Water restriction and habituation

During the entire period of behavioral training, mice were kept under water deprivation, which began at least one week after surgery.

Mice received a total of 1 mL of water per day either as accumulated rewards for behavioral performance, or supplemented to the full

amount at the end of the day. During the initial phase, mice were habituated to the handling by experimenters for 10–15 min per day.

Once each mouse could comfortably drink water drops on the glove of experimenter’s hand, it was habituated to the experimental

setup. During the habituation to experimental setup, mice were head-fixed on the running wheel and placed in the behavioral box for

10–15 min per day. During this phase, mice were occasionally presented with water through a syringe. Once each mouse showed

reliable licking responses to water delivered through a syringe, it began lick training.

Lick training

At thisphasemice learned to lickwater spouts toobtainawater reward.Miceweregivena1–1.5ulwaterdropeach time they lickedwater

spouts. Both center and sidewater spoutswere introducedand awater rewardwasprovided alternately from them. In casemicedid not

lick thewater spouts at all,multiplewater dropsweredeliveredbyexperimenters untilmicestarted lickingwater spouts.Miceproceeded

to the next training step if they received 100 water drops within 30 min. Otherwise, lick training was repeated in the following days.

Behavioral shaping step one – Pavlovian shaping

The purpose of this step is to get mice familiarized with the timing of behavioral events and water reward delivery. At each trial, mice

were presented with the same odor twice with 3 s delay, which was followed by a 1 s response window (0.2–1.2 s from the second
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odor offset). At this step, only match trials were presented and two odor presentations in a given trial were always the same. Five ul of

water reward were delivered at the end of response window regardless of behavioral responses. Although licking behavior of mice

had no consequence on reward delivery, mice started to show anticipatory licking during the response time window. If mice licked

during the response window at >80% of trials across 80 trials, mice proceeded to the next step. In shaping steps one to three, all

odors in odor set two in Table S1 were used.

Behavioral shaping step two – odor lick association

The purpose of this stepwas tomakemice lick during the responsewindow to receive awater reward. The trial structure was same as

in step one, except mice had to lick a water spout during the response window (0.5–1.5 s from the second odor offset) in order to

trigger water delivery. No water was delivered if mice did not lick the water spout during the response time interval. If mice received

a water reward for >80% of trials across 100 trials, they proceeded to the next step.

Behavioral shaping step three – Full task training

At this step, mice were presented with bothmatch and non-match trials. The timing of the response windowwas set to 0.5–1.5 s from

the second odor offset. The delay duration between two odor presentations was set to 3 s at the first session of this step. The delay

duration was increased by 0.5 s if mice achieved 70% or more correct performance in the previous behavioral sessions.

Trial type (match/non-match) for each trial was chosen pseudo-randomly so that mice did not receive rewards from same trial

types in four or more consecutive trials. We also implemented a bias correction strategy as described in Behavioral bias correction

strategy section. The trial type of the coming trial was chosen so that the biased responsewould be incorrect, if a choice bias could be

predicted from the response history of the past three trials. Otherwise, match and non-match trials were presented with equal prob-

ability. At this step, to simplify training, we did not present odor pairs, which were similar and could cause some confusion, such as

odor mixtures sharing one of the components, like (A, AB), or (AC, BC). Once mice showed >70% correct performance across 100

trials with 5 s delay, they were ready to be used to test perceptual similarities between odors of interest.

Testing of perceptual similarity

The task was performed as in shaping step three, except that all combinations of first and second odors were used. Delay duration

was fixed at 5 s, unless the effect of delay duration was being investigated (Figures 3B, 3 and 5 s). The first five trials of each session

were match trials to encourage mice to lick water spouts, and these trials were excluded from all analyses. The number of mice, ses-

sions, and trials of each dataset are summarized in Table S2.

Behavioral bias correction strategy
Occasionally during training an animal exhibited some behavioral bias which affected interpretation of results. We considered

the possibility of bias whenever the result of the next trial was related to the history of the previous trials (Tervo et al., 2014). If

the bias was detected, the next trial type (match vs non-match) was chosen to be opposite of the one that the bias would have

predicted. To detect the bias we searched for different sequences of previously observed trials (for example, a sequence

‘match’-‘no-match’-‘match’ trials), and tested if it predicted a specific response ‘go’ or ‘no-go’. We analyzed 3, two and one trial

patterns, using only trial type (‘match’, ‘no-match’), and two and one trail patterns using both trial type and trial outcome (‘rewarded’,

‘non-rewarded’). To minimize random bias detection, we implemented a criterium that if four out of five estimates predicted higher

probability for one behavioral response, we flagged the current trial as biased and chose the upcoming trial type so that the other

response type is the correct response. The above policy was applied after 40 trials had passed from the start of a session, and

used the previous 40 trial window to detect behavioral bias.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of perceptual distances
The perceptual distance between a pair of odors was calculated based on the fraction of non-match trials where mice gave the cor-

rect response (no-go choice). The probability of a no-go choice for a given odor pair was normalized by the lapse rate for individual

odors, i.e., the probabilities of a no-go choice for match trails (see Equation 1). For a reliable estimate of perceptual distances, it is

desirable to have at least 100 trials for each odor pair. The transformation from no-go probabilities to the distance measure makes all

diagonal elements of the distance matrix take a value of 0. Some non-match odor pairs may take a negative value due to a small

number of trials. The negative values were replaced by 0.001 to keep all non-match odor pairs distinct from self-comparison (match

trials), which correspond to zero distance.

Multidimensional scaling
We used non-classical metric multidimensional scaling (MDS) to calculate a low-dimensional representation of odor perceptual

space (Borg and Groenen, 1997; Kruskal, 1964a). MDS was performed using the Python scikit-learn package (sklearn.mani-

fold.MDS). MDS takes a pairwise distance matrix as input and returns coordinates of data points in low dimensional space, such

that pairwise distances in the input are maximally conserved. Non-classical metric MDS was applied to the matrix representing

pairwise perceptual distances between odor pairs. We used a scaling dimension of three for visualization.
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Statistics
Perceptual distances between odor mixtures were compared (Figure 2D) using theWilcoxon signed-rank test. First, the probability of

a no-go choice was calculated for each trial type (match, A-B, AC-BC and A-AB) separately for individual mice. Comparisons were

performed for pairs (A-B, AC-BC) and (A-B, A-AB) by treating mice as repeated measures. p values were corrected for multiple com-

parisons with the Bonferroni method.

For the comparison of distances between acids and those between acids and non-acids (Figure 2F), we first calculated perceptual

distances across all odor pairs by pooling trials from all animals. Then, we classified the perceptual distances into two groups: dis-

tances between acids, and distances between acids and non-acids. Odor pairs including binary mixtures of both acids and non-

acids were excluded from this analysis. The difference between these groups was tested with the Mann-Whitney U test.

To quantify the effects of odor identity and other behavioral variables, we fit a logistic regression model (James et al., 2013):

log

�
p

1 � p

�
= b0 + bodDðA; BÞ+ bconc1Xconc1 + bconc2Xconc2 + btrialsXtrials + bseqXseq; (Equation 2)
log

�
p

1 � p

�
= b0 + bodDðA; BÞ+ bconc1Xconc1 + bconc2Xconc2 + btrialsXtrials + bseqXseq + bdelayXdelay ; (Equation 3)

where p is probability of no-lick responses; DðA; BÞ is the distance between odors A and B defined in (Equation 1), and calculated

separately for eachmouse; Xconc1 and Xconc2 are concentrations of the 1
st and 2nd odor in the trail: Xconc1; Xconc1 = 0 or 1 for the low or

high concentrations; Xtrials is a phase of data collection, Xtrials = 0 or 1 for the 1st vs 2nd half of total set of trials in the session; Xseq is a

sequence of odor presentation, Xseq = � 1 or 1 for A- > B and B- > A odor presentations in non-match trials and Xseq = 0 for match

trials. Assignment of values of A- > B and B- > A sequences were randomized. Xdelay is a delay between sequential odor presentation

in one trial, Xdelay = 0 or 1, for 3 and 5 s delays.

To compare the magnitude of different independent variables, these were standardized so that mean and standard deviation of

each variable becomes 0 and 1 respectively. We fit these regression models using stats models package in Python (Seabold and

Perktold, 2010). We compared the absolute value of regression coefficients using One-way ANOVA and post hoc tests corrected

for multiple comparisons (Tukey’s Honestly Significant Difference test).
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