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Accurately predicting patient outcomes is essential for optimizing treatment and improving outcomes
in pediatric acute myeloid leukemia (AML). In recent years, microRNAs have emerged as a promising
prognostic marker, with a growing body of evidence supporting their potential predictive value. We
systematically reviewed all previous studies that have analyzed the expression of microRNAs as
predictors of survival in pediatricAMLand found16microRNAsand4microRNAsignatures previously
proposed as predictors of survival. We then used a public access cohort of 1414 pediatric AML
patients from the TARGET project to develop a new predictive model using penalized lasso Cox
regression based on microRNA expression. Here we propose a new score based on a 37-microRNA
signature that is associated with AML and is able to predict survival more accurately than previous
microRNA-based methods.

Childhood acute myeloid leukemia (AML) is a rare and heterogeneous
disease that represents 25% of childhood leukemias. The outcome of chil-
dren with AML has improved over the last years, reaching the complete
remission of 90% in pediatric patients, but overall survival (OS) and event-
free survival (EFS) rates remain low, around 70% and 50%, respectively, due
to the high frequency of relapse and the treatment-related risk of death1–3.

Acute myeloid leukemia appears mostly in adults. Therefore, most of
the research has been based on adult patients; however, pediatric and adult
AML are different in the molecular and mutational landscape, as well as in
the tolerance to treatment4–6. Pediatric AML patients present a larger pro-
portion of cryptic gene fusions and recurrent focal deletions, while adults
have more somatic mutations impacting DNAmethylation4. Furthermore,
the cytogenetic abnormalities used to identify AML subtypes following the
WHO classification are more commonly found in adults than pediatric
patients; consequently, a larger portion of pediatric patients is classified as
“AML not otherwise specified”, which limits the applicability of the WHO
classification in AML children7–9. These differences between children and
adults emphasize the importance of the study of children-specific treat-
ments and risk stratification.

An adequate risk assessment is key in the selection of a proper treat-
ment for AML, and risk stratification criteria have been improved in the last
fewyears. In children, current risk prediction assessment ismainly based on

the identification of genomic alterations or mutations1, but there remains a
considerable scope for further improvement as individual genomic features
cannot explain disease outcomes, therefore it is necessary to use whole
genomic data in order to refine and improve risk stratification.

DNAmethylation,microRNAexpression, andgenomic alterationdata
can be used to stratify pediatric patients with AML according to their
expected survival4.

MicroRNAs (miRNAs) are a class of small non-codingRNAs that play
an important role in regulating gene expression and participate in cellular
processes, such as differentiation, proliferation, migration, and apoptosis.
MiRNAs can also participate in AML pathogenesis and can be used as
biomarkers, risk predictors, or even therapeutic targets10–12, although their
mechanisms of action still remain complex and unclear due to their wide
range of target genes and signaling pathways13.

In the last years,many studies have focusedon the characterization and
identificationofmiRNAs inAML14–19, and someof themhavedemonstrated
that MiRNAs are useful in the diagnosis of AML and AML subtypes19–22.
Regular gene expression data have been used to develop prognostic risk-
prediction signatures forAML in adults and children23–26; however, there is a
lack of a consensus miRNA signature for risk assessment and marked dif-
ferences among studies27. To critically evaluate available studies in this field
and identify common and different findings across them, we have
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performed a systematic review of the literature that analyzes the potential
role of miRNAs as predictive biomarkers for survival in pediatric AML. In
addition, using available data,wehave identified anewmiRNAsignature for
predicting survival and we have conducted a comparative analysis to eval-
uate our model together with other signatures and individual microRNAs.

Results
Systematic review
We identified 203 non-duplicate records by a systematic search of existing
literature. After reviewing the titles, abstracts, and full texts of each record,
we excluded 181 articles that did not meet our inclusion criteria, finally
selecting 22 articles for this review (Fig. 1).

From these 22 articles, we found 4 miRNA signatures and 16 single
miRNAs with survival prediction capability, assessed by 426,28–30 and
1814–17,31–44 studies, respectively (Table 1). From the 18 articles that analyzed
the expressionof singlemiRNAs,we found 11 that performed amultivariate
Cox regression analysis to prove if the selectedmiRNAwas an independent
prognosis predictor. All these tests were significant, confirming their cap-
ability to predict overall survival. Only one article31 did not test the predictor
(miR-381) for event-free survival. We assembled all the studies that asso-
ciated miRNA expression with survival in pediatric AML in Table 1.

Although these studies demonstrated the association between the
expression level of each miRNA or miRNA signature and the patient out-
come, there is little miRNA overlap among signatures. MiRNAs hsa-let-7g-
5p and hsa-miR-181c-5p appeared in both the 24 miRNA signature
(miR24) from Esperanza-Cebollada et al. 26 and the 36 miRNA signature
(AMLmiR36) from Lim et al. 30, being the second one also found in the 3
miRNA signature (miR3) from R. Zhu et al. 29 (Fig. 2). Hsa-miR-146a-5p
was present in both the AMLmiR36 and the 4 miRNA signature (miR4)
from R. Zhu et al. 28.

Construction of a new predictive signature
Afterward, we developed a new survival predictive model based onmiRNA
expression using the penalized lasso CoxPH in the Discovery set of
TARGET-AMLpatients. The resultingmodelwas composed of 37miRNAs

(miR37 signature) that were used to calculate a predictive score for each
patient. We assessed the similarities between our model and the previously
described miRNAs with survival prediction capability, and we found that
our signature shared two miRNAs with the miR24 signature26 and nine
miRNAs with the AMLmiR36 signature30, four of which had also been
individually associated with survival (Fig. 2).

Systematic evaluation of predictors
We compiled all previously described microRNAs and signatures, along
with our new miR37 signature, and analyzed their association with prog-
nosis in the TARGET-AML cohort. We analyzed the association of the
16 selectedmiRNAsand5miRNAsignature scoreswithoverall survival and
event-free survival separately.

By univariate Cox proportional hazards regression analysis, we found
that all five scores were significantly associated with OS (Fig. 3A) and EFS
(Supplementary Fig. 3), along with hsa-mir-199a, hsa-mir-335, hsa-mir-
196b, hsa-mir-100, hsa-miR-139-5p and hsa-mir-195 (p-value < 0.05).
However, only the miR37 score, AMLmiR36 score, miR24 score, hsa-mir-
199a, and hsa-mir-335 showed a marked difference in Hazard ratio (HR),
indicating that high signature scores were associated with an increased risk
of death, while high expression of hsa-mir-199a and hsa-mir-335 was the
most representative predictors of good prognosis.

MultivariateCoxPHshowed that thefive signature scores andhsa-mir-
199a, hsa-mir-100, hsa-mir-34b, hsa-mir-195 and hsa-mir-381 were inde-
pendent predictors of OS and the miR37 score, AMLmiR36 score,
miR24 score, miR4 score, hsa-mir-335, hsa-mir-100, hsa-miR-139-5p, hsa-
mir-34b and hsa-mir-195 were independent predictors of EFS (p-
value < 0.05).

We then categorized the expression of each miRNA and signature
score in high and low expression and we tested the ability of each predictor
to separate the two outcome cohorts (Fig. 3B, Supplementary Figs.
2 and3B).We found that highmiR37,miR24,AMLmiR36, andmiR4 scores
and high expression of hsa-mir-196b, hsa-mir-155, and hsa-mir-34b were
significantly associated with lower OS (log-rank test p-value < 0.05) and,
with the exception of hsa-mir-34b, with lower EFS. High expression of hsa-

Model construction Model evaluation
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Fig. 1 | Schematic methods. Systematic review of microRNA-based predictors of survival, predictive model construction, and systematic validation and evaluation of
predictors.
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mir-335, hsa-mir-100, hsa-miR-139-5p, and hsa-mir-199awas significantly
associated with higher OS and EFS (log-rank test p-value < 0.05). The
increased expressionof hsa-mir-34bwas significantly linked to lowerOSbut
not lower EFS.

We estimated the survival prediction accuracy of the 16 selected
miRNAs, 5 scores, and a random signature score by calculating the Con-
cordance index and time-dependent AUC in the validation cohort. Our
model score showed a median C-index of 0.63 for OS, outperforming
previous signatures in predictive capability (Fig. 4A). The AUC calculated
for each time point revealed that although miR4 has a good predictive
performance for the early stage, ourmodel outperforms all other signatures
in predictive accuracy for OS after approximately the first year (Fig. 4B).
Similar results were found for EFS, with a median C-index of 0.64 and the
same trend in AUC over time (Supplementary Fig. 4).

After separatingpatients by their assigned cytogenetic risk, theC-index
indicated that our miR37 score still outperformed other predictors in
patients of the standard risk group when predicting OS but not in EFS,
where the miR4 score was the best predictor (Supplementary Fig. 5A). In
low-risk patients hsa-mir-195 showed the best predictive performance.
Accuracy on high-risk patients was inconclusive due to the low number of
patients in this risk group. When comparing the accuracy of signatures by
time-dependent AUC (Supplementary Fig. 5B), we found that miR24
predicted better in low-risk patients, in standard-risk patients, miR4 pre-
dicted better at early disease stage (approximately 1 year from diagnosis)
and miR37 at late disease stage (approximately more than 1 year from
diagnosis), andmiR4 signature had a good predictive performance in high-
risk patients.

Enrichment analysis
In order to characterize our miR37 signature, we assessed its func-
tional characteristics through miRNA set enrichment analysis. We
discovered that Hematopoiesis and Immune Response were the more
overrepresented functions in the miRNA signature, with 11 and 13
miRNAs associated with these functions, respectively (Fig. 5A, B). We
also analyzed the diseases overrepresented in our miRNAs and we
found that acute myeloid leukemia was the most significantly asso-
ciated disease, with 15 AML-related miRNAs present in our signature
(Fig. 5C, D). We also analyzed the level of association of each miRNA
and miRNA set to test which miRNA presented the strongest asso-
ciation with each term (Supplementary Fig. 6). We found that hsa-
mir-378c had the strongest association with the Hematopoietic
function (Association Score = 7.8) and hsa-mir-27a was strongly
associated with Immune Response (Association Score = 7.5).

Signature quality control
Finally, to assess the robustness of ourmiR37 signature, we performed a
quality control analysis by comparing it with a randomly selected
miRNA signature of the same length. To conduct this analysis, we added
an external miRNA expression microarray dataset (GSE97135). We
observed relatively high concordance between the quality control
metrics calculated for our miR37 signature in both the TARGET-AML
and the GSE97135 datasets (Supplementary Fig. 7A) and large differ-
ences in the metrics compared to the negative controls in both cases
(Supplementary Fig. 7B) suggesting that our signature is highly
applicable across different sequencing platforms. We saw that the

hsa-mir-199a

hsa-mir-381

hsa-miR-206

hsa-miR-193b-3p

hsa-mir-370
hsa-mir-29a

hsa-mir-122

hsa-mir-192

hsa-miR-146a-5p

hsa-mir-196b

hsa-mir-509

hsa-mir-542

hsa-mir-3667

hsa-mir-4786

hsa-mir-146b

AMLmiR36 signature

miR3 signature

miR4 signature

miR37 signature
miR24 signature

hsa-miR-20b-5p

hsa-miR-223-3p

hsa-miR-193a-3p

hsa-miR-24-3p

hsa-miR-128-3p

hsa-miR-17-5p

hsa-miR-199b-5p

hsa-miR-181c-5p

hsa-miR-181a-5p

hsa-miR-181b-5p

hsa-miR-21-5p

hsa-miR-222-5p

hsa-miR-331-5p

hsa-miR-373-3p

hsa-miR-708-5p

hsa-miR-34b-5p

hsa-miR-195-5p

hsa-miR-151a-5p

hsa-miR-30b-5p

hsa-miR-22-3p

hsa-let-7i-5p

hsa-miR-1290

hsa-miR-9-5p

hsa-miR-181c-5p

hsa-miR-139-5p

hsa-miR-100-5p hsa-miR-375

hsa-miR-335-3p

hsa-miR-155-5p

hsa-miR-106a-3p

hsa-miR-584-5p

hsa-miR-1247-3p

hsa-miR-130b-3p

hsa-miR-320a

hsa-miR-34c-5p

hsa-miR-30c-2-3p

hsa-miR-30e-3p hsa-miR-450a-5p

hsa-miR-296-5p

hsa-miR-935

hsa-miR-502-3p

hsa-miR-181b-3p

hsa-miR-363-3p

hsa-miR-362-3p

hsa-miR-132-3p

hsa-miR-340-3p

hsa-miR-148b-3p

hsa-miR-4662a-5p

hsa-miR-1287-3p hsa-miR-664b-5p

hsa-miR-539-5p

hsa-miR-217

hsa-miR-181c-3p

hsa-miR-1180-3p

hsa-miR-202-5p

hsa-miR-2110

hsa-let-7g-5p

hsa-miR-409-5p

hsa-let-7b-5p

hsa-let-7b-3p

hsa-miR-106a-5p

hsa-miR-150-5p

hsa-miR-186-5p

hsa-miR-222-3p

hsa-miR-27a-5p

hsa-miR-29b-1-5p

hsa-miR-3065-3p

hsa-miR-30a-5p

hsa-miR-330-5p

hsa-miR-339-5p

hsa-miR-3615

hsa-miR-378c

hsa-miR-379-5p

hsa-miR-450b-5p

hsa-miR-4746-5p

hsa-miR-486-5p

hsa-miR-500a-5p

hsa-miR-550a-5p

hsa-miR-584-5p

hsa-miR-598-3p

hsa-miR-625-3p

hsa-miR-629-3p

hsa-miR-664a-5p

hsa-miR-92a-3p

hsa-miR-99a-5p
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miRNAs in the miR37 signature exhibited higher expression levels and
variability compared to the random signature in both the TARGET-
AML validation and the GSE97135 datasets (Supplementary Fig. 8),
supporting the idea that themiR37 signaturemight have greater clinical
utility. We also observed that, in the external GSE97135 dataset, the
correlations of scoringmetrics were higher for themiR37 signature than
for the random signature (Supplementary Fig. 9), suggesting that the
miR37 signature can be summarized consistently, unlike the random
signature. When analyzing the intra-signature correlation, we observed
that the miRNAs in our miR37 signature were slightly more correlated
with each other than the random miRNAs in the GSE97135 dataset

(Supplementary Fig. 10), supporting the potential of our signature to be
summarized into a score or used in approaches like GSEA. It was
observed that the random signature contained more miRNAs with low
expression than miR37 (Supplementary Fig. 11), as expected due to the
inherent right-skewed distribution of the miRNA expression data.

Finally, we calculated all quality controlmetrics provided by the sigQC
pipeline on the GSE97135 dataset. The miR37 signature outperformed the
random signature on almost allmetrics (Supplementary Fig. 12A) andmost
of the test results were different from the negative controls, unlike the
random signature (Supplementary Fig. 12B). This ultimately confirmed the
good quality of our signature.
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Discussion
In our systematic review, we searched for studies that assessed the
association between microRNA expression and survival. Although
many of these studies also analyzed the expression of miRNAs as a
diagnosis marker, we focused on their capability as a prognostic
factor. The selected studies routinely performed Kaplan–Meier and
Cox regression analysis to assess the association of miRNA expres-
sion with survival and test the independence of the predictors.
However, the ability of these miRNAs to predict survival has rarely
been adequately measured. Only the performance of miR3 and
miR4 signatures were calculated by classical ROC curves and
AUC28,29 and Esperanza-Cebollada et al. 26 calculated the predictive
accuracy of their signature by estimating the C-index on the CoxPH-
fitted patients. Nevertheless, reliable predictive performance indica-
tors are needed in order to ensure replicable results.

Here we developed a new survival prediction model based on miRNA
expression and systematically evaluated our model together with all pre-
vious existing models using standard analyses as well as new robust
methods.

When analyzing coincident miRNAs between signatures we saw that
our signature had severalmiRNAsmatched toAMLmiR36, up to 24%of the
signature. This could be attributed to the fact that we developed our sig-
nature using an approximation of the methods of Lim et al. 30 and a similar
patient distribution. Particularly, among thesematchedmicroRNAswe can
find four miRNAs that have been independently validated as survival pre-
dictors. Of particular note is hsa-miR-155-5p, whose high expression is
associated with poor prognosis in our analysis and previous studies14,41,42,
and has several associated functions related to hematopoiesis (Supple-
mentary Fig. 6). MiR-155 was studied as an oncogene in B cell lymphoma45

and was estimated to block myeloid differentiation in normal human
hematopoietic stem cells46. However, other studies have shown that it can
promote apoptosis and cell differentiation in AML47,48. According to our
results, we could hypothesize that hsa-miR-155-5p functions as an onco-
gene in pediatric AML patients, blocking myeloid differentiation.

When analyzing our newmiR37 signature, we found that, as expected,
several miRNAs were related to hematopoiesis and immune response.
Among the hematopoiesis-related miRNAs, hsa-mir-378c has been shown
to be down-regulated in AML when apoptosis is induced by cycle-

dependent kinase inhibitor SNS-03249. Immune responsemiRNAs included
hsa-mir-27a, which is a known tumor suppressor in acute leukemia50.

Our systematic evaluation revealed some disparities with previous
studies. In particular, hsa-mir-100 and hsa-mir-335 had previously been
associated with poor prognosis; however, our results indicated an associa-
tion with good prognosis, which has been found in other cancers as well51,52.

In this study, we identify significant associations between the expres-
sion of certain miRNAs and survival, that failed to achieve significance in
previous studies. This is the case for hsa-mir-199a, miR4 signature, and
AMLmiR36 signature, which we have shown to be significantly associated
with OS, as well as hsa-miR-139-5p and hsa-mir-196b, which exhibit sig-
nificant associations with EFS.

We found that certain individual miRNAs, specifically hsa-mir-
199a, hsa-miR-139-5p, hsa-mir-100, hsa-mir-335, and hsa-mir-196b,
were consistently associated with survival, as confirmed by sig-
nificance in both hazard ratio and survival curve analysis. In parti-
cular, we observed that hsa-mir-199a was the best predictor of
survival in high-risk patients, and its high expression was associated
with better survival, possibly due to its ability to enhance che-
motherapy efficacy by repressing DRAM1 and WNT2. These genes
are involved in protective autophagy, which can lead to chemother-
apy resistance in AML and chronic myeloid leukemia53,54. Further-
more, it has been reported that hsa-mir-199a enhances the sensitivity
of chronic myeloid leukemia cells to chemotherapy by down-
regulating mTOR signaling55. Nevertheless, the reliability of the
results observed in high-risk patients is constrained by the limited
number of samples within this risk group, since the insufficient
sample size resulted in increased error rates.

In low-risk patients, the most accurate predictor of survival was
hsa-mir-195, even though its association with survival was not sig-
nificant in the analysis of survival curves. The expression of hsa-mir-
195 has previously been linked to a good prognosis in pediatric
AML34. Various targets and mechanisms have been proposed to
explain this effect. Among these targets, we highlight BMI1, which
has been studied as an oncogene in myeloid leukemias56, RET, a
proto-oncogene overexpressed in t(8;16) AML57, and MYB, whose
silencing has been shown to alleviate chemotherapy resistance in
pediatric AML58.

a b

0 1 2 3 4 5 6

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Time (years)

AU
C

(t)

miR37
AMLmiR36
miR24
miR4
miR3
random

0.4

0.5

0.6

0.7
m

iR
37

−s
co

re
AM

Lm
iR

36
−s

co
re

m
iR

24
−s

co
re

m
iR

4−
sc

or
e

m
iR

3−
sc

or
e

ra
nd

om
−s

ig
na

tu
re

−s
co

re
hs

a−
m

ir−
19

9a
hs

a−
m

ir−
33

5
hs

a−
m

ir−
19

6b
hs

a−
m

ir−
10

0
hs

a−
m

ir−
19

2
hs

a−
m

iR
−1

39
−5

p
hs

a−
m

ir−
34

b
hs

a−
m

ir−
19

5
hs

a−
m

ir−
38

1
hs

a−
m

ir−
37

0
hs

a−
m

iR
−1

93
b−

3p
hs

a−
m

iR
−2

06
hs

a−
m

ir−
12

2
hs

a−
m

ir−
29

a
hs

a−
m

iR
−3

75
hs

a−
m

ir−
15

5

C
 In

de
x

Fig. 4 | Evaluation ofmiRNAs andmiRNA signature scores as predictors of overall survival (OS). aC-index of each predictor tomeasure the predictive accuracy. bTime-
dependent area under the receiver operating characteristic curve (AUC) for each of the miRNA predictive signatures.

https://doi.org/10.1038/s41525-024-00424-w Article

npj Genomic Medicine |            (2024) 9:40 6



Another interesting miRNA is hsa-mir-335, which was the best indi-
vidual predictor of survival among all patients, outperforming all predictive
signature scores except for miR4 and our miR37 signature. Furthermore, we
observed that its expressionwas consistently linked to increased survival in all
of our analyses. Previous research has shown that hsa-mir-335 can function
as either anoncogeneor tumor suppressor by regulatingdifferent pathways59.
Recently, several studies have proposed different mechanisms for its ther-
apeutic effect in AML. Zhang et al. 60 demonstrated that has-miR-335-3p
directly inhibited theEIF3Egene, activatingapoptosis andcell cycle arrest and
ultimately reducingAML cell proliferation. Liu et al. 61 showed that has-miR-
335-5p down-regulated NFS1, improving ferroptosis-based antitumor
treatment in AML.

Regarding the comparison of predictive capacities between miRNAs
and miRNA signatures, we observed notable differences between the use of
individualmiRNAs andmiRNA signatures for survival prediction, with the
latter generally being better predictors. However, as previously mentioned,

we have identified that some individual miRNAs can predict outcomes
better than signature scores when patients are stratified by cytogenetic risk
groups. This indicates the necessity to develop new, specific miRNA sig-
natures for survival prediction in these risk groups, particularly in patients
classified as standard risk, where known predictors perform poorly and risk
assessment is often inconclusive.

Conclusions
We have systematically collected and evaluated all microRNA-based pre-
dictors of survival in pediatric AML patients and we have proposed a new
predictor model that is more accurate than previous ones, testing its pre-
dictive ability with robust methods to ensure its reproducibility in new
patients. We have shown that scores calculated from miRNA signatures
tend to be more effective than individual miRNAs in the prognosis of
pediatric AML. However, neither our model, nor any other existing model,
can yet be considered sufficiently accurate to be used as an independent
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predictor of survival in the clinic, and further research is needed in the field
of microRNA signatures to find a viable miRNA model that accurately
predicts disease outcome and that will ultimately guide treatment decisions.
Moreover, howour signature and theotherpredictors performwhenused in
conjunction with other widely established predictor variables still needs to
be evaluated.

This study contributes to the investigation of the role of miRNAs in
proper risk estimation in pediatric AML patients and provides a new pre-
dictive model that would allow refinement of the current risk stratification.

Methods
Systematic review strategy
The systematic review was conducted in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)
statement62. A detailed search was carried out from three different citation
databases: Pubmed, Scopus andWeb of Science. Our search query included
the terms “pediatric”, “microRNA” and “AcuteMyeloidLeukemia”, aswell as
every synonym added either manually or automatically by each search
algorithm. Detailed queries are described in supplementary methods. As
exclusion criteria, we used the following: we excluded reviews, articles
studying predictors for specific subtypes of AML, and studies with patients
whose miRNA expression was measured after treatment or transplantation.
According to our inclusion criteria, we only selected articles that tested
pediatric AML patients, and we looked for studies with miRNAs or miRNA
signatures tested as independent predictors or whose expression was corre-
lated with survival.

Patient selection
WeusedmiRNAexpression data from a set of 1441 pediatric AML patients
from the Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET) project4,63, publicly available in the Genomic Data
Commons repository64. We excluded 27 patients who were older than 21
years old at diagnosis, as an upper age limit identified by the American
Academy of Pediatrics, keeping 1414 patients for our analysis.

Development of miRNA predictive model
In order to establish a miRNA signature capable of predicting survival, we
organized the patients into Discovery and Validation cohorts. As the
TARGET data were originally obtained from patients with different pro-
tocols, we selected the patients from the protocols AAML0531 (n = 393),
AAML03P1 (n = 66), andCCG2961 (n = 34) for theDiscovery set (n = 493)
and the patients from the protocol AAML1031 (n = 921) for the Validation
set, as these patients had not previously been used to train any of the
predictive models. The protocol and data distribution used to build the
modelwere similar to Lim et al. 30 with additional steps.We downloaded the
expression of 2280 mature miRNAs and filtered the low expressed counts,
keeping 267 miRNAs that were subjected to the Lasso Cox regression
method. This method allowed the selection of the 37 miRNAs with the
greatest impact on survival and the fitting of a Cox model in the Discovery
cohort using these 37miRNAs, with a Lasso penalty applied to the obtained
regression coefficients. Lasso Cox regression was internally subjected to a
5-fold cross-validation. This process was carried out using the biospear R
package (version 1.0.2)65 with default parameters. The model was fitted to
predict OS. The miRNAs selected in the final model comprised our new
predictive miRNA signature (miR37).

Quality control
We conducted quality control of our new predictive signature using the
sigQC R package (version 0.1.21)66. SigQC provides a systematic approach
for thequality control of previously obtainedgene signatures acrossmultiple
expression datasets by evaluating their expression, variability and structure.
For comparison purposes, we generated an equal-length signature of 37
randomly selected miRNAs. We compared our miR37 signature with the
random signature in both our TARGET-AMLValidation cohort and a new
pediatric AML cohort obtained from the Gene Expression Omnibus study

GSE9713567. The GSE97135 dataset includedmiRNA expression data from
39 pediatric AML patients. The data were sequenced using a non-coding
RNA microarray (Affymetrix GeneChip miRNA 4.0). Although survival
data was not provided for the patients inGSE97135, it was not necessary for
performing quality control using sigQC. We performed our analysis fol-
lowing the sigQC guidelines from Dhawan et al. 66.

Model evaluation
To evaluate the performance of our signature, along with other miRNA
signatures and individual miRNAs found by systematic search, we first
transformed the unfiltered miRNA expression counts to log2(counts per
million). The trimmed mean of M-values normalization method was
implemented when computing the counts per million values by edgeR R
package (version 3.38.4). Log2 values were returned adding a small count of
2 to avoid zero values. Next, for comparative purposes, we calculated a score
for each signature for each of the patients.

In the assessment of AMLmiR36 signature30, miR3 signature29, and
miR4 signature28 scores using expression data, we followed the formulas
provided by authors, where each score is calculated by the summatory of the
given coefficient multiplied by each miRNA log(counts per million). For the
miR24 signature, the coefficients are not provided, so we calculated them by
fitting a Cox proportional hazards (CoxPH) model on OS with the 24
miRNAs in all 1441 patients. For our new miR37 signature, we used the
coefficients of the Lasso Cox regression model fitted on OS in all the Dis-
covery cohorts. Since the miR3 signature, miR4 signature, and some indivi-
dual miRNAs were originally mapped to precursor miRNAs, but we have
mature miRNA data in our patients, we estimated the expression of each
immature miRNA by summing the counts of both the 5p and 3p mature
miRNAs. In all studies where themiRNAmaturation stage was not specified
explicitly or by identifiers, the immature formwas assumed.AllmiRNAs and
coefficients used to calculate a score for each signature are available in Sup-
plementary Table 1.

In order to analyze the association of each candidate with survival, we
compared the patients with high or low miRNA expression. We used the
median expression value to separate the patients with high and lowmiRNA
expression or score. The estimation of survival curves was done with
Kaplan–Meier and log-rank test to evaluate the differences in survival
between high and low-expressed miRNAs.

We also fitted univariate and multivariate CoxPH models for each
continuous miRNA expression value or miRNA signature score to assess if
the miRNA was an independent predictor of survival. For the univariate
analysis, only miRNA expression or signature score was analyzed. In the
multivariate analysis, in addition to expression, we added as covariates the
stem cell transplant (SCT) in the first complete remission, minimal residual
disease (MRD) at the end of the first course of primary therapy, NPM
mutation, CEBPA mutation, t(8:21) and inv(16), as they were the most
significantly correlated with survival with a p-value below 0.005 (Supple-
mentary Fig. 1A, B). For this CoxPH regression, we used all 1414 patients.

To assess the capability of each miRNA or signature score to predict
survival, we used the validation cohort. To calculate the C-index, the dataset
was randomly split using a 10-fold cross-validation, which increases the
confidence in our results as it helps to avoid overfitting by providing an
unbiased estimate of themodel’s performance.Wefitted aCoxproportional
hazards regression model for each continuous miRNA expression or
miRNAsignature score using the validation-train cohort.We then extracted
survival probability predictionsby adjusting theCox regressionmodel to the
validation-test cohort and calculated the C-index68 to measure predictive
accuracy. The C-index (Harrell’s C index or Concordance index) is a
commonly used measure to evaluate the performance of a model in pre-
dicting outcomes. We also calculated the time-dependent area under the
receiver operating characteristic curve (AUC) to evaluate the predictive
powerof themiRNA signatures in all validation patients over time.Ahigher
value of the two indicators represented a higher accuracy. Predictive accu-
racy assessment analyses were also performed on subsets of patients of
different assigned cytogenetic risks: high risk (n = 174), standard risk

https://doi.org/10.1038/s41525-024-00424-w Article

npj Genomic Medicine |            (2024) 9:40 8



(n = 678), and low risk (n = 561). As provided by the TARGET-AML
project, risk group assignmentwas carried out at diagnosis and based on the
cytogenetic and molecular abnormalities of each patient30. 5-Fold cross-
validation was applied when calculating the C-index of high-risk patients.
The signature of 37 randomly selectedmiRNAs was added to the predictive
accuracy analyses as negative control.

miRNA enrichment analysis
We performed an enrichment analysis of our new predictive miRNA sig-
nature using TAM 2.069, a database of miRNA-disease and miRNA-
function associations based on curated information. We performed an
overrepresentation analysis of the 37miRNAs and used the p-valuemethod
to select the best results.

Data availability
We used miRNA expression data from patients that is freely available
through the Therapeutically Applicable Research to Generate Effective
Treatments (https://ocg.cancer.gov/programs/target) initiative4,63,
phs000465, at theGenomicDataCommons repository64 (https://portal.gdc.
cancer.gov/projects). For signature quality control we used an external gene
expression dataset, publicly available at the Gene Expression Omnibus
repository (GSE97135)67.

Code availability
The underlying code for this study is available on GitHub and can be
accessed via this link https://github.com/IvanEllson/miRNA-predictive-
signature-survival.git.
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