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Abstract The most common cause of human congenital disorders of glycosylation (CDG) are 
mutations in the phosphomannomutase gene PMM2, which affect protein N-linked glycosylation. 
The yeast gene SEC53 encodes a homolog of human PMM2. We evolved 384 populations of yeast 
harboring one of two human-disease-associated alleles, sec53-V238M and sec53-F126L, or wild-
type SEC53. We find that after 1000 generations, most populations compensate for the slow-growth 
phenotype associated with the sec53 human-disease-associated alleles. Through whole-genome 
sequencing we identify compensatory mutations, including known SEC53 genetic interactors. We 
observe an enrichment of compensatory mutations in other genes whose human homologs are asso-
ciated with Type 1 CDG, including PGM1, which encodes the minor isoform of phosphoglucomutase 
in yeast. By genetic reconstruction, we show that evolved pgm1 mutations are dominant and allele-
specific genetic interactors that restore both protein glycosylation and growth of yeast harboring the 
sec53-V238M allele. Finally, we characterize the enzymatic activity of purified Pgm1 mutant proteins. 
We find that reduction, but not elimination, of Pgm1 activity best compensates for the deleterious 
phenotypes associated with the sec53-V238M allele. Broadly, our results demonstrate the power of 
experimental evolution as a tool for identifying genes and pathways that compensate for human-
disease-associated alleles.

Editor's evaluation
This valuable paper shows that experimental evolution can shed new and unbiased light on muta-
tions involved in human diseases by showing how growth defects can be compensated. The 
evidence is convincing, benefiting from not only genetics but also well-established biochemical 
assays. This paper will be of interest to a broad group of evolutionary biologists and biologists inter-
ested in human diseases.

Introduction
Protein glycosylation is an important cotranslational and posttranslational modification involving the 
attachment of glycans to polypeptides. These glycans play vital roles in protein folding, stability, 
activity, and transport (Varki, 2017). Glycosylation is one of the most abundant protein modifications, 
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with evidence indicating that over 50% of human proteins are glycosylated (Roth et al., 2012; Wong, 
2005). Despite this, we lack a global understanding of the complex pathologies involving protein 
glycosylation.

Congenital disorders of glycosylation (CDG) are a group of inherited metabolic disorders arising 
from defects in the protein glycosylation pathway, including N-linked glycosylation, O-linked glyco-
sylation, and lipid/glycosylphosphatidylinositol anchor biosynthesis (Chang et  al., 2018). N-linked 
CDG are further categorized into two groups based on the affected process: synthesis and transfer 
of glycans (Type 1) or processing of protein-bound glycans (Type 2) (Aebi et al., 1999). Mutations 
in the human phosphomannomutase 2 gene (PMM2) cause Type 1 CDG and are the most common 
cause of CDG (Ferreira et al., 2018). PMM2 forms a homodimer and catalyzes the interconversion of 
mannose-6-phosphate and mannose-1-phosphate (M1P) (EC 5.4.2.8). M1P is then converted to GDP-
mannose, a required substrate for N-linked glycosylation glycosyltransferases.

Two of the most common pathogenic PMM2 variants found in humans are p.Val231Met and 
p.Phe119Leu. The V231M protein is less stable and exhibits defects in protein folding (Citro et al., 
2018; Silvaggi et al., 2006), whereas the F119L protein is stable but exhibits dimerization defects 
(Andreotti et al., 2015; Kjaergaard et al., 1999; Pirard et al., 1999). The budding yeast Saccharo-
myces cerevisiae contains a homologous phosphomannomutase enzyme encoded by the gene SEC53. 
SEC53 is essential in yeast and expression of human PMM2 rescues lethality (Hansen et al., 1997; Lao 
et al., 2019). Previously, Lao et al., 2019 constructed strains harboring the yeast-equivalent muta-
tions of the most common human-disease-associated PMM2 alleles including V231M (sec53-V238M) 
and F119L (sec53-F126L).

Using experimental evolution, we sought to identify compensatory mutations able to overcome 
glycosylation deficiency. Previous studies have used experimental evolution of compromised organ-
isms, to study evolutionary outcomes and identify compensatory mutations (Harcombe et al., 2009; 
Helsen et al., 2020; Laan et al., 2015; Michel et al., 2017; Moser et al., 2017; Szamecz et al., 
2014). Experimental evolution allows for a more robust approach than traditional suppressor screens, 
enabling the identification of weak suppressors and compensatory interactions between multiple 
mutations (Cooper, 2018; LaBar et al., 2020).

Here, we present a 1000-generation evolution experiment of yeast models of PMM2-CDG. We 
evolved 96 populations of yeast with wild-type SEC53, 192 populations with the sec53-V238M allele, 
and 96 populations with the sec53-F126L allele for 1000 generations. We sequenced 188 evolved 
clones to identify mutations that arose specifically in the populations harboring the sec53 human-
disease-associated alleles. We find an overrepresentation of mutations in genes whose human homo-
logs are other Type 1 CDG genes, including PGM1 (the minor isoform of phosphoglucomutase), the 
most commonly mutated gene in our experiment. We show that evolved mutations in PGM1 restore 
protein N-linked glycosylation and alleviate the slow-growth phenotype caused by the sec53-V238M 
disease-associated allele. We performed genetic and biochemical characterization of the pgm1 muta-
tions and show that these mutations are dominant and allele-specific SEC53 genetic interactors.

Results
Experimental evolution improves growth of yeast models of PMM2-
CDG
Mutations in the phosphomannomutase 2 gene, PMM2, are the most common cause of CDG. Lao 
et  al., 2019 constructed yeast models of PMM2-CDG by making the yeast-equivalent mutations 
for five human-disease-associated alleles in SEC53, the yeast ortholog of PMM2. These strains have 
growth rate defects that correlate with enzymatic activity and promoter strength. Increasing expres-
sion levels of the mutant sec53 alleles twofold, by replacing the endogenous promoter (pSEC53) with 
the ACT1 promoter (pACT1), modestly improves the growth rate of sec53 disease-associated alleles 
(Figure 1A).

We chose to focus on sec53-V238M and sec53-F126L because they are two of the most common 
disease alleles in humans and because the mutations have distinct and well-characterized effects on 
protein structure and function (Figure 1A; Andreotti et al., 2015; Briso-Montiano et al., 2022; Citro 
et al., 2018; Kjaergaard et al., 1999; Pirard et al., 1999; Silvaggi et al., 2006). We evolved 96 
haploid populations of each mutant sec53 genotype (pSEC53-sec53-V238M, pACT1-sec53-V238M, 
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and pACT1-sec53-F126L) and 48 haploid populations of each wild-type SEC53 genotype (pSEC53-
SEC53-WT and pACT1-SEC53-WT) for 1000 generations in rich glucose medium (Figure 1B). Strains 
with the pSEC53-sec53-F126L allele grew too slowly to keep up with a 1:210 dilution every 24 hr. Every 
50 generations we measured culture density (single time-point OD600) for each population as a proxy 
for growth rate (Figure 1C; Figure 1—figure supplement 1).
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Figure 1. Experimental evolution of yeast models of congenital disorders of glycosylation. (A) Table of the various sec53 alleles used in this study. In 
vitro enzymatic activities of Pmm2 are relative to wild-type Pmm2 and were previously reported (Pirard et al., 1999). Relative growth rates of yeast 
carrying various SEC53 alleles were previously reported (Lao et al., 2019). (B) Diagram of the evolution experiment. Yeast carrying sec53 mutations 
implicated in human disease were used to initiate replicate populations in 96-well plates: 96 populations of each mutant genotype and 48 populations 
of each wild-type genotype. Populations were propagated in rich glucose media, unshaken, for 1000 generations. (C) Single time-point OD600 readings 
of populations were taken every 50 generations during the evolution experiment as a measure of growth rate. Each line represents one population.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. OD600 readings of each population.
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Populations with the pACT1-sec53-V238M allele show a range of dynamics, with some popula-
tions reaching maximum saturation (OD600 ≈ 1.0) early in the experiment, while some do not even by 
Generation 1000 (Figure 1C). Three pACT1-sec53-V238M populations went extinct before Genera-
tion 200. While saturation levels of pACT1-sec53-F126L populations also increased over the course of 
the evolution experiment, none reached an OD600 close to 1.0, indicating that these populations are 
likely less-fit than the evolved pACT1-sec53-V238M populations. Each pSEC53-sec53-V238M popula-
tion started the evolution experiment with growth rates comparable to SEC53-WT populations, indi-
cating compensatory mutation(s) likely arose in the starting inocula (Figure 1—figure supplement 1). 
We therefore exclude these populations from subsequent analyses. Together, our data show that the 
PMM2-CDG yeast models acquired compensatory mutations throughout the evolution experiment 
and that the extent of compensation depends on the specific disease-associated allele.

Putative compensatory mutations are enriched for other Type 1 CDG-
associated homologs
To identify the compensatory mutations in our evolved populations, we sequenced single clones 
from 188 populations isolated at Generation 1000 to an average sequencing depth of ~50×. These 
included 91 pACT1-sec53-V238M clones, 36 pACT1-sec53-F126L clones, 32 pSEC53-SEC53-WT 
clones, 11 pACT1-SEC53-WT clones, and 18 of the initially suppressed pSEC53-sec53-V238M clones 
(Supplementary file 1). Autodiploids are a common occurrence in our experimental system (Fisher 
et al., 2018; Johnson et al., 2021). We attempted to avoid sequencing autodiploids by screening our 
evolved populations for sensitivity to benomyl, an antifungal agent that inhibits growth of S. cerevisiae 
diploids more severely than haploids (Venkataram et al., 2016).

We find that the average number of de novo mutations (single nucleotide polymorphisms [SNPs] 
and small indels) varied between SEC53 genotypes, with the pACT1-sec53-F126L clones accruing 
more mutations per clone (8.14 ± 1.00, 95% confidence interval [CI]) compared to pACT1-sec53-
V238M (5.76 ± 0.54) and SEC53-WT clones (combined pSEC53-SEC53-WT and pACT1-SEC53-WT) 
(6.49 ± 0.90) (Figure 2—figure supplement 1). Despite screening for benomyl sensitivity, most of the 
sequenced clones (131/188) appear to be autodiploids, with evidence of multiple heterozygous loci. 
In addition, we detect several copy number variants (CNVs) and aneuploidies shared between inde-
pendent populations (Figure 2—source data 1, Figure 2—source data 2).

We identified putative adaptive targets of selection as genes with more mutations than expected 
by chance across replicate clones. Some of these common targets of selection are not specific to 
sec53. For example, mutations in negative regulators of Ras (IRA1 and IRA2) are found in clones from 
each experimental group and are also observed in other laboratory evolution experiments across a 
wide range of conditions (Figure 2A; Fisher et al., 2018; Gresham and Hong, 2014; Johnson et al., 
2021; Kvitek and Sherlock, 2013; Lang et al., 2013; Venkataram et al., 2016).

We identified putative sec53-compensatory targets as genes mutated exclusively in pACT1-sec53-
V238M and/or pACT1-sec53-F126L populations (Figure  2A). The most frequently mutated genes 
among pACT1-sec53-F126L clones are common targets in other evolution experiments such as IRA1, 
IRA2, and KRE6, suggesting that mutations capable of compensating for Sec53-F126L dimerization 
defects are rare or not easily accessible. In contrast, while recurrently mutated genes in pACT1-sec53-
V238M populations include common targets, we also identified a number of unique targets of selec-
tion, most notably in homologs of other Type 1 CDG-associated genes. We find an enrichment of 
mutations in CDG homologs in pACT1-sec53-V238M clones (Figure 2B; Figure 2—source data 3).

Across all sequenced populations we identified ~620 nonsynonymous mutations. As there are 
nearly 6000 yeast genes, the probability of any given gene receiving even a single nonsynonymous 
mutation is low. We are therefore well powered to detect enrichment of mutations, but underpowered 
to detect depletion of mutations. To gain statistical power we aggregated our SEC53-WT data with 
three other large datasets using similar strains and propagation regimes (Fisher et al., 2018; Johnson 
et al., 2021; Lang et al., 2013). In this aggregate dataset, we observe a statistically significant deple-
tion of mutations in Type 1 CDG homologs, suggesting that they are typically under purifying selec-
tion in experimental evolution (Figure 2B).

One of the CDG homologs, PGM1, is the most frequently mutated gene among pACT1-sec53-
V238M clones. PGM1 encodes the minor isoform of phosphoglucomutase in yeast (Bevan and 
Douglas, 1969). We only find PGM1 mutations in pACT1-sec53-V238M populations which suggests 
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their compensatory effects are unique to the sec53-V238M mutation and not glycosylation deficiency 
in general. Each of the five mutations in PGM1 are missense mutations, rather than frameshift or 
nonsense. This is consistent with selection acting on alteration-of-function rather than loss-of-function 
(LOF; posterior probability of non-LOF = 0.96, see Methods).

To identify the compensatory mutation(s) that arose prior to the start of the evolution experiment 
in the initially suppressed pSEC53-sec53-V238M populations, we analyzed the 18 sequenced clones. 
For each clone, we find both wild-type SEC53 and sec53-V238M alleles among sequencing reads. This 
could result from integration or maintenance of the covering plasmid. No sequencing reads align to 
the URA3 locus of our reference genome, suggesting that the plasmid marker was lost, as expected 
following counterselection.

Compensatory mutations restore growth
In order to validate putative compensatory mutations we reconstructed evolved mutations in PGM1 
and ALG9, two genes whose human homologs are implicated in Type 1 CDG (Frank et al., 2004; 
Timal et  al., 2012). These heterozygous evolved mutations were constructed in a homozygous 
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Figure 2. Mutations in Type 1 congenital disorders of glycosylation (CDG) homologs are enriched in sec53-V238M populations. (A) Heatmap showing 
the number of nonsynonymous mutations per gene that arose in the evolution experiment. Genes with two or more unique nonsynonymous mutations 
(and each Type 1 CDG homolog with at least one mutation) are shown. pSEC53-SEC53-WT and pACT1-SEC53-WT are grouped as ‘SEC53-WT’. For 
comparison, we show data from previously reported evolution experiments where the experimental conditions were identical to the conditions used 
here, aside from strain background and experiment duration (bottom three rows). Commonly mutated pathways are grouped for clarity. Asterisks (*) 
indicate previously known SEC53 genetic interactors (Costanzo et al., 2016; Kuzmin et al., 2018). (B) Binomial test for enrichment or depletion of 
mutations in Type 1 CDG homologs based on the number of nonsynonymous mutations observed in each experiment, the total number of yeast genes 
(5906), and the number of genes that are Type 1 CDG homologs (24). ‘Combined WT’ includes the SEC53-WT populations as well as three additional 
datasets: Lang et al., 2013, Fisher et al., 2018, and Johnson et al., 2021.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Table of recurrent copy number variants (CNVs) and aneuploidies in the evolution experiment.

Source data 2. Coverage plots of evolved clones.

Source data 3. Table of mutations in Type 1 congenital disorders of glycosylation (CDG) homologs.

Figure supplement 1. The number of de novo mutations per SEC53 genotype.

https://doi.org/10.7554/eLife.79346
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pACT1-sec53-V238M diploid background (note that although each pgm1 and alg9 mutation assayed 
here arose in haploid-founded populations, they arose as heterozygous mutations in autodiploids). We 
quantified the fitness effect of each mutation using a flow cytometry-based fitness assay, competing 
the reconstructed strains against a fluorescently labeled, diploid version of the pACT1-SEC53-WT 
ancestor.

The pACT1-sec53-V238M ancestor has a fitness deficit of −25.86 ± 2.3% (95% CI) relative to wild-
type. We find that each of the five evolved pgm1 mutations are compensatory in the pACT1-sec53-
V238M background. The fitness effects of the sec53/pgm1 double mutants range between −19.10 
± 1.07% and −9.84 ± 0.77% (i.e., the pgm1 mutations confer a fitness benefit between 6.76% and 
16.02% in the pACT1-sec53-V238M background) (Figure 3A). We also find that the evolved alg9-
S230R mutation is compensatory, as the sec53/alg9 double mutant has a fitness effect of −17.89 ± 
0.59% (Figure 3—figure supplement 1). We compared the fitness of these reconstructed double 
mutants to the fitness of the evolved clones which carry three to nine additional SNPs. In each case, 
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Figure 3. Evolved mutations rescue fitness and protein glycosylation defects of pACT1-sec53-V238M. (A) Average fitness effects and standard 
deviations of reconstructed heterozygous pgm1 mutations. Fitness effects were determined by competitive fitness assays against a fluorescently labeled 
version of the diploid pACT1-SEC53-WT ancestor. Replicate measurements are plotted as gray circles. Pairs of pgm1 fitness effects with non-statistically 
significant differences: R64C-D295N, R64C-pgm1Δ, R64C-S120A, D295N-pgm1Δ, G514C-T521K, G514C-S120A, and pgm1Δ-S120A (df = 194, F = 208.1, 
each p > 0.05, one-way analysis of variance [ANOVA] with Tukey post hoc test). (B) Western blots of invertase (left) and carboxypeptidase Y (right) from 
ancestral and reconstructed strains. In panels A and B, plus signs (+) indicate wild-type alleles. Genotypes are either homozygous wild-type (+/+), 
homozygous mutant (mutation/mutation), or heterozygous (mutation/+).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw images of blots and Ponceau stains.

Figure supplement 1. Fitness effects of reconstructed mutations and evolved clones containing those same mutations.

Figure supplement 2. Fitness effects of pgm1 mutations in the SEC53-WT background.

Figure supplement 3. Fitness effects of homozygous pgm1 mutations.

Figure supplement 4. Effects of pgm1 mutations on invertase glycosylation in the pACT1-sec53-V238M background.

Figure supplement 4—source data 1. Raw images of blots and Ponceau stains.

Figure supplement 5. Effects of pgm1 mutations on invertase and carboxypeptidase Y (CPY) glycosylation in the pACT1-SEC53-WT background.

Figure supplement 5—source data 1. Raw images of blots and Ponceau stains.

Figure supplement 6. Effects of pgm1 mutations on invertase glycosylation in the pACT1-sec53-F126L background.

Figure supplement 6—source data 1. Raw images of blots and Ponceau stains.

https://doi.org/10.7554/eLife.79346
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the evolved clones were more fit than the reconstructed strain, except for the evolved clone containing 
the pgm1-D295N mutation (Figure 3—figure supplement 1). Thus, while the alg9 and pgm1 muta-
tions compensate for the sec53-V238M defect, other mutations contribute to the overall fitness of 
these evolved clones.

We constructed and assayed the fitness effects of the pgm1 mutations in diploid pACT1-sec53-
F126L and pACT1-SEC53-WT backgrounds. Each pACT1-sec53-F126L strain was too quickly outcom-
peted by the reference strain to measure fitness, suggesting that the compensatory effects of the 
evolved pgm1 mutations are specific for the sec53-V238M mutation or any fitness improvements in 
the pACT1-sec53-F126L background are too minimal to detect. Each pgm1 mutation is nearly neutral 
in the pACT1-SEC53-WT background (Figure 3—figure supplement 2).

To determine if LOF of PGM1 would phenocopy evolved mutations, we deleted one copy of PGM1 
(pgm1Δ) in the diploid pACT1-sec53-V238M background and again measured fitness. We find that 
the heterozygous pgm1Δ mutation improves fitness (−15.28 ± 0.76%), indicating that LOF of PGM1 
is compensatory in the conditions of the evolution experiment (Figure  3A). It is not immediately 
clear, then, why we only identify missense mutations in PGM1. Each of the mutated Pgm1 residues 
is located around the active site of the enzyme, based on predicted protein structure (Jumper et al., 
2021; Stiers and Beamer, 2018). It could be that the evolved pgm1 mutations are LOF given this 
clustering but maintaining protein expression provides an ancillary benefit. To account for this possi-
bility, we constructed a catalytically dead allele of PGM1 by mutating the enzyme’s catalytic serine 
(pgm1-S120A) (Stiers et al., 2017a). We find that pgm1-S120A improves pACT1-sec53-V238M fitness 
(−13.32 ± 0.88%) and this does not significantly differ from pgm1Δ (Figure 3A), indicating that PGM1 
LOF is compensatory regardless of if that arises from loss of coding sequence or enzyme activity. We 
also measured fitness of homozygous pgm1 mutations (Figure 3—figure supplement 3). In all cases, 
the fitness effect of heterozygous and homozygous pgm1 mutants is not substantially different from 
each other, indicating that, by this assay, the evolved pgm1 mutations are dominant in the pACT1-
sec53-V238M background, as are the pgm1Δ and pgm1-S120A mutations.

Compensatory mutations restore protein glycosylation
We have established that pgm1 mutations compensate for the growth rate defect of the sec53-
V238M allele. To determine whether the evolved pgm1 mutants also compensate for the molecular 
defects in N-linked glycosylation we examined two representative yeast glycoproteins, invertase and 
carboxypeptidase Y (CPY), in our reconstructed pgm1 strains. Invertase forms both a non-glycosylated 
homodimer (120 kDa) and a secreted homodimer that is heavily glycosylated (approximate range of 
140–270 kDa) (Gascón et al., 1968; Zeng and Biemann, 1999). Mature CPY only exists in its glyco-
sylated form, with a molecular weight of 61 kDa (Hasilik and Tanner, 1978).

The ancestral pACT1-sec53-V238M strain shows underglycosylation of invertase and CPY. We find 
a reduced abundance of the higher-molecular-weight glycosylated form of invertase and mature CPY, 
accompanied by the appearance of underglycosylated forms of these proteins (Figure 3B). We find 
that evolved pgm1 mutations, pgm1Δ, and pgm1-S120A each restore glycosylation of these proteins 
to near-wild-type levels (Figure 3B, Figure 3—figure supplements 4 and 5). We do not observe 
rescue of protein glycosylation in pACT1-sec53-F126L strains carrying pgm1 mutations (Figure 3—
figure supplement 6). Together, these suggest that pgm1-mediated rescue of pACT1-sec53-V238M 
fitness is due to restoration of protein glycosylation and the effect is specific for the pACT1-sec53-
V238M background.

Compensatory PGM1 mutations are dominant suppressors of sec53-
V238M
To further demonstrate that pgm1-mediated compensation is specific for sec53-V238M, we performed 
a genetic analysis by dissecting tetrads from strains that are heterozygous for both sec53 and pgm1. 
In the absence of a compensatory mutation, we expect 50% large colonies and all tetrads showing 
a 2:2 segregation of colony size due to the single segregating locus (SEC53/sec53). However, if an 
evolved mutation is compensatory then we expect 75% large colonies with three types of segregation 
patterns: 2:2, 3:1, and 4:0, large to small colonies, respectively. These three segregation patterns 
are expected to follow a 1:4:1 ratio assuming no genetic linkage (Figure 4A). For each genetic test, 

https://doi.org/10.7554/eLife.79346
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we dissected ten tetrads and performed a log-likelihood test to determine whether the segregation 
pattern is more consistent with genetic suppression than non-suppression (Figure 4—source data 1).

We find each of the evolved pgm1 mutations compensates for the V238M allele of SEC53 
(Figure 4—figure supplement 1). For example, dissections of a strain heterozygous for pACT1-sec53-
V238M and pgm1-T521K show 78% large colonies (one 4:0 and nine 3:1, with a log-likelihood ratio of 
27.6, Figure 4B). These genetic tests corroborate the results from the fitness assays by showing that 
all five evolved pgm1 mutations, the pgm1Δ and pgm1-S120A mutations, as well as the evolved alg9 
mutation all suppress sec53-V238M (Figure 4—figure supplement 1). We next assayed each of the 
pgm1 mutations in a sec53-F126L background. In contrast to the fitness assays, we find several pgm1 
alleles (T521K, D295N, S120A, and pgm1Δ) that suppress sec53-F126L (Figure 4—figure supple-
ment 1). It is worth noting, however, that the degree of compensation is less than in the sec53-V238M 
background based on colony sizes.

To test if pgm1 mutations are dominant, we integrated a second wild-type copy of PGM1 to 
each of the strains such that each haploid spore will contain either two wild-type copies of PGM1 
(PGM1::PGM1) or both wild-type PGM1 and mutant pgm1 (PGM1::pgm1). We find that the five 
evolved pgm1 mutations and pgm1-S120A, but not pgm1Δ, are dominant suppressors of sec53-
V238M in the genetic assay (Figure 4C, D; Figure 4—figure supplement 2). For the sec53-F126L 
background, we find no dominant suppressors.

Reduction of Pgm1 activity alleviates deleterious effect of PMM2-CDG 
in yeast
To determine how the evolved mutations alter Pgm1 enzymatic activity, we cloned mutant and wild-
type PGM1 alleles into bacterial expression vectors, purified recombinant enzyme, and assayed 
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Figure 4. pgm1 mutations are dominant suppressors of sec53-V238M. (A) Diagram of possible spore genotypes in the tetrad dissections. Heterozygous 
(e.g., SEC53/sec53 PGM1/pgm1) diploid strains could produce one of three tetrad genotypes based on allele segregation. (B) Example of pgm1-T521K 
dissections in a sec53-V238M background (top) and a sec53-F126L background (bottom). Listed are the probability and log likelihood of suppression, 
based on the ratio of normal growth (large colonies) to slow growth (no colonies or small colonies). (C) Example of PGM1::pgm1-T521K dissections in 
a sec53-V238M background (top) and a sec53-F126L background (bottom). (D) Plot of recessive suppression versus dominant suppression of the pgm1 
mutations in the sec53-V238M background (red circles) and sec53-F126L background (blue diamonds), based on the tetrad dissections.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Log-likelihood analysis of tetrad dissections.

Figure supplement 1. Tetrad dissections of PGM1/pgm1 and ALG9/alg9 strains.

Figure supplement 2. Tetrad dissections of PGM1-linked strains.

https://doi.org/10.7554/eLife.79346
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phosphoglucomutase activity using a standard coupled enzymatic assay (Figure  5A; Figure  5—
figure supplement 1). We find that mutant Pgm1 have variable activities, ranging from near-wild-
type (Pgm1-T231A) to non-detectable (Pgm1-R64C and Pgm1-D295N) (Figure  5B, C). The near 
complete loss of activity of Pgm1-D295N is unsurprising since D295 coordinates a Mg2+ ion that 
plays an essential role during catalysis (Stiers et al., 2016) and we verify that all the active forms 
show very low activity in the presence of ethylenediaminetetraacetic acid (EDTA) (Figure 5—source 
data 1). Thermostability did not differ between enzymes with detectable activity (Figure 5—figure 
supplement 2).
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Figure 5. Complete loss of Pgm1 activity overshoots a fitness optimum. (A) AlphaFold structure of S. cerevisiae Pgm1 (Jumper et al., 2021). Mutated 
residues shown as spheres. (B) Kinetic parameters of recombinant Pgm1 enzymes as determined by a coupled enzymatic assay. Values ± 95% confidence 
intervals. (C) Michaelis–Menten curves of wild-type and mutant Pgm1. Replicate measurements are plotted as circles. (D) Pgm1 enzyme Vmax versus the 
corresponding allele’s fitness effect in the diploid pACT1-sec53-V238M background (as shown in Figure 3A). Horizontal and vertical error bars represent 
95% confidence intervals. Best fit regression shown as a dashed curve (y = 14.583 + 0.04613x − 0.00014x2, R2 = 0.907, df = 4, F = 37.34, p = 0.0258, 
analysis of variance [ANOVA]). Note that we did not measure Pgm1-S120A activity and assume null activity.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Other biochemical properties of mutant Pgm1.

Figure supplement 1. Enzymatic assays.

Figure supplement 2. Thermostabilities of mutant Pgm1.

Figure supplement 3. Phosphomannomutase activity of mutant Pgm1.

Figure supplement 4. pgm1 mutations increase glucose-1,6-bisphosphate (G16P) levels in the pACT1-sec53-V238M background.

Figure supplement 5. Representative forward/reverse phosphoglucomutase assay.

https://doi.org/10.7554/eLife.79346
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Comparison of the kinetic parameters of active mutant enzymes shows a reduction of maximal 
velocity (Vmax) between 27% and 72% relative to wild-type Pgm1. Based on the apparent Michaelis 
constant (Km), substrate affinities of Pgm1-G514C and Pgm1-T521K are lower than wild-type Pgm1 
(t = 4.30 and 3.14, df = 35.78 and 20.47, p = 0.0001 and 0.0051, respectively, Welch’s modified t-
test). Pgm1-T231A shows an increased affinity compared to wild-type Pgm1, but this difference is not 
statistically significant (t = 1.94, df = 34.68, p = 0.0601, Welch’s). Together these indicate that the five 
evolved pgm1 mutations have varying effects on enzymatic activity. The relationship between pgm1 
fitness and Pgm1 Vmax is best fit by a quadratic, rather than a linear, function (Figure 5D). Therefore, 
optimal fitness is attained by tuning down, but not eliminating, Pgm1 activity.

Mutant Pgm1 does not have increased phosphomannomutase activity
Phosphoglucomutases can exhibit low levels of phosphomannomutase activity, and we reasoned 
that active-site mutations in Pgm1 could alter epimer specificity from glucose to mannose, directly 
compensating for the loss of Sec53 activity (Lowry and Passonneau, 1969). We tested this in 
two ways. First, we directly measured phosphomannomutase activity of wild-type Pgm1 and two 
mutant Pgm1, using a 31P-NMR spectroscopy-based assay (Figure 5—figure supplements 1 and 
3A). We find that wild-type Pgm1 and Pgm1-G514C show comparably low phosphomannomu-
tase activity, accounting for 3.5% and 3.0% of their phosphoglucomutase activity, respectively. We 
could not detect any phosphomannomutase activity for Pgm1-D295N. We also tested for phos-
phomannomutase activity indirectly by determining whether M1P acted as a competitive inhibitor 
in the phosphoglucomutase assay. If mutant Pgm1 had altered epimer specificity, we would expect 
M1P to compete with glucose-1-phosphate (G1P) for residency within the active site, leading to 
an apparent decrease in phosphoglucomutase activity. However, we find no effect of the addition 
of M1P on phosphoglucomutase activity for any of the Pgm1 enzymes tested (Figure 5—figure 
supplement 3B). Together, these results indicate that mutant Pgm1 does not have enhanced phos-
phomannomutase activity.

Pgm1 mutations increase intracellular glucose-1,6-bisphosphate levels
Glucose-1,6-bisphosphate (G16P) is required as an activator of both Pgm1 and Pmm2 (Sec53) and 
can stabilize pathogenic variants of Pmm2 (Monticelli et al., 2019). The only known source of G16P 
in yeast is low-level dissociation during the phosphoglucomutase reaction of Pgm1 and Pgm2. We 
reasoned that evolved pgm1 mutations may increase intracellular levels of G16P which, in turn, would 
stabilize Sec53-V238M. Each active form of Pgm1 exhibits barely detectable activity in the absence of 
G16P and we determined an apparent half maximal effective concentration (EC50) of G16P for several 
Pgm1 enzymes (Figure 5—source data 1). Given that Pgm1 is the minor isoform of phosphoglucomu-
tase in yeast, we also reasoned that it could act as a glucose-1,6-bisphosphatase, similar to human 
PMM1 (Veiga-da-Cunha et al., 2008). We performed a specific glucose-1,6-bisphosphatase assay on 
wild-type and mutant Pgm1 enzyme (Figure 5—figure supplement 1). However, none of the mutant 
Pgm1 enzymes have detectable glucose-1,6-bisphosphatase activity.

We next assessed G16P levels for two pgm1 mutant alleles in both the pACT1-sec53-V238M and 
the pACT1-SEC53-WT backgrounds (Figure 5—figure supplement 4). We find that strains heterozy-
gous for pgm1-T521K or pgm1-D295N show statistically significant increases in the amount of G16P 
present compared to wild-type PGM1, in the sec53-V238M background (W = 24 and 8, p = 0.003 
and 0.0002, respectively, Mann–Whitney U-test). However, this difference is not significant in the 
SEC53-WT background (W = 41 and 15, p = 0.35 and 0.078, respectively, Mann–Whitney).

Finally, we also reasoned that pgm1 mutations could differently affect the forward and reverse 
directions of the phosphoglucomutase reaction, with possible effects on the flux of metabolites within 
the cell. We analyzed the forward and reverse reactions of Pgm1, Pgm1-T231A, and Pgm1-G514C 
using G1P or glucose-6-phopshate (G6P) as the substrate (Figure 5—figure supplement 1). We again 
used 31P-NMR spectroscopy, as G1P and G6P have clearly distinguishable signals (Figure 5—figure 
supplement 5). The ratio of forward to reverse reactions is 3.0 ± 1.2 and 4.3 ± 1.1 (± standard devi-
ation) for Pgm1-T231A and Pgm1-G514C, respectively. Although a slightly higher ratio was obtained 
for wild-type Pgm1 (7.4 ± 3.1), the differences between wild-type and Pgm1-T231A or Pgm1-G514C 
are not statistically significant (W = 1 and 2, p = 0.057 and 0.53, respectively, Mann–Whitney).

https://doi.org/10.7554/eLife.79346
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Discussion
The budding yeast S. cerevisiae is a powerful system for studying conserved aspects of eukaryotic 
cell biology due to its fast doubling time, small genome size, genetic tractability, and the wealth of 
genomics tools available (Botstein and Fink, 2011). Many human genes are functionally identical to—
and can complement—their yeast homologs (Kachroo et al., 2015). ‘Humanizing’ yeast by replacing 
a yeast ortholog with the human gene or making an analogous human mutation in a yeast ortholog 
enables functional studies of human disease (Franssens et  al., 2013; Laurent et  al., 2016). For 
example, Mayfield et al. characterized the severity of 84 alleles of human CBS (cystathionine-β-syn-
thase) that are associated with homocystinuria, identifying those alleles where cofactor supplementa-
tion can restore high levels of enzymatic function (Mayfield et al., 2012). Gammie et al. characterized 
54 MSH2 variants associated with hereditary nonpolyposis colorectal cancer showing that about half 
of the variants have enzymatic function but are targeted for degradation (Gammie et  al., 2007). 
Subsequent work showed that treatment with proteasome inhibitors restores mismatch repair and 
chemosensitivity in yeast harboring these disease-associated variants (Arlow et al., 2013). In addi-
tional to functional characterization, yeast models of human disease enable screens for genetic inter-
actions, thereby uncovering new avenues for therapeutic intervention. Wiskott–Aldrich syndrome, for 
example, is due to mutations in WAS, the human homolog of LAS17. Using a temperature-sensitive 
lethal allele of las17, Filteau et al. isolated compensatory mutations in two yeast strains. The authors 
identified both common and background-specific mechanisms of compensation, including LOF of 
CNB1 (Calcineurin B), which is phenocopied by inhibition with cyclosporin A (Filteau et al., 2015).

Here, we use experimental evolution to identify mechanisms of genetic compensation in human-
ized yeast models of PMM2-CDG. We evolved 96 replicate populations for 1000 generation in rich 
glucose medium using strains carrying wild-type SEC53 (the yeast homolog of PMM2) and two human-
disease-associated alleles (sec53-V238M and sec53-F126L). We show that compensatory mutations 
arose throughout the evolution experiment. Fitness gains were greater for populations with the 
pACT1-sec53-V238M allele compared to the pACT1-sec53-F126L allele, which showed modest gains 
in fitness (Figure 1C). This indicates that the number of compensatory mutations and/or the amelio-
rative effects of compensatory mutations are greater for the pACT1-sec53-V238M allele compared 
to the pACT1-sec53-F126L allele. Our sequencing and reconstruction experiments show that both 
explanations are true. While the pACT1-sec53-V238M populations showed several unique targets 
of selection, the pACT1-sec53-F126L populations mostly acquired mutations in targets of selection 
observed in other evolution experiments (Figure 2A). In addition, the genetic reconstruction experi-
ments show that some of the pgm1 mutations are recessive suppressors of sec53-F126L, whereas all 
five pgm1 mutations are dominant suppressors of sec53-V238M (Figure 4). The latter is unsurprising 
given that each pgm1 mutation arose as a heterozygous mutation in a sec53-V238M autodiploid 
background.

Twenty-four genes have been associated with Type 1 CDG in humans (Aebi et al., 1999). All but 
two Type 1 CDG genes have at least one functional homolog in yeast, and most map one-to-one 
(Figure 2—source data 3). We find an overrepresentation of mutations in Type 1 CDG homologs in 
the evolved pACT1-sec53-V238M populations (Figure 2B). This enrichment is striking considering 
that we observe a significant depletion of mutations in these same genes aggregated across evolu-
tion experiments with wild-type SEC53, which suggests that they are normally under purifying selec-
tion. Specifically, we find five mutations in PGM1, two in ALG9, and one in ALG12. In addition, one 
ALG7 mutation was identified in a single pACT1-sec53-F126L population. Of these four, only PGM1 
is a known SEC53 genetic interactor, and none are known Sec53 physical interactors. ALG7 encodes 
an acetylglucosaminephosphotransferase responsible for the first step of lipid-linked oligosaccharide 
synthesis, downstream of SEC53 in the N-linked glycosylation pathway (Barnes et al., 1984; Kuku-
ruzinska and Robbins, 1987). ALG9 and ALG12 act downstream of SEC53 and encode mannos-
yltransferases, responsible for transferring mannose residues from dolichol-phosphate-mannose to 
lipid-linked oligosaccharides (Burda et al., 1999; Burda et al., 1996; Cipollo and Trimble, 2002; 
Frank and Aebi, 2005). This oligosaccharide is eventually transferred to a polypeptide. Each of the 
evolved mutations in these genes is predicted to have deleterious effects on protein function based 
on PROVEAN scores (Supplementary file 1; Choi and Chan, 2015). This suggests that prodding 
steps in N-linked glycosylation alleviates the deleterious effect of sec53 disease-associated alleles, 
perhaps by altering pathway flux to match lowered M1P availability. Evidence from human studies 

https://doi.org/10.7554/eLife.79346


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Vignogna et al. eLife 2022;11:e79346. DOI: https://doi.org/10.7554/eLife.79346 � 12 of 23

supports the idea of downstream genetic modifiers affecting PMM2-CDG phenotypes. For example, 
there is not a direct correlation between clinical phenotypes and biochemical properties of PMM2 
(Citro et al., 2018; Freeze and Westphal, 2001). One such modifier is a variant of the glucosyltrans-
ferase ALG6, which has been implicated in worsening clinical outcomes of PMM2-CDG individuals 
(Bortot et al., 2013; Westphal et al., 2002).

In addition to Type 1 CDG homologs, we identify several other classes of putative genetic suppres-
sors. Both the sec53-V238M and sec53-F126L mutations retain partial functionality and Lao et al., 
2019 showed that increasing expression of these alleles improves growth. We, therefore, expected 
to find CNVs and aneuploidies as compensatory mutations. Though we do identify several strains that 
show evidence of CNVs at the HO locus on Chromosome IV, where the sec53 alleles reside in our 
strains, karyotype changes are not a major route of adaptation (Figure 2—source data 1). Reduced 
function of mutant Sec53 could be due to destabilization and degradation of the protein. We identify 
recurrent mutations in the 26S proteasome lid subunit RPN5 in the pACT1-sec53-V238M background, 
in the E3 ubiquitin ligase UBR1 in the pACT1-sec53-F126L background, and in the ubiquitin-specific 
protease UBP3 in both pACT1-sec53 backgrounds (Figure 2). In addition, we identify a mutation in 
the ubiquitin-specific protease UBP15 in a single pACT1-sec53-V238M clone. And finally, we observe 
multiple independent mutations in the known SEC53-interactors RPN5, SRP1, and YNL011C in sec53 
populations, which could have positive genetic interactions with sec53 (Figure 2).

We find a high probability that the mutational spectrum of PGM1 (five missense mutations, 0 
frameshift/nonsense) resembles selection for non-LOF (posterior probability = 0.96). However, 
PGM1 LOF (pgm1Δ) provides a fitness benefit indistinguishable from two evolved mutations 
(pgm1-R64C and pgm1-D295N) and higher than one evolved mutation (pgm1-T231A). Likewise, 
the pgm1Δ allele restores invertase and CPY glycosylation and growth in the tetrad analyses, albeit 
recessively. It is not immediately clear, therefore, why we do not observe frameshift/nonsense muta-
tions in PGM1 in the evolution experiment. We have previously shown that genetic interactions 
between evolved mutations are not always recapitulated by gene deletion (Vignogna et al., 2021). 
Given that most of the evolved clones containing pgm1 mutations are more fit than the recon-
structed strains, it is possible that other evolved mutations interact epistatically only with non-LOF 
pgm1 mutations. However, there are no shared mutational targets (genes or pathways) among the 
evolved clones with pgm1 mutations and only one evolved pgm1 clone contains a mutation in a 
known PGM1 interactor (FRA1). These suggest any putative genetic interactions with our evolved 
pgm1 mutations are allele specific.

Using tetrad dissections, we show that each evolved pgm1 mutation and the catalytically dead 
pgm1-S120A mutation are dominant suppressors of sec53-V238M. pgm1Δ is not a dominant 
suppressor based on the tetrad analyses, contrary to the fitness assays where the heterozygous pgm1Δ 
allele confers a fitness benefit comparable to several evolved mutations. This discrepancy likely results 
from differences in ploidy or growth medium of the two experiments—diploids in liquid culture versus 
haploids on agar plates. We also find that several pgm1 mutations (T521K, D295N, pgm1Δ, and 
S120A) are recessive suppressors of the sec53-F126L allele in the tetrad dissections, whereas we were 
unable to detect any improvement using fitness assays. Three of these four mutations have no detect-
able enzymatic activity. However, the R64C allele, which also does not have detectable enzymatic 
activity does not suppress.

To test specific hypotheses for the mechanism of suppression of sec53 disease alleles by muta-
tion of pgm1, we characterized the biochemical properties of purified recombinant Pgm1 mutant 
proteins. We find that phosphoglucomutase activity ranges from non-detectable activity (R64C and 
D295N) to near wild-type (T231). Based on well-characterized human and rabbit PGM1 structures, 
R64C and D295N mutations likely affect active-site integrity (Liu et al., 1997; Stiers et al., 2016). 
R64 helps hold the catalytic serine (S120) in place and D295 coordinates a catalytically essential Mg2+ 
ion. The T231A mutation, which occurs in a residue near the metal-binding loop, shows the highest 
activity levels among our mutant Pgm1 enzymes. The other two mutations with low but detectable 
activity, G514C and T521K, both occur in the phosphate-binding domain of Pgm1, a region important 
for substrate binding (Beamer, 2015; Stiers et al., 2017a; Stiers et al., 2017b; Stiers and Beamer, 
2018). Comparing pgm1 fitness effects versus their corresponding enzyme Vmax we find an inverted 
U-shaped curve, where reducing phosphoglucomutase activity improves fitness, but complete loss of 
activity overshoots the optimum (Figure 5D). Plotting fitness versus kcat/Km results in a qualitatively 
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similar trend, although comparing kcat/Km between mutant enzymes may not be appropriate (Eisen-
thal et al., 2007).

We tested several hypotheses involving Pgm1 alteration-of-function. First, the evolved Pgm1 
proteins could directly complement the loss of Sec53 phosphomannomutase activity by switching 
epimer specificity from glucose to mannose. However, we do not observe increased phosphoman-
nomutase activity in the Pgm1 mutant proteins, nor is this hypothesis consistent with our genetic data: 
direct complementation would be expected to suppress both the sec53-V238M and sec53-F126L 
alleles.

A second possible mechanism of suppression is increasing the production of G16P. G16P is 
an endogenous activator and stabilizer of Pmm2 (Sec53). Compounds that raise G16P levels by 
increasing its production and/or slowing its degradation show promise as candidates for treatment 
of PMM2-CDG (Iyer et  al., 2019; Monticelli et  al., 2019). Whereas higher eukaryotes and some 
bacteria have a dedicated G16P synthase, in yeast G16P is produced as a dissociated intermediate 
of the phosphoglucomutase reaction (Maliekal et al., 2007; Neumann et al., 2021). We hypothe-
sized that evolved mutations in PGM1 may increase the rate of G16P dissociation. Recent work has 
shown that a mutation affecting Mg2+ coordination in L. lactis β-phosphoglucomutase can increase 
dissociation of β-G16P in vitro (Wood et al., 2021). While we did not directly measure G16P synthase 
activity of Pgm1, we find that intracellular levels of G16P are increased in strains with pgm1-T521K or 
pgm1-D295N. We cannot, however, determine if the observed increase in G16P is sufficient to rescue 
glycosylation. There may be other metabolic changes caused by the pgm1 mutations that impact 
Sec53 activity and glycosylation.

A third possible mechanism of compensation is the indirect increase of G16P by increasing the 
relative flux of the reverse (G6P to G1P) reaction relative to the forward (G1P to G6P) reaction. This 
would create a futile cycle of G1P/G6P interconversion, which is expected to result in higher intracel-
lular G16P. This hypothesis is attractive in that it accounts for three observations regarding the evolved 
pgm1 mutations: (1) the observation of only missense (not nonsense or frameshift) mutations in the 
evolution experiment, (2) the dominance of suppressors in our genetic assay, and (3) greater extent of 
suppression for the stability mutant (V238M) of SEC53. Nevertheless, the observation that complete 
loss of Pgm1 enzymatic activity improves growth of sec53 mutants suggests that there are multiple 
mechanisms of suppression through PGM1.

There is truth to the saying that ‘a selection is worth a thousand screens’. Experimental evolution 
takes what would otherwise be a screen—looking for larger colonies on a field of smaller ones—
and turns it into a selection. Here, we demonstrate the power of yeast experimental evolution to 
identify genetic mechanisms that compensate for the molecular defects of PMM2-CDG disease-
associated alleles. This general approach is applicable to other human disease alleles that affect core 
and conserved biological processes including protein glycosylation, ribosome maturation, mitochon-
drial function, and RNA modification. Mutations that impinge upon these processes are often highly 
pleiotropic. In humans, salient phenotypes may be neurological or developmental, but in yeast, these 
disease alleles invariably lead to slow growth. With a population size of 105, evolution can act on 
differences as small as 0.001%, far below the ability to resolve on plates. Even our best fluorescence-
based assays can only resolve differences of ~0.1% (Lang and Botstein, 2011). With a genome size 
of 107 bp, a mutation rate of 10−10 per bp per generation, and with continuous selective pressure 
exerted over thousands of generations, each population will sample hundreds of thousands of coding-
sequence mutations. Over longer time scales, experimental evolution can be used to identify rare 
suppressor mutations, suppressor mutations with modest fitness effects, and/or complex compensa-
tory interactions involving multiple mutations, which are largely absent from current genetic interac-
tion networks.

Methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent pTC416-SEC53 Lao et al., 2019

Wild-type SEC53 plasmid 
(CEN-ARS)

Plasmid map: https://bit.ly/​
3nBYllD

https://doi.org/10.7554/eLife.79346
https://bit.ly/3nBYllD
https://bit.ly/3nBYllD
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA 
reagent pML104-NatMx3 Addgene (83477) Cas9 plasmid

Modified plasmids available 
upon request

Recombinant DNA 
reagent pAG25 Addgene (35121) Integrating plasmid

Modified plasmids available 
upon request

Recombinant DNA 
reagent pGEX-2T Cytiva Life Sciences (28954653)

Bacterial expression 
plasmid

Modified plasmids available 
upon request

Antibody
anti-carboxypeptidase rabbit 
polyclonal antibody Abcam (ab181691) (1:1000)

Antibody
anti-rabbit IgG HRP-conjugated 
mouse monoclonal antibody

Cell Signaling Technologies 
(5127) (1:2000)

Antibody
anti-invertase goat polyclonal 
antibody Novus Biologicals (NB120-20597) (1:1000)

Antibody
anti-goat IgG HRP-conjugated 
mouse monoclonal antibody

Rockland Immunochemicals 
(18-8814-33) (1:2000)

 Continued

Experimental evolution
The haploid strains used in the evolution experiment are S288c derivatives and were described previ-
ously (Lao et al., 2019). Each strain maintains a URA3-marked plasmid encoding wild-type SEC53 
(pTC416-SEC53 described in Lao et al., 2019). Strains with the pSEC53-sec53-F126L allele grew too 
slowly to keep up with a 1:210 dilution every 24 hr.

To initiate the evolution experiment, strains were struck to synthetic defined media (complete 
supplement mixture [CSM] minus arginine, 0.67% yeast nitrogen base, 2% dextrose) containing 
5-Fluoroorotic Acid (5FOA) (Zymo Research, Irvine, CA, USA) to isolate cells that spontaneously lost 
pTC416-SEC53. A single colony was chosen for each strain and used to inoculate 10 ml of YPD (1% 
yeast extract, 2% peptone, 2% dextrose) plus ampicillin and tetracycline. These cultures grew to satu-
ration then were distributed into 96-well plates. Every 24-hr populations were diluted 1:210 using a 
BiomekFX liquid handler into 125 μl of YPD plus 100 μg/ml ampicillin and 25 μg/ml tetracycline to 
prevent bacterial contamination. Plates were then left at 30°C without shaking. The dilution scheme 
equates to 10 generations of growth per day at an effective population size of ~105. Every 100 gener-
ations, 50 μl of 60% glycerol was added to each population and archived at −80°C.

OD600 was measured every 50 generations over the course of the evolution experiment. After daily 
dilutions were completed, populations were resuspended by orbital vortexing at 1050 rpm for 15 s 
then transferred to a Tecan Infinite M200 Pro plate reader for sampling.

Whole-genome sequencing
Benomyl assays were performed by spotting 5 μl of populations onto YPD plus 20 μg/ml benomyl 
(dissolved in dimethyl sulfoxide [DMSO]) and incubating at 25°C. Ploidy was then inferred by visually 
comparing growth of evolved populations to control haploid and diploid strains.

Single clones were isolated for sequencing by streaking 5 μl of cryo-archived populations to YPD 
agar. One clone from each population was randomly chosen and grown to saturation in 5 ml YPD, 
pelleted, and frozen at −20°C. Genomic DNA was harvested from frozen cell pellets using phenol–
chloroform extraction and precipitated in ethanol. Total genomic DNA was used in a Nextera library 
preparation as described previously (Buskirk et al., 2017). Pooled clones were sequenced using an 
Illumina NovaSeq 6000 sequencer by the Sequencing Core Facility at the Lewis-Sigler Institute for 
Integrative Genomics at Princeton University.

Sequencing analysis
Raw sequencing data were concatenated and then demultiplexed using a dual-index barcode 
splitter (https://bitbucket.org/princeton_genomics/barcode_splitter/src/master/). Adapter sequences 
were trimmed using Trimmomatic (Bolger et al., 2014). Modified S288c reference genomes were 
constructed using reform (https://github.com/gencorefacility/reform; Khalfan, 2021) to correct for 

https://doi.org/10.7554/eLife.79346
https://bitbucket.org/princeton_genomics/barcode_splitter/src/master/
https://github.com/gencorefacility/reform
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strain-construction-related differences between our strains and canonical S288c. Trimmed reads were 
aligned to these modified S288c reference genomes using BWA and mutations were called using 
FreeBayes (Garrison and Marth, 2012; Li and Durbin, 2009). VCF files were annotated with SnpEff 
(Cingolani et al., 2012). All calls were confirmed manually by viewing BAM files in IGV (Thorvalds-
dóttir et al., 2013). Clones were predicted to be diploids if two or more mutations were called at an 
allele frequency of 0.5. CNVs and aneuploidies were called via changes in sequencing coverage using 
Control-FREEC (Boeva et al., 2012). CNVs and aneuploidies were confirmed by visually inspecting 
coverage plots.

Yeast strain construction
Evolved mutations were reconstructed via CRISPR/Cas9 allele swaps. For mutations that fall within 
a Cas9 gRNA site (alg9-S230R, pgm1-T231A, and pgm1-G514C), repair templates were produced 
by PCR-amplifying 500–2000 bp fragments centered around the mutation of interest from evolved 
clones. Commercially synthesized dsDNA fragments (Integrated DNA Technologies, Coralville, IA, 
USA) were used as repair templates for all other mutations (pgm1-R64C, pgm1-S120A, pgm1-D295N, 
pgm1-T521K, and pgm1Δ). These 500 bp fragments contained our mutation of interest as well as 
one to two synonymous mutations in the Cas9 gRNA site to halt cutting. The pgm1Δ repair template 
was a dsDNA fragment consisting of 250 bp upstream then 250 bp downstream of the ORF. Repair 
templates were cotransformed into haploid ancestral strains with a plasmid encoding Cas9 and gRNAs 
targeting near the mutation site (Addgene #83476) (Laughery et al., 2015).

Heterozygous mutant strains were constructed by mating haploid mutants to MATα versions of 
their respective ancestral strains. Homozygous mutant strains were constructed by reconstructing 
mutations in MATα versions of the ancestral strains and mating them to the respective MATa mutant 
strain. Successful genetic reconstructions were confirmed via Sanger sequencing (Psomagen, Rock-
ville, MD, USA).

Linked PGM1 strains used for tetrad dissections were constructed by transforming strains with 
a linearized integrating plasmid (Addgene #35121) containing wild-type PGM1 (Goldstein and 
McCusker, 1999). Successful integration of the plasmid next to the endogenous PGM1 locus was 
confirmed via PCR. Strain information in Supplementary file 2.

Competitive fitness assays
We measured the fitness effect of evolved mutations using competitive fitness assays described previ-
ously with some modifications (Buskirk et al., 2017). Query strains were mixed 1:1 with a fluorescently 
labeled version of the pACT1-SEC53-WT ancestral diploid strain. Each pACT1-sec53-F126L strain was 
outcompeted immediately by the reference at this ratio, so we also tried mixing at a ratio of 50:1. 
Cocultures were propagated in 96-well plates in the same conditions in which they evolved for up to 
50 generations. Saturated cultures were sampled for flow cytometry every 10 generations. Each geno-
type assayed was done so with at least 24 technical replicates (competitions) of 4 biological replicates 
(2 clones isolated each from 2 isogenic but separately constructed strains). Analyses were performed 
in Flowjo and R.

LOF/non-LOF Bayesian analysis
From reconstruction data from previously published evolution experiments (Fisher et  al., 2018; 
Lang et al., 2013; Marad et al., 2018), we identified ten genes where selection is acting on LOF 
(ACE2, CTS1, ROT2, YUR1, STE11, STE12, STE4haploids, STE5, IRA1, and IRA2) and six genes where 
selection is for non-LOF (CNE1, GAS1, KEG1, KRE5, KRE6, and STE4autodiploids). These data estab-
lished prior probabilities that selection is acting on LOF (0.625) or non-LOF (0.375). We then deter-
mined the conditional probabilities of missense and frameshift/nonsense mutations given selection 
for LOF and non-LOF using 240 mutations across these 16 genes as well as 414 5FOA-resistant 
mutations at URA3 and 454 canavanine-resistant mutations at CAN1 (Lang and Murray, 2008). 
From these data, we can estimate the log likelihood and posterior probabilities that selection is 
acting on LOF or non-LOF given the observed mutational spectrum for any given gene (Supple-
mentary file 3).

https://doi.org/10.7554/eLife.79346


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology | Genetics and Genomics

Vignogna et al. eLife 2022;11:e79346. DOI: https://doi.org/10.7554/eLife.79346 � 16 of 23

CPY and invertase blots
Strains were grown in 5 ml YPD plus 100 μg/ml ampicillin and 25 μg/ml tetracycline until saturated, 
then pelleted, and frozen at −20°C. Cell pellets were lysed in Ripa lysis buffer (150 mM NaCl, 1% 
Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 25 mM Tris [pH 7.4]) with 
protease inhibitors (Thermo Fisher Scientific, Waltham, MA, USA) and 10 mM dithiothreitol (DTT), 
incubated for 30 min on ice, sonicated five times briefly, incubated for a further 10 min on ice, and 
centrifuged at 20,000 × g for 10 min at 4°C. Supernatant was quantified by Micro BCA Protein Assay 
(Thermo Fisher). 30 μg of each lysate were prepared in Lamelli buffer and were incubated at 95°C for 
5 min and chilled at 4°C. Lysates were separated on a 6% or 8% sodium dodecyl sulfate–polyacryl-
amide gel electrophoresis (SDS–PAGE) gel. Protein was transferred to 0.2 µm pore nitrocellulose at 
100 V for 100 min at 4°C in Towbin buffer. The membrane was rinsed and stained with Ponceau S for 
normalization. The membranes were blocked with 5% milk/TBST for 1 hr at room temperature.

CPY blots were incubated with an anti-carboxypeptidase antibody at 1:1000 overnight at 4°C and 
washed three times with TBST. The blots were then incubated with anti-rabbit IgG HRP diluted 1:2000 
in milk/TBST for 1 hr, washed three times and developed with ECL reagent (Bio-Rad Laboratories, 
Hercules, CA, USA). Invertase blots were prepared similarly with an anti-invertase antibody and anti-
goat IgG HRP. All images were captured on the Bio-Rad ChemiDoc MP Imaging System (Bio-Rad). 
Analysis was done with Image Lab Software (Bio-Rad). Raw images of blots and Ponceau stain controls 
are available in Figure 3—source data 1.

Tetrad dissection and inference of genetic interactions
Heterozygous yeast strains (i.e., SEC53/sec53 PGM1/pgm1) were sporulated by resuspending 1 ml 
of overnight YPD culture in 2  ml of SPO++ (1.5% potassium acetate, 0.25% yeast extract, 0.25% 
dextrose, 0.002% histidine, 0.002% tryptophan) and incubated on a roller-drum for ~7 days at room 
temperature. Ten tetrads per strain were dissected on YPD agar and then incubated for 48 hr at 30°C. 
We performed a log-likelihood test to determine if patterns of segregation are indicative of suppres-
sion (Figure 4—source data 1). Note that in order to calculate conditional probabilities we had to 
include an error term (0.01) to account for biological noise in the real data. Our inference of suppres-
sion, however, is robust to our choice of error value.

Bacterial growth and lysis
Wild-type and mutant PGM1 alleles were cloned into the expression vector pGEX-2T. Cloned vectors 
were transformed into E. coli BL21(DE3). Bacteria were grown in lysogeny broth (LB) medium plus 
0.1 mg/ml ampicillin. Each PGM1 allele was expressed by induction at 0.1 OD with 0.1 mg/ml IPTG 
for 16 hr at 15°C. Bacteria were harvested by centrifugation, washed with phosphate-buffered saline 
(PBS), and stored at −80°C. Bacterial lysis was accomplished in 25 mM Tris buffer (pH 8) containing 
1 mM EDTA, 2 mM DTT, 5% glycerol, and 0.1 mM phenylmethylsulfonyl fluoride (PMSF), by adding 
1 mg/ml lysozyme and 2.5 µg/ml DNase. Clear extract was then obtained by centrifugation.

Protein purification
Protein purification was accomplished using Glutathione Sepharose High Performance resin (GSTrap 
by Cytiva, Marlborough, MA, USA) and Benzamidine Sepharose 4 Fast Flow resin (HiTrap Benzami-
dine FF by Cytiva). Cleavage of the GST-tag was conducted on-column by adding thrombin. All the 
procedures were performed according to manufacturer’s instructions. Briefly, clear extract obtained 
from 50 ml of bacterial culture was loaded onto the GSTrap column (5 ml), previously equilibrated 
with 25 mM Tris (pH 8) containing 2 mM DTT and 5% glycerol. Unbound protein was eluted, then the 
column was washed with 20 mM Tris (pH 8) containing 1 mM DTT, 150 mM NaCl, 1 mM MgCl2, and 5% 
glycerol (buffer A). Thrombin (30 units in 5 ml of buffer A) was loaded and the column was incubated 
for 14–16 hr at 10°C. GSTrap and HiTrap Benzamidine columns were connected in series, and elution 
of the untagged protein was accomplished with buffer A. Fractions were analyzed by SDS–PAGE and 
activity assays. Active fractions were finally collected and concentrated by ultrafiltration. A yield span-
ning 1.0–4.6 mg of protein per liter of bacterial culture was obtained.

Each protein was obtained in a pure, monomeric form as judged by SDS–PAGE and gel filtra-
tion analyses, with a single band observed at the expected molecular weight (63 kDa). Gel filtration 

https://doi.org/10.7554/eLife.79346
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analysis was performed on BioSep-SEC-S 3000 column (Phenomenex, Torrance, CA, USA) at 1 ml/min. 
The eluent was 20 mM Tris (pH 8), 1 mM MgCl2, and 150 mM NaCl.

Activity assays
Phosphoglucomutase activity was assayed spectrophotometrically at 340 nm and 29°C by following 
the reduction of NADP+ to NADPH in a 0.3 ml reaction mixture containing 25 mM Tris (pH 8), 5 mM 
MgCl2, 1 mM DTT, 0.25 mM NADP+, and 2.7 U/ml glucose-6-phosphate dehydrogenase in the pres-
ence of 0.3 mM G1P and 0.02 mM G16P. Additional experiments were performed with the addi-
tion of M1P (10, 50, and 200 μM). Km were evaluated by measuring activity in the presence of G1P 
ranging from 0 mM to 0.6 mM. Analyses were performed in R using the drc package (Ritz et al., 
2015). Bisphosphatase activity was measured spectrophotometrically at 340 nm and 29°C in the pres-
ence of 0.1 mM G16P, 0.25 mM NADP+, and 2.7 U/ml glucose-6-phosphate dehydrogenase. Activity 
expressed as the number of micromoles of substrate transformed per minute per mg of protein under 
the standard conditions.

Thermostabilities of Pgm1 were determined by incubating purified protein for 5 or 10  min at 
different temperatures (30, 35, 40, and 45°C) in 20 mM Tris (pH 8), 1 mM MgCl2, 150 mM NaCl, 5% 
glycerol, and 0.1 mg/ml BSA. After cooling on ice, residual activity was measured under standard 
conditions.

31P-NMR spectroscopy
Phosphoglucomutase and phosphomannomutase activity were measured by 31P-NMR spectroscopy 
(Citro et al., 2017). This assay allows us to exclude the effects on the change in absorbance due to 
impurities that could be substrates for the ancillary enzymes required for the assay. This is of utmost 
importance when the activity is particularly low and measuring the rate of change in absorbance 
requires long incubation times, as it is the case of phosphomannomutase activity for Pgm1. A discon-
tinuous assay was performed. Appropriate amounts of proteins were incubated at 30°C with 1 mM 
G1P or M1P in 20 mM Tris (pH 8), 1 mM MgCl2, 0.1 mg/ml BSA, in the presence of 20 μM G16P for 
up to 60 min. The reaction was stopped with 50 mM EDTA on ice and heat inactivation. The content 
of the residual substrate (M1P or G1P) and/or the product (M6P or G6P) were measured recording 
31P-NMR spectra. Creatine phosphate was added as an internal standard for the quantitative analysis. 
The 1H-decoupled, one-dimensional 31P spectra were recorded at 161.976 MHz on a Bruker Avance III 
HD spectrometer 400 MHz, equipped with a BBO BB-H&F-D CryoProbe Prodigy fitted with a gradient 
along the z-axis, at a probe temperature of 27°C. Spectral width 120 ppm, delay time 1.2 s, and pulse 
width of 12.0 μs were applied. All the samples contained 10% 2H2O for internal lock.

Similarly, forward (G1P to G6P) and reverse (G6P to G1P) phosphoglucomutase activities were 
measured following the same procedure described above, with 1 mM G1P or G6P as the substrate.

Quantification of G16P abundance
Yeast metabolite extraction was performed as described previously (Gonzalez et al., 1997). Briefly, 
five replicate cultures per genotype were grown in 5 ml YPD plus 100 μg/ml ampicillin and 25 μg/ml 
tetracycline at 30°C. 107 cells of mid-log culture were collected on nylon filters, washed with 10 ml 
cold PBS, frozen in liquid nitrogen, and lyophilized. Cells were then treated with an ice-cold solution 
containing 14% HClO4 and 91 mM imidazole, frozen and thawed five times (dry ice/acetone followed 
by 40°C bath) with vigorous shaking between each cycle, then centrifuged at 13,500 × g at 4°C. 
Supernatant was neutralized with 3 M K2CO3 and centrifuged again at 13,500 × g at 4°C to eliminate 
salt precipitate.

G16P in the metabolite extracts was measured through stimulation of rabbit muscle phospho-
glucomutase as described previously (Veiga-da-Cunha et  al., 2008). Phosphoglucomutase activity 
was assayed spectrophotometrically at 340 nm, in a mixture containing 87 mM Tris (pH 7.6), 5.6 mM 
MgCl2, 0.11 mM ethylene glycol tetraacetic acid (EGTA), 0.1 mg/ml BSA, 0.048 mM NADP+, 0.48 mM 
G1P, 0.26 U/ml glucose-6-phosphate dehydrogenase, at 36°C. G1P had previously been purified from 
G16P through anionic exchange chromatography on AG1x8 Hydroxide Form column in step gradient 
of triethylammonium bicarbonate from 0.01 M to 1 M (Monticelli et al., 2019). Three technical repli-
cates for each of the five biological replicates were assayed. 0.0–0.15 µM commercial G16P (Merck & 
Co, Rahway, NJ, USA) was used as the standard.

https://doi.org/10.7554/eLife.79346
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