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BACKGROUND Hyperkalemia has been associated with increased mortality in cardiac intensive care unit (CICU)

patients. An artificial intelligence (AI) enhanced electrocardiogram (ECG) can predict hyperkalemia, and other AI-ECG

algorithms have demonstrated mortality risk-stratification in CICU patients.

OBJECTIVES The authors hypothesized that the AI-ECG hyperkalemia algorithm could stratify mortality risk beyond

laboratory serum potassium measurement alone.

METHODS We included 11,234 unique Mayo Clinic CICU patients admitted from 2007 to 2018 with a 12-lead ECG and

blood potassium (K) level obtained at admission with K $5 mEq/L defining hyperkalemia. ECGs underwent AI evaluation

for the probability of hyperkalemia (probability >0.5 defined as positive). Hospital mortality was analyzed using logistic

regression, and survival to 1 year was estimated using Kaplan-Meier and Cox analysis.

RESULTS In the final cohort (n ¼ 11,234), the mean age was 69.6 � 10.5 years, 37.8% were females, and 92.4% were

White. Chronic kidney disease was present in 20.2%. The mean laboratory potassium value for the cohort was 4.2 � 0.3

mEq/L. The AI-ECG predicted hyperkalemia in 33.9% (n ¼ 3,810) of CICU patients and 12.9% (n ¼ 1,451) of patients had

laboratory-confirmed hyperkalemia (K $5 mEq/L). In-hospital mortality increased in false-positive, false-negative, and

true-positive patients, respectively (P < 0.001), and each of these patient groups had successively lower survival out to

1 year.

CONCLUSIONS AI-ECG-based prediction of hyperkalemia, even with a normal laboratory potassium value, was asso-

ciated with higher in-hospital mortality and lower 1-year survival in CICU patients. This study demonstrated that AI-ECG

probability of hyperkalemia may enable rapid individualized risk stratification in critically ill patients beyond laboratory

value alone. (JACC Adv. 2024;3:101169) © 2024 The Authors. Published by Elsevier on behalf of the American College of

Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AI = artificial intelligence

APACHE = Acute Physiology

and Chronic Health Evaluation

AUC = area under the curve

CCI = Charlson Comorbidity

Index

CICU = cardiac intensive care

unit

ECG = electrocardiogram

FN = false negative

FP = false positive

LVSD = left ventricular systolic

dysfunction

M-CARS = Mayo Cardiac

Intensive Care Unit Admission

Risk Score

SOFA = Sequential Organ

Failure Assessment

TN = true negative

TP = true POSITIVE
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B lood electrolyte disturbances are
common in critically ill patients and
have been associated with adverse

outcomes.1-3 Within the cardiac intensive
care unit (CICU) population, hyperkalemia,
hyponatremia, and hypochloremia have all
been associated with increased short- and
long-term mortality.2,4,5 Abnormalities in
serum potassium can affect cardiac myo-
cytes, and underlying acute cardiac disease
could magnify the association between dys-
kalemia and adverse outcomes in CICU
patients.2,6

Hyperkalemia specifically has been asso-
ciated with mortality and fatal arrhythmias
in the critically ill, including CICU patients.2

Abnormalities on a standard 12-lead elec-
trocardiogram (ECG) tracing remain a rapid
and simple way to detect hyperkalemia.
However, hyperkalemia must be severe to
produce ECG abnormalities, and the sensi-
tivity of physician ECG interpretation to di-
agnose hyperkalemia remains relatively low.6,7

Accordingly, we created and validated an artificial
intelligence (AI) enhanced ECG algorithm to predict
hyperkalemia from 2 leads of a standard 12-lead ECG
in a large, heterogeneous patient cohort with chronic
kidney disease.8 As the relationship between labo-
ratory measured potassium and mortality in the
critically ill is well defined, a knowledge gap remains
if a similar mortality association exists for patients
with AI-ECG predicted hyperkalemia in a CICU
setting.

There is precedent for using AI-ECG to perform risk
stratification in CICU patients, as we have shown us-
ing an AI-ECG algorithm designed to detect left ven-
tricular systolic dysfunction (LVSD).9 In this separate
investigation, we found patients with LVSD based on
AI-ECG or transthoracic echocardiogram had an
increased risk of mortality, particularly those patients
with an abnormality on both tests.9 Interestingly,
patients with normal left ventricular function on
transthoracic echocardiogram, but AI-ECG predicted
LVSD (ie, a false-positive [FP] test), were also at
increased risk of in-hospital and 1-year mortality,
demonstrating the independent and complementary
prognostic value of the AI-ECG algorithm beyond
what was visible by diagnostic imaging for LVSD
alone.9

In this present study, we aim to better understand
the contribution of the AI-ECG algorithm for the
prediction hyperkalemia as a novel prognostic
biomarker in the CICU setting, similar to our prior AI-
ECG LVSD study. Specifically, we hope to elucidate
the mortality risk association from the AI-ECG results
in patients with correlative laboratory potassium
values (ie, true positives [TPs]) and in patients with
discordant AI-ECG/lab results (ie, FPs and FNs). This
type of analysis will highlight the potential added
value of this and similar AI-ECG algorithms in CICU
patient care.

MATERIALS AND METHODS

This study was approved by the Institutional Review
Board at the Mayo Clinic (Rochester, Minnesota, USA)
as a minimal-risk investigation. All clinical data,
including patient information, digitally stored ECGs,
and values from laboratory testing, were obtained
from the Mayo Clinic electronic health records. The
Mayo Clinic Institutional Review Board waived the
need for informed consent because of the study’s
retrospective nature. We excluded patients who had
previously declined to have their health records uti-
lized for research. Race/ethnicity and sex data were
self-reported by individual patients.

STUDY POPULATION. We included unique Mayo
Clinic patients admitted to the CICU, located at Saint
Mary’s campus of Mayo Clinic Hospital, Rochester,
Minnesota, between 2007 and 2018 with a standard
10-second, 12 lead ECG and laboratory potassium
(serum or plasma) level obtained during admission.10

While small differences may exist between types of
laboratory potassium measured, these variations are
typically modest and of unlikely statistical signifi-
cance.2 Patients without either an admission ECG or
laboratory potassium were excluded. The current
database only included admission data (ie, ECG, lab
potassium value) without specific time-stamp of
collection. Each patient collected 12 lead ECG was
processed by the AI-ECG algorithm for hyperkalemia,
as described below.

DATA SOURCES. Demographic, clinical, vital signs,
laboratory, outcome, and diagnosis data were
extracted from the electronic medical record using
the Mayo Clinic Multidisciplinary Epidemiology and
Translational Research in Intensive Care Data Mart
and data on critical care procedures and therapies.11

Admission diagnoses were identified by the Interna-
tional Statistical Classification of Diseases-9/10 codes
recorded within 1 day before or after CICU admis-
sion.12 The Charlson Comorbidity Index (CCI), indi-
vidual comorbidities, and severity of illness scores,
including the SOFA (Sequential Organ Failure
Assessment), M-CARS (Mayo Cardiac Intensive Care
Unit Admission Risk Score), and APACHE (Acute
Physiology and Chronic Health Evaluation) III and IV
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scores were extracted from the electronic medical
record using previously validated algorithms.1,3,13,14

The M-CARS is a novel risk score which utilizes mul-
tiple variables at the time of CICU admission (ie,
cardiac arrest, shock, respiratory failure, Braden skin
score, blood urea nitrogen, anion gap, and red blood
cell distribution width) to predict in-hospital and 1-
year mortality amongst critically ill patients. This
risk score was derived and validated in this CICU
cohort, which has been demonstrated to outperform
SOFA or APACHE in this population.3

DEEP LEARNING MODEL. The AI-ECG algorithm in
this study has been previously described in detail.8

Briefly, the AI algorithm used in this study was
developed as a convolutional neural network with 11
layers. Using a standard 10-second, 12-lead ECG
recording, the network processes the data from
simultaneously acquired ECG lead data and produces
a parameter output between 0 and 1 that represents
the probability of hyperkalemia (defined as serum
potassium >5.5 mEq/L in the original derivation). In
its original derivation, 2 independent models were
developed based on 2- and 4-lead ECGs.8 The 2-lead
AI-ECG demonstrated an area under the receiver
operating characteristic curve (AUC) of 0.85 to 0.88 at
a threshold where sensitivity was equal to speci-
ficity.8 In this current study, we used the previously
developed 2-lead model (leads I and II of a standard
12-lead ECG) and selected an operating threshold
similar to the derivation study, ie, where sensitivity is
equal to specificity.

This algorithm was originally developed to esti-
mate the risk of hyperkalemia from a 12-lead ECG. In
this current analysis, we used this same algorithm to
understand if the AI-ECG predicted risk of hyper-
kalemia could determine mortality risk in a similar
way that we have observed other AI-ECG algorithms
to be predictive of mortality in the CICU population.9

GROUP DEFINITIONS. Based on our prior outcomes
work, hyperkalemia was defined as serum potassium
>5.0 mEq/L.2 In this study, we determined patients
with an AI-ECG probability of hyperkalemia >0.5 to
be considered “high probability” for suspected
hyperkalemia. We defined 4 subgroups after AI-ECG
processing: 1) normal AI-ECG without laboratory
hyperkalemia (true negative [TN]); 2) isolated AI-ECG
hyperkalemia without laboratory hyperkalemia (FP);
3) isolated laboratory hyperkalemia with normal AI-
ECG (FN); and 4) both laboratory and AI-ECG-
predicted hyperkalemia (TP).

STATISTICAL ANALYSIS. The primary outcome of
interest was all-cause in-hospital mortality, which
included all CICU deaths, and the key secondary
outcomes were all-cause 30-day and 1-year mortality.
ORs and 95% CI values for the primary outcome of all-
cause-in-hospital mortality were calculated using lo-
gistic regression. Survival to 1 year was estimated
using Kaplan-Meier curves, with groups compared
using the log-rank test. HR and 95% CI values for the
secondary outcomes of all-cause 30-day and 1-year
mortality were calculated using Cox proportional-
hazards analysis. Multivariable logistic regression
and Cox models were adjusted for age, CCI, and M-
CARS for both the primary (in-hospital mortality) and
secondary (1-year mortality) outcomes.3 Discrimina-
tion was evaluated using the AUC (C-statistic) values.
To determine the relative importance of laboratory
potassium valve and AI-ECG probability of hyper-
kalemia for prediction of in-hospital mortality, the
mean decrease in accuracy and Gini Index (higher
reflecting greater variable importance) were derived
from a random forest including these variables along
with age, CCI, and M-CARS; number of trees was 300
with 2 variables per split based on tuning to minimize
the out-of-bag error rate. Analysis was performed
using BlueSky version 10.3.1 Pro (BlueSky LLC).

RESULTS

PARTICIPANT CHARACTERISTICS. We screened a
pre-existing CICU database of 12,428 unique patients
and excluded 1,194 patients who did not have an ECG
(n ¼ 785) or laboratory potassium level (n ¼ 445) on
CICU admission (Figure 1). In the final cohort
(n ¼ 11,234), the mean age was 69.6 � 10.5 years,
37.8% were females, and 92.4% were White. Chronic
kidney disease was present in 20.2%, and 5.1% were
dialysis dependent. Admission diagnoses included
cardiac arrest (12.6%), cardiogenic shock (12.6%),
acute coronary syndrome (44.4%), and congestive
heart failure (48.4%) (Table 1).

AI-ECG HYPERKALEMIA AND LABORATORY POTASSIUM

VALUES. The mean laboratory potassium value for
the cohort was 4.2 � 0.3 mmol/L, and the mean
probability of hyperkalemia by AI-ECG was
0.39 � 0.16. Overall discrimination of hyperkalemia
by AI-ECG was lower than observed in the derivation
study (AUC 0.71) using a more lenient definition of
laboratory hyperkalemia than in the derivation
study.8 The AUC improved to 0.76 with use of a K
cutoff of 5.5 mEq/L and further to 0.79 with a cutoff of
6 mEq/L. The AI-ECG predicted hyperkalemia in
33.9% (n ¼ 3,810) of CICU patients and 12.9%
(n ¼ 1,451) of patients had laboratory-confirmed
hyperkalemia (potassium $5 mEq/L). In this CICU
cohort, more than half (60.9%; n ¼ 6,848) were TN,
26.1% (n ¼ 2,935) were FP, 5.1% (n ¼ 576) were FN,



FIGURE 1 Prevalence and Short-term Outcomes of Hyperkalemia as Predicted by AIECG and Measured by Laboratory Analysis

Patient flow diagram (Top). Unadjusted cardiac intensive care unit and hospital mortality as it relates to lab hyperkalemia (K >5.0 mEq/L) and

artificial intelligence electrocardiogram predicted hyperkalemia (bottom). P < 0.05 across categories. AI-ECG ¼ artificial intelligence elec-

trocardiogram; CICU ¼ cardiac intensive care unit.

Harmon et al J A C C : A D V A N C E S , V O L . 3 , N O . 9 , 2 0 2 4

Risk Stratification by AI-ECG for Hyperkalemia S E P T E M B E R 2 0 2 4 : 1 0 1 1 6 9

4

and 7.8% (n ¼ 875) were TP. (Table 1). There were
substantial differences in baseline characteristics be-
tween predicted vs observed groups, and patients
with either laboratory or AI-ECG-predicted hyper-
kalemia were older and had more comorbidities with
greater severity of illness (Table 1).

IN-HOSPITAL AND 30-DAY MORTALITY. A total of
1,022 (9.1%) patients died in the hospital, including
641 (5.7%) that died during the CICU stay. A total of
1,299 (11.6%) patients died within 30 days of CICU
admission, including 985 in-hospital deaths; 37 in-
hospital deaths occurred after 30 days. Inpatient
deaths had a higher mean AI-ECG probability for
hyperkalemia (0.471 � 0.175 vs 0.382 � 0.16) and
higher mean laboratory potassium values (4.4 � 0.5
mEq/L vs 4.2 � 0.4 mEq/L; P < 0.001). Accordingly,
the distribution of AI-ECG and laboratory hyper-
kalemia groups differed between hospital survivors
and nonsurvivors, with more AI-ECG predicted and
laboratory hyperkalemia in patients who died during
hospitalization (Supplemental Figure 1).

UNADJUSTED IN-HOSPITAL AND 30-DAY MORTALITY.

Evaluating AI-ECG as a continuous variable, the
AI-ECG probability of hyperkalemia was directly
associated with in-hospital mortality (unadjusted OR:
1.16 per 0.1 unit increase in AI-ECG predicted hyper-
kalemia; 95% CI: 1.13-0.1.19; P < 0.0001; AUC: 0.59)
(Supplemental Figure 2) and 30-day mortality (un-
adjusted HR: 1.14 per 0.1 higher; 95% CI: 1.11-1.16;
P < 0.001). Compared to the TN group, patients with

https://doi.org/10.1016/j.jacadv.2024.101169
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TABLE 1 Baseline Characteristics

True Negative
(n ¼ 6,848)

False Positive
(n ¼ 2,935)

False Negative
(n ¼ 576)

True Positive
(n ¼ 875)

Total
(N ¼ 11,234) P Value

Age, y 68.5 (57.4-78.4) 70.8 (59.5-80.6) 70.4 (59.4-80.6) 72.1 (61.5-82.1) 69.6 (58.3-79.4) <0.001

Female 2,690 (39.3%) 1,051 (35.8%) 182 (31.6%) 320 (36.6%) 4,243 (37.8%) <0.001

White 6,321 (92.3%) 2,724 (92.8%) 531 (92.2%) 809 (92.5%) 10,385 (92.4%) 0.847

AI-ECG probability for hyperkalemia 0.291 (0.201-0.384) 0.635 (0.562-0.739) 0.344 (0.250-0.423) 0.727 (0.611-0.841) 0.392 (0.249-0.573) <0.001

CICU mortality 287 (4.2%) 201 (6.8%) 47 (8.2%) 106 (12.1%) 641 (5.7%) <0.001

Hospital mortality 460 (6.7%) 309 (10.5%) 87 (15.1%) 166 (19.0%) 1,022 (9.1%) <0.001

Comorbidities

Chronic kidney disease 1,100 (16.1%) 645 (22.0%) 171 (29.8%) 352 (40.3%) 2,268 (20.2%) <0.001

Dialysis before admission 226 (3.3%) 148 (5.0%) 62 (10.8%) 139 (15.9%) 575 (5.1%) <0.001

Myocardial infarction 1,126 (16.5%) 639 (21.8%) 106 (18.5%) 213 (24.4%) 2,084 (18.6%) <0.001

Congestive heart failure 1,114 (16.3%) 652 (22.2%) 131 (22.8%) 263 (30.1%) 2,160 (19.3%) <0.001

Diabetes mellitus 1,672 (24.5%) 919 (31.4%) 206 (35.9%) 419 (47.9%) 3,216 (28.7%) <0.001

Comorbidity score 1 (0, 3) 2 (0, 4) 2 (1, 4) 3 (1, 6) 2 (0, 4) <0.001

Electrolytes at ICU admission

Potassium mEq/L 4.1 (3.8-4.4) 4.3 (4.0-4.6) 5.2 (5.1-5.5) 5.4 (5.2-5.8) 4.2 (3.9-4.6) <0.001

Sodium mEq/L 139 (136-141) 138 (136-141) 138 (135-141) 136 (133-139) 138 (136-141) <0.001

Bicarbonate 24 (22-26) 24 (21-26) 23 (21-26) 22 (19-25) 24 (21-26) <0.001

Creatinine mg/dL 1.0 (0.8-1.3) 1.1 (0.8-1.5) 1.3 (1.0-2.1) 1.8 (1.3-2.8) 1.0 (0.8-1.4) <0.001

Blood urea nitrogen, mg/dL 18 (14-27) 22 (16-33) 27 (19-43) 42 (27-59) 20 (15-31) <0.001

Chloride, mEq/L 103 (100-106) 103 (99-106) 102 (98-105) 101 (97-105) 103 (100-106) <0.001

Anion gap 12 (10-14) 12 (10-15) 13 (10-16) 13 (11-16) 12 (10-15) <0.001

Admission diagnosis

Cardiac arrest 796 (11.7%) 403 (13.8%) 83 (14.5%) 126 (14.4%) 1,408 (12.6%) 0.004

Shock 879 (12.9%) 515 (17.6%) 122 (21.3%) 220 (25.2%) 1,736 (15.6%) <0.001

Cariogenic shock 710 (10.5%) 414 (14.2%) 106 (18.5%) 173 (19.8%) 1,403 (12.6%) <0.001

Septic shock 386 (5.7%) 224 (7.7%) 46 (8.0%) 87 (10.0%) 743 (6.7%) <0.001

Congestive heart failure 2,947 (43.4%) 1,549 (53.1%) 339 (59.2%) 564 (64.6%) 5,399 (48.4%) <0.001

Respiratory failure 1,469 (21.6%) 811 (27.8%) 197 (34.4%) 347 (39.7%) 2,824 (25.3%) <0.001

Acute coronary syndrome 3,263 (48.0%) 1,148 (39.3%) 241 (42.1%) 307 (35.2%) 4,959 (44.4%) <0.001

Illness severity scores

APACHE score 55 (42-69) 61 (47-75) 65 (51-83) 74 (61-91) 58 (45-74) <0.001

SOFA score on admission 2 (1-4) 3 (1-6) 4 (2-6) 5 (3-8) 2 (1-5) <0.001

Braden score 18 (16-20) 18 (15-20) 18 (15-20) 17 (14-19) 18 (15-20) <0.001

M-CARS 1 (0-3) 2 (1-4) 2 (1-4) 3 (2-5) 2 (0-3) <0.001

Ventilatory status

Any ventilation 1,737 (25.4%) 957 (32.6%) 204 (35.4%) 372 (42.5%) 3,270 (29.1%) <0.001

Invasive ventilation 1,037 (15.1%) 556 (18.9%) 118 (20.5%) 215 (24.6%) 1,926 (17.1%) <0.001

Noninvasive ventilation 930 (13.6%) 531 (18.1%) 123 (21.4%) 220 (25.1%) 1,804 (16.1%) <0.001

Length of stay (d)

ICU length of stay 1.8 (1.0-2.9) 1.8 (1.0-3.0) 1.9 (1.0-3.1) 1.9 (1.0-3.4) 1.8 (1.0-2.9) 0.001

Hospital length of stay 4.3 (2.7-8.1) 4.8 (2.7-9.1) 5.1 (2.8-9.0) 5.5 (3.0-9.9) 4.6 (2.8-8.7) <0.001

Misc ICU therapies

CVVH during ICU stay 82 (1.2%) 61 (2.1%) 18 (3.1%) 51 (5.8%) 212 (1.9%) <0.001

Dialysis during ICU stay 219 (3.2%) 149 (5.1%) 44 (7.6%) 99 (11.3%) 511 (4.5%) <0.001

Vasopressors combined 1,300 (19.0%) 671 (22.9%) 147 (25.5%) 303 (34.6%) 2,421 (21.6%) <0.001

Inotropes combined 488 (7.1%) 264 (9.0%) 48 (8.3%) 97 (11.1%) 897 (8.0%) <0.001

Intra-aortic balloon pump 541 (7.9%) 281 (9.6%) 58 (10.1%) 61 (7.0%) 941 (8.4%) 0.008

Coronary angiography 4,357 (63.6%) 1,554 (52.9%) 304 (52.8%) 374 (42.7%) 6,589 (58.7%) <0.001

Percutaneous coronary intervention 2,745 (40.1%) 919 (31.3%) 195 (33.9%) 210 (24.0%) 4,069 (36.2%) <0.001

In-hospital arrest 157 (2.3%) 90 (3.1%) 17 (3.0%) 29 (3.3%) 293 (2.6%) 0.069

LVEF from TTE in iospital 52 (37-61) 49 (32-60) 49 (32-60) 45 (30-60) 50 (35-60) <0.001

Other mechanical circulatory support 40 (0.6%) 25 (0.9%) 8 (1.4%) 3 (0.3%) 76 (0.7%) 0.046

Pulmonary artery catheter 552 (8.1%) 298 (10.2%) 68 (11.8%) 66 (7.5%) 984 (8.8%) <0.001

Red blood cell transfusion in ICU 682 (10.0%) 396 (13.5%) 77 (13.4%) 147 (16.8%) 1,302 (11.6%) <0.001

Values are median (IQR) or n (%).

AI-ECG ¼ artificial intelligence enhanced electrocardiogram; APACHE ¼ Acute Physiology and Chronic Health Evaluation; CICU ¼ cardiac intensive care unit; CVVH ¼ continuous veno-venous hemofil-
tration; ICU ¼ intensive care unit; LVEF ¼ left ventricular ejection fraction; M-CARS ¼ Mayo Cardiac Intensive Care Unit Admission Risk Score; Misc ¼ miscellaneous; SOFA ¼ sequential organ failure
assessment; TTE ¼ transthoracic echocardiography.
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FP AI-ECG results were at increased risk of in-hospital
mortality (unadjusted OR: 1.63; 95% CI: 1.40-1.90;
P < 0.0001). This mortality risk was incrementally
higher for FN patients (unadjusted OR: 2.47; 95% CI:
1.93-3.16; P ¼ 0.001) and TP patients, respectively
(unadjusted OR: 3.25; 95% CI: 2.68-3.95; P < 0.0001;
Figure 1). The prognostic performance of ICU clinical
risk scores (APACHE, M-CARS, SOFA) was less prog-
nostic in comparison to FN and TP patients (OR: 1.05-
1.88) (Supplemental Table 1). The mean decrease in
accuracy was greatest for M-CARS followed by the AI-
ECG probability of hyperkalemia; the mean decrease
in Gini Index was greatest for M-CARS, followed by
age and the AI-ECG probability of hyperkalemia; the
admission laboratory potassium value had lower
variable importance by both metrics, suggesting a
lesser contribution to prediction of in-
hospital mortality.

MULTIVARIABLE ADJUSTMENT; IN-HOSPITAL AND

30-DAY MORTALITY. After multivariable adjustment
for age, CCI, and M-CARS, the probability of AI-ECG
predicted hyperkalemia on CICU admission
remained directly associated with in-hospital mor-
tality (adjusted OR: 1.06 per 0.1 unit increase in AI-
ECG predicted hyperkalemia; 95% CI: 1.025-1.097;
P ¼ 0.001) and 30-day mortality (adjusted HR: 1.03
per 0.1 higher; 95% CI: 1.01-1.06; P ¼ 0.009). The as-
sociation with in-hospital mortality persisted after
adjustment for admission potassium value (adjusted
OR: 1.041 per 0.1; 95% CI: 1.004-1.080; P ¼ 0.029),
although the association with 30-day mortality was
mitigated (adjusted HR: 1.02 per 0.1 higher; 95% CI:
0.99-1.05; P ¼ 0.23). After multivariable adjustment,
patients categorized with a TP AI-ECG had higher
hospital mortality (adjusted OR: 1.660; 95% CI: 1.323-
2.083; P < 0.0001) than patients with either FN
AI-ECG (adjusted OR: 1.630; 95% CI: 1.221-2.176;
P ¼ 0.001) or FP AI-ECG (adjusted OR: 1.211; 95% CI:
1.015-1.444; P ¼ 0.03).

UNADJUSTED 1-YEAR SURVIVAL. A total of 2,549
patients died within 1 year after CICU admission
(including hospital deaths), and 1,200 patients had
follow-up of <1 year but were alive at the last follow-
up. Evaluating AI-ECG as a continuous variable, the
AI-ECG probability of hyperkalemia remained associ-
ated with decreased 1-year survival (unadjusted HR:
1.12 per 0.1 U increase in AI-ECG predicted hyper-
kalemia; 95% CI: 1.10-1.14; P < 0.0001). One-year sur-
vival incrementally decreased for FP, FN, and TP
patients (Figure 2). Survival characteristics for patients
at 1-year posthospital discharge were similar
(Supplemental Figure 3).
MULTIVARIABLE ADJUSTED 1-YEAR SURVIVAL. After
multivariable adjustment for age, CCI, and M-CARS,
AI-ECG probability of hyperkalemia remained asso-
ciated with decreased 1-year survival (adjusted HR:
1.031 per 0.1 unit increase in AI-ECG predicted
hyperkalemia; 95% CI: 1.013-1.050; P ¼ 0.001). This
probability association lost statistical significance af-
ter further adjustment for potassium value nearest
CICU admission (adjusted HR: 1.016 per 0.1 unit in-
crease; 95% CI: 0.997-1.036; P ¼ 0.1). After multivar-
iable adjustment, patients categorized as FN by
AI-ECG had the lowest 1-year survival (HR: 1.454;
95% CI: 1.25-1.691; P < 0.0001) compared to patients
with TP AI-ECG (HR: 1.366; 95% CI: 1.211-1.54;
P < 0.0001) or with FP AI-ECG (HR: 1.123; 95% CI:
1.025-1.230; P ¼ 0.013).

We have included full unadjusted and adjusted
multivariable analysis tables in our supplement
(Supplemental Analyses).

EXCLUSION OF HYPOKALEMIC PATIENTS

As a similar mortality association exists with hypo-
kalemia, a secondary analysis was performed where
hypokalemic (K <3.5 mEq/L) were excluded. Results
from this analysis were minimally different with
similar in-hospital mortality and 1-year survival
(Supplemental Figures 4 and 5).

DISCUSSION

In this analysis of more than 11,000 CICU patients, we
demonstrated that an AI-ECG algorithm developed to
detect hyperkalemia could identify patients with an
increased risk of dying during and after hospitaliza-
tion, acting as a novel ECG-based prognostic
biomarker. While the AI-ECG algorithm has been
shown to have a valuable ability to predict hyper-
kalemia, this analysis highlights the associated risk-
stratification ability of the AI-ECG, which extends
beyond what could be explained by laboratory po-
tassium value alone. We observed that AI-ECG had a
strong in-hospital mortality association indepen-
dently (FP) and in conjunction with laboratory
hyperkalemia (TP) with a similar risk association for
1-year survival. The AI-ECG association with in-
hospital mortality, and to a lesser extent, 30-day
and 1-year mortality, persisted following adjustment
for covariates and admission potassium value. This
analysis provides evidence that the AI-ECG is a useful
diagnostic and prognostic tool in CICU patients, and
that the abnormalities identified by AI-ECG can refine
risk stratification beyond the underlying conditions
they predict (Central Illustration).

https://doi.org/10.1016/j.jacadv.2024.101169
https://doi.org/10.1016/j.jacadv.2024.101169
https://doi.org/10.1016/j.jacadv.2024.101169
https://doi.org/10.1016/j.jacadv.2024.101169


FIGURE 2 Long-term Outcomes of Hyperkalemia as Predicted by AIECG and Measured by Laboratory Analysis

Kaplan-Meier 1-year survival curves based on predicted (by artificial intelligence electrocardiogram) and observed (by laboratory

confirmation) hyperkalemia. P < 0.0001 between all groups. FN ¼ false negative; FP ¼ false positive; TP ¼ true positive; TN ¼ true negative.
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Our work parallels Lin et al, who describe a similar
AI-ECG to predict potassium value with outcomes
implications.15 In their study, an AI algorithm applied
to a 12-lead ECG yielded blood potassium value pre-
dictions (1.5-7.5 mmol/L) rather than a probability of
hyperkalemia or hypokalemia. They demonstrated a
mortality association with significantly abnormal
laboratory potassium values and AI-ECG-predicted
dyskalemia.15 Interestingly, this group identified a
similar pattern of AI-ECG risk-modification with a
respectively increasing HR for FP, FN, and TP AI-ECG
to lab hyperkalemia/mortality relationship, implying
that the serum potassium level was more strongly
associated with outcomes than the AI-ECG despite
their complementary prognostic information.15 While
using an entirely separate AI-ECG model, patient
population, and hyperkalemia definition, we identi-
fied a strikingly similar pattern of risk stratification.
This AI-ECG to laboratory discordance, with inde-
pendent prognostic value, is an interesting attribute
of these algorithms, indicating their potential scal-
ability. The finding that the AI-ECG could provide
added risk stratification in patients with either high
or normal laboratory potassium levels could suggest
that perhaps it is the effect of abnormal potassium
levels on the myocardium which is most crucial. We
acknowledge that a more transparent AI system to
understand better these discrepant results would be
beneficial and is an area of ongoing research.
This analysis mirrors our previous work utilizing
the AI-ECG algorithm to detect LVSD.9,16 Similarly,
AI-ECG prediction of LVSD was associated with in-
hospital mortality and 1-year survival in CICU pa-
tients providing an additive risk-modifier alongside
LVSD identified by transthoracic echocardiogram.9 In
each of our studies, we observe increasing in-hospital
mortality between TN, FP, FN, and TP groups,
respectively, based on AI-ECG prediction of underly-
ing pathology (ie, LVSD or hyperkalemia). Interest-
ingly, FP and FN AI-ECG results for LVSD
demonstrated similar 1-year survival on Kaplan-
Meyer analysis, while we observed higher 1-year
mortality with FN vs FP in our present AI-ECG
hyperkalemia analysis. The explanation for this
1-year mortality difference is hypothetical. However,
early ECG-based identification of imminent structural
cardiac pathophysiology (LVSD) may carry a similar
risk as the later manifestation of structural heart
disease, which does not always trigger a positive AI-
ECG result (ie, FN). As hyperkalemia is not a pro-
gressive, structural cardiac pathology, nor is it a
consistent electrolyte abnormality in critically ill pa-
tients, the long-term AI-ECG prediction for hyper-
kalemia alone (FP result) may not carry the same
survival characteristics as the AI-ECG for LVSD.
However, it is worth considering that these FP and TP
AI-ECG results reflect underlying myocardial disease,
which may experience additional impact from
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fluctuations in blood potassium levels, even within
the ’normal’ range with prognostic implications.
Indeed, those with AI-ECG suggestive of LVSD are
substantially more likely to develop LVSD by trans-
thoracic echocardiogram during follow-up.16 Perhaps
a similar phenomenon occurred with the AI-ECG
prediction of hyperkalemia.

In this study, we were able to demonstrate that the
AI-ECG has similar risk-stratification ability consis-
tent with our prior work, which used a more lenient
definition of hyperkalemia (>5.0 mEq/L).2 Notably,
the use of a lower threshold for hyperkalemia has
degraded the AUC of the AI-ECG algorithm in prior
analyses. Interestingly, from this CICU risk-based
analysis, we have identified an at-risk FP group that
carries an independently increased risk for overall
mortality (both in-hospital and at 1-year), albeit to a
lesser extent than laboratory hyperkalemia. The
defining characteristic of this FP group is not entirely
clear, and further investigation is warranted to un-
derstand better what may place this population at
elevated mortality risk, even with normokalemia
without unprecedented demographic, comorbidity,
or illness severity characteristics. We hypothesize
that the AI-ECG can detect subtle myocardial elec-
trical signs that correlate predominantly with the
myocardial effects of hyperkalemia but may, in some
patients, reflect underlying subclinical myocardial
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disease with an adverse prognosis. Such abnormal-
ities were surprisingly common in our cohort,
particularly in comparison to hyperkalemia which
was less prevalent and carried a stronger unfavorable
prognosis. However, based on the findings of our
machine learning analysis designed to determine the
relative importance for mortality prediction, the AI
ECG was more important for mortality prediction
than the laboratory potassium. Notably, it remains
unclear whether hyperkalemia (predominantly mild
in our study) directly contributed to mortality or was
instead a marker for underlying disease not captured
by our covariate adjustment.

Initially, the AI-ECG algorithm for hyperkalemia
was intended to identify patients with a high proba-
bility of serum potassium >5.5 mEq/L.8 Unsurpris-
ingly, the use of a lower threshold for hyperkalemia
(K >5.0 mEq/L) degraded the AUC of the AI-ECG al-
gorithm compared to the derivation study. We note
the AUC of the AI-ECG in this present study, using a K
cutoff of 5.0 mEq/L was 0.71, compared to the AUC of
0.85 to 0.88 reported in the original model valida-
tion.8 However, this original validation process
excluded patients with lab potassium values between
5.3 and 5.7 mEq/L, and when these patients with mid-
range K were included, the performance dropped to
0.82 to 0.84 in supplemental analysis.8 In our present
study, when the K cutoff was increased to 5.5 mEq/L,
our AUC improved to 0.76 (and further to 0.79 with a
K cutoff of 6 mEq/L). Given the specific use of the
algorithm in critically ill CICU patients, a performance
drop from 0.83 to 0.76 is unsurprising given the
multiple potential confounders present in the CICU
setting (ie, mechanical ventilation and vasoactive
medications among others). These findings mirror
similar validation studies observing the performance
drop of the AI-ECG algorithm for LVSD in hospitalized
patients.9,17

On a similar note, there was a fair amount (5.1%) of
patients with FN AI-ECG results. This result is note-
worthy as the OR for the FN patient population was
2.47 emphasizing the predictive value of laboratory
hyperkalemia in the CICU setting. Given the above
discussion, with a more liberal potassium cutoff of 5.0
mEq/L and operating point of sensitivity ¼ specificity
compared to a high-sensitivity cutoff, it is unsur-
prising to see this amount of FN patients. In the CICU,
where laboratory draws are frequent, and patients are
typically on continuous ECG monitoring, the AI-ECG
for hyperkalemia can be used an additive prognosti-
cation tool rather than substitute for potassium
monitoring. However, when considering use outside
the CICU or hospital setting, more stringent potas-
sium cutoffs (5.5 mEq/L or greater) and high-
sensitivity thresholds should be applied to help
lower the amount of FN test results. Interestingly, in
the derivation study, when more stringent thresholds
were applied, FN patients underwent repeat labora-
tory testing within 8 hours.8 Greater than 50% of
these patients had a repeat potassium <5.5 mEq/L
and only 14% of FN patients (<1% of all test results)
were actually treated for hyperkalemia.8

While we acknowledge the differences in AUC and
other performance metrics between the derivation
study and current study, we similarly emphasize that
the present study was not a validation study, and
these analyses are only exploratory. The study pop-
ulation contained patients included in the original
AI-ECG derivation study, which introduces significant
bias. Our primary intent from this study was to better
understand the relationship between AI-ECG algo-
rithm results and associated mortality-risk, which
had not previously been described for this AI-ECG
algorithm.

STUDY LIMITATIONS. Our work is best understood in
the context of its limitations. Results from this
retrospective cohort analysis should be considered
hypothesis-generating rather than definitive, as there
could be potential underlying biases from missing
data or unmeasured confounding variables. We
acknowledge the potential overlap in patients
included both in this present study and the original
derivation study, as this may confound some AI-ECG
results. However, this CICU population differs from
the mixed inpatient/output populations used to
derive and validate the AI-ECG for identification of
hyperkalemia, and the focus of this study was patient
outcomes rather an algorithm performance. There are
also notable limitations of the AI algorithm itself, as
the AI-ECG does not currently provide details on how
the algorithm’s prediction of hyperkalemia was made,
as is the case with many similar AI-ECG-based algo-
rithms that lack transparency. A supplemental ECG
signal analysis was performed in the algorithm deri-
vation study to better understand what may trigger a
positive result. Both markedly abnormal and mini-
mally abnormal ECGs could trigger a positive result,
and thus no specific identifiable ECG features were
consistently associated with a positive AI-
hyperkalemia score.8 Creating a more transparent
model with interpretable results is at the forefront of
our team’s priorities. We also acknowledge our ECG
and potassium data lacked a time-stamp and were



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: This

study demonstrates the relationship between AI-ECG

prediction of hyperkalemia and associated mortality,

similar to the described relationship between labora-

tory hyperkalemia and mortality in the critically ill.

The AI-ECG for hyperkalemia appeared to be an in-

dependent risk factor as patients with FP AI-ECG (high

AI-ECG probability of hyperkalemia with normal

serum potassium) had higher mortality than their TN

counterparts (negative AI-ECG and normal serum po-

tassium), possibly reflective of subclinical myocardial

disease.

TRANSLATIONAL OUTLOOK: This AI-ECG algo-

rithm, as well as others, may allow for improved, rapid

risk-stratification of critically ill patients. Further

study should focus on the prospective application of

these algorithms in intensive care units and evaluate

the clinical impact of AI-ECG enhanced illness triage.
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labeled only as ‘admission’ within the database (ie,
ECG on admission and potassium on admission).
While it can be assumed the vast majority of these
ECG and potassium pairs would both occur within 1 to
2 hours of admission and of each other, as is generally
the case for patients admitted to the CICU, this cannot
be confirmed. As such, treatment for significant
hyperkalemia, acute changes in patient status, and
other variables may have impacted the serum potas-
sium between ECG collection and laboratory draw
resulting in variations of data/algorithm accuracy.

This cohort was obtained from a single large aca-
demic medical center, and our CICU patient popula-
tion may be different from other centers, particularly
in terms of ethnic and racial diversity that could in-
fluence generalizability; as such, external validation
utilizing our AI algorithm in other CICU settings
would be significantly helpful. Our time-to-event
analyses including postdischarge survival should be
considered exploratory, as we could not ensure that
all deaths occurring outside of our health system
were captured. We acknowledge the similar findings
from Lin et al with their own AI-ECG algorithm
demonstrating similar mortality characteristics in a
predominantly Asian population as opposed to our
mostly White cohort.15

CONCLUSIONS

AI-ECG-based prediction of hyperkalemia, even with
a normal laboratory potassium value, was associated
with higher in-hospital mortality and 1-year survival
in CICU patients. This study demonstrated that lab-
oratory potassium value and AI-ECG probability of
hyperkalemia are complementary risk factors. The AI
algorithm can detect prognostically important ECG
abnormalities affecting patients’ short- and long-term
survival. Integrating this technology into the elec-
tronic health record may enable rapid individualized
risk stratification in critically ill patients.
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