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Abstract: Renal amyloidosis typically manifests albuminuria, nephrotic-range proteinuria, and ulti-
mately progresses to end-stage renal failure if diagnosed late. Different types of renal amyloidosis
have completely different treatments and outcomes. Therefore, amyloidosis typing is essential for
disease prognosis, genetic counseling and treatment. Thirty-six distinct proteins currently known to
cause amyloidosis that have been described as amyloidogenic precursors, immunohistochemistry
(IHC) or immunofluorescence (IF), can be challenging for amyloidosis typing especially in rare or
hereditary amyloidosis in clinical practice. We made a pilot study that optimized the proteomics pre-
processing procedures for trace renal amyloidosis formalin-fixed paraffin-embedded (FFPE) tissue
samples, combined with statistical and bioinformatics analysis to screen out the amyloidosis-related
proteins to accurately type or subtype renal amyloidosis in order to achieve individual treatment.
A sensitive, specific and reliable FFPE-based proteomics analysis for trace sample manipulation
was developed for amyloidosis typing. Our results not only underlined the great promise of tra-
ditional proteomics and bioinformatics analysis using FFPE tissues for amyloidosis typing, but
also proved that retrospective diagnosis and analysis of previous cases laid a solid foundation for
personalized treatment.

Keywords: proteomics; FFPE; renal amyloidosis; immunoglobulin light chain amyloidosis (AL);
lysozyme amyloidosis (ALys)

1. Introduction

Amyloidosis is a condition characterized by deposition of autologous proteins as
extracellular fiber aggregates. This class of diseases is heterogeneous and continuous
expansion. So far, 36 distinct precursor proteins are known to cause amyloidosis in
humans [1]. Amyloidosis can cause systemic or local lesions; kidney was the most com-
monly affected organ by systemic amyloidosis [2–4]. Renal amyloidosis is a rare and
intractable protein misfolding disorder which prompts progressive renal insufficiency [5].
The common forms of systemic amyloidosis include immunoglobulin light chain amy-
loidosis (AL), amyloid A amyloidosis (AA) and leukocyte chemotactic factor 2 (LECT2)
amyloidosis. Hereditary or familial amyloidosis is another group including fibrinogen Aα

chain, transthyretin (TTR), apolipoprotein A-I and apolipoprotein A-II, lysozyme, gelsolin
and cystatin C [6,7]. Renal amyloidosis cases are predominantly AL and ALECT2 amyloi-
dosis, but sometimes rare hereditary or familial amyloidosis are also found to be involved
in the renal pathogenesis [8–10]. Immunoglobulin (Ig) light chain (LC) amyloidosis (AL)
is characterized by an abnormal extracellular deposition of a monoclonal Ig LC protein
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of either lambda (λ) or kappa (κ) isotype [11]. Most forms of amyloidosis are progres-
sive and fatal [12]; different types have similar manifestations but completely different
treatment strategies. Early diagnosis and accurate amyloid typing is a key diagnostic step
for better understanding of their pathogenesis for rational and often successful treatment
strategies [13,14].

Renal pathology is the main basis for clinical diagnosis of renal amyloidosis. Apple
green birefringence of the deposits stained with Congo red and viewed in polarized light is
still the gold standard for histological. Clinical pathological classification is mainly based on
antibody-based immunohistochemical (IHC) or Immunofluorescence (IF) staining technolo-
gies, which determine the type of disease through the type of fibrin identified [7,12,15,16].
AL amyloid fibers derive from truncated immunoglobulin light chain; most variable re-
gions are difficult to detect by commercial antibodies (mainly constant regions). There are
no commercial antibodies for some hereditary and rare cases. Standard panels are typically
designed to detect only three amyloid types (AL, ATTR and AA); hence, it is more difficult
to identify rare amyloid types [4]. When the amount of amyloid deposited in the tissue is
small or the distribution of amyloid protein in the paraffin is uneven, it can lead to missed
diagnosis or difficult typing [17]. The diagnosis or early renal amyloidosis is occasionally
neglected by depending only on light micrograph and IF.

Proteomics aims to identify all protein information in samples such as cells or tis-
sues. With continuously developing of high-resolution mass spectrometry technology,
proteomics has become a powerful tool for the identification of fibroid protein. It is applied
to the diagnosis of renal amyloidosis and can efficiently and unbiasedly identify all the
amyloid precursor protein information in a diseased tissue, without requiring a priori
knowledge of the candidate amyloid protein [18,19]. At present, MS-based proteomics
has been used clinically to assist diagnosing amyloidosis and it has become one of the
gold standards for amyloidosis typing [20]. The criteria for proteomics aiding diagnosis
amyloidosis in clinical practice: all the proteins identified with the highest abundance
(or the number of spectrums) were determined to be corresponding amyloid fibril pro-
tein. Different amyloidosis types were determined according to the type of amyloid fibril
protein [1,21]. SAP and apolipoprotein E are universally associated with all types of amy-
loid fibrils, and these components were known as ‘amyloid signatures’ [8]. FFPE-based
proteomics is unbiased to identify all amyloid fiber protein types in a single assay, unlike
immunologic-based techniques that a single test would only identify a single amyloid fibril
protein type.

The diagnosing and typing method by proteomics developed by Ahmed Dogan’s
research team has been used for clinical diagnosis of amyloidosis. The National Amyloido-
sis Center of the United Kingdom has also carried out proteomics to classify amyloidosis.
This method can be used for fresh or FFPE tissue [4,21,22]. FFPE archives a biobank and
invaluable resource for clinical diagnosis and biomarker research; however, the clinical
pathological FFPE tissue section contains very little tissue. After formaldehyde-fixed paraf-
fin embedding, the proteins exist in a cross-linked state. Proteomics research has good
sensitivity and specificity even if it uses trace FFPE tissue samples, and does not require
antibodies in diagnosing amyloidosis. It is usually difficult to diagnose on routine IF and
IHC methods [18,22]. Proteomics has revolutionized the field of amyloid diagnosis, which
is considered to be the new gold standard approach for disease typing. Proteomics now
has a profound impact in the clinical management of amyloid diseases [23]. However, until
now, there is not a traditional FFPE-based proteomics and bioinformatics analysis used for
the subtype of renal amyloidosis.

2. Results
2.1. FFPE-Based Proteomics Discriminate Renal Amyloidosis and Control Patient

Renal amyloidosis is a rare disease and the biopsy is rare in clinical application. FFPE
tissues are collected from glass slides, followed by extracting protein and de-crosslinking for
LC-MS/MS analysis and bioinformatics analysis. There were seven patients in this study
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including two minor glomerular disease patients as control group, four AL-λ patients and
one rare lysozyme amyloidosis (Alys) patient. The experimental workflow is as displayed
in Figure 1a.

Figure 1. (a). FFPE-based proteomics and bioinformatics analysis workflow. (b). Bar chart of total number of identified
protein groups in control and AL-λ patients. (c). Bar chart of total number of identified peptides in control and AL-λ patients.
(d). Venn analysis of protein groups in control and AL-λ patients. (e). Principal component analysis (PCA) of control and
AL-λ patients based on proteomics data; ellipses indicate AL patients. (f). Heat map of control and AL-λ patients with all
identified proteins; control patients are separated form AL-λ patients.

Numbers of identified proteins and peptides are shown in Figure 1 (Figure 1b,c). There
were a total of 4892 proteins and 35,562 peptides (Supplementary Figure S1) identified
from the AL-group. There were 4077 protein groups on average in the AL-λ group but
2250 protein groups on average in the control group. There were 2765 protein groups
existing in both the control and AL-λ group, but 2127 protein groups only existed in AL-λ
patents (Figure 1d). Patients can be diagnosed with different disease types according to
statistical analysis results and separated from control patients (Figure 1e); the clustering
results were consistent with the clinical diagnosis results. Four AL-λ patients expressed
more proteins than the control group, which can distinguish control patients with AL
patients easily with heat maps that drawing according to the protein abundance (Figure 1f).
There was a big difference between the control and AL-λ groups in protein profiling.
We can obviously distinguish control patients from AL patients with all identified proteins
according to the primary proteomics results.

2.2. Subtype AL-λ Patients by Amyloid Fiber Protein

We further analyzed the amyloid fiber proteins expressed in the control and AL-λ
amyloidosis patients. Even though there was only one case of Alys patient, because it is
so rare, we put it into analysis together. Apolipoprotein E protein and serum amyloid
P component (SAP) were present in all four cases. Most amyloid fiber proteins detected
in this study were Ig light-chain variable region fragments in four AL-λ patients. There
was one Ig λ light-chain constant region fragments present in all four patients (Figure 2a,
blue arrow). Ig λ light-chain variable 1-47 (IGLV 1-47) (Figure 2a, red arrow) was present
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in all four cases but Ig λ light-chain variable 3-9 (IGLV 3-9) (Figure 2a, red arrow) and
Ig λ light-chain variable 3-21(IGLV 3-21) (Figure 2a, red arrow) were only present in the
AL-λ-1/AL-λ-4 patient. Ig λ light-chain variable 3-10 (IGLV 3-10) (Figure 2a, red arrow)
and Ig λ light-chain variable 3-24 (IGLV 3-24) (Figure 2a, red arrow) was only present in the
AL-λ-1 patient (Figure 2a). Lysosome was only expressed compared with other amyloid
fibers in the Alys patient (Figure 2a, green arrow). Here, we could find Ig κ light-chains C
region and κ light-chain V region in the AL-λ patient but κ light-chain was not expressed
significantly compared with λ light-chain (Figure 2a). Most of the antibodies (antibody-
based methods) used in clinical diagnosis were from the Ig light-chain constant region;
these light-chain variable fragments could not be detected by IF or IHC method, whereas
we could find the light-chain fragments in different cases clearly. We can see the amyloid
fiber proteins identified in all the patients from Figure 2a. The amyloid fiber proteins were
expressed obviously differently, even though only in the same AL type patients, and we
can accurately subtype amyloidosis patients into molecular types.

Figure 2. (a). Heat map of amyloid fiber proteins identified in control patients and renal amyloidosis patients, including
Alys patient, Ig λ light-chain variable and Ig λ light-chain constant region fragments, shown in black border. (b). Volcano
Plot of differentially expressed proteins with 2 control and 4 AL-λ patients. Gray dotted lines show p value < 0.05 and
1.5-fold change cut-offs. Up-regulated proteins are in red while the only down-regulated protein (Q9BYV1) is in blue.
(c). Top 20 pathways highlighting the differentially expressed protein pathways between 2 control and 4 AL-λ patients.

We further analyzed all the proteins differently expressed between control and Al-λ pa-
tients. It is very interesting that there was only one down-regulated protein significantly ex-
pressed in the AL-λ groups: Alanine-Glyoxylate Aminotransferase 2 (AGTX2) (Figure 2b).
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2.3. Enrichment Analysis of Pathogeny

AL amyloidosis is a metabolic disease; although it is associated with a single clone of
proliferating plasma cells, the majority of patients do not develop a malignant disease as
multiple myeloma but suffer from monoclonal gammopathy of undetermined significance
(MGUS). This observation indicates that some additional factors are required for the
development of amyloid deposits. One such factor seems to be the ability of LCs to be
bound by macrophages; where intact LCs were metabolized into insoluble and unstable
fragments with biochemical properties that allow them to form amyloid fibrils, λ LCs were
more amyloidogenic than the κ ones [4]. In order to further explore the pathogenesis of
renal amyloidosis, GO and KEGG pathway enrichment analysis were performed on the
differential proteins expressed in control patients and AL-λ patients.

GO analysis showed that the most enriched molecular functions were RNA binding,
cytoskeleton binding, cell adhesion molecule binding, and cadherin protein binding and
other functions, as shown in Supplementary Figure S2a; the most enriched biological
processes were: establishment of localization in cell, vesicle-mediated transport, metabolic
process, small molecule metabolic process, establishment of localization, cellular metabolic
process, cellular process, regulated exocytosis, transport, localization, exocytosis, neu-
trophil degranulation, neutrophil activation involved in immune response, organic sub-
stance metabolic process and myeloid cell activation involved in immune response, as
shown in Supplementary Figure S2b. These biological processes were closely related
with amyloidosis.

AL-λ patients often had multiple myeloma or plasma cell malignant hyperplasia,
which was a kind of primary amyloidosis. Immunoglobulin-related amyloidosis was
related to plasma cell diseases, and the primary treatment was to control plasmacytosis.
The pathways enriched by KEGG analysis were mainly metabolic pathways, proteasome,
spliceosome, focal adhesion, biosynthesis of amino acids, amoebiasis, ECM-receptor in-
teraction, lysosome, arginine and proline metabolism, complement and coagulation cas-
cades, Parkinson’s disease, prion diseases, endocytosis, amino sugar and nucleotide sugar
metabolism, pentose phosphate pathway, protein processing in endoplasmic reticulum,
etc. (Figure 2c). These enriched pathways were closely related to the development of AL
amyloidosis and its pathogenesis matched.

2.4. Mass Spectrometry Typing Lysozyme Amyloidosis

There was a patient with hereditary lysozyme amyloidosis in this study who was
diagnosed and typed by genetic analysis, because IHC cannot type without antibody.
The gene sequencing results showed that there was a single base transitions from T to C at
the first position of codon 82 (TGG/CGG) of exon 2 (Figure 3a). The amyloid fiber protein
analysis showed that amyloid precursors were clearly distinguished from the control group
and AL patients. Lysozyme C was the only highly expressed amyloid fiber protein in Alys
patients (Figure 2a) and it was not expressed or expressed very low compared with other
amyloid fiber protein in other patients. The protein expressed by the p.Trp 82Arg mutation
could be detected by mass spectrometry (Figure 3b) in Chinese Lysozyme amyloidosis
patients for the first time. These results verified the clinical diagnosis.
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Figure 3. (a). Gene sequencing results of Alys patient base transitions from T to C. (b). Results of protein database searching
by Peaks software. Peptide of p.Trp82Arg mutation was identified.

3. Discussion

The number of papers using FFPE tissues in proteomic analysis has been growing
in recent years. The interest to apply proteomic analysis to FFPE tissues lies in the easy
accessibility of a great number of samples from archives [24]. Renal amyloidosis FFPE
tissues are trace clinical samples (15–30 glomeruli) and Alys is an extremely rare type
amyloidosis, so there are only about five glomeruli for further study. The micro-sample
pretreatment technology is important for proteomics analysis. The conventional sample
pretreatment process has many steps, and low amounts of samples can be easily lost during
the preparation steps. As a result, micro-sample pretreatment technology has been opti-
mized and improved on the basis of conventional techniques: a. Heptane was used instead
of xylene to reduce toxicity, and the volume ratio of heptane and methanol was adjusted
(500 µL n-heptane was adjusted to 1000 µL) (the conventional ratio was 10:1, adjusted to
5:1) to remove paraffin fully avoiding interference with mass spectrometry analysis; b. The
sample-transfer times was reduced, and the pre-treatment process was carried out all in
one centrifuge tube to minimize sample loss as well as avoiding contamination; c. Alkaline
medium was used to facilitate protein crosslinking reversion, and the heat temperatures
was set higher than 80 ◦C for 2 h. Clinical micro-samples can be analyzed by proteomics
with the pre-treatment method [4,24,25].
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Renal amyloidosis is a rare disease and we obtained very limited samples. Even with
such small sample size, we still obtained very meaningful data from mass spectrometer
results. The total protein expressed level from proteomics results between control and
AL patients can type amyloidosis patients. The number of proteins identified for control
samples is lower than the number of proteins identified for the AL samples, and there
is a significant difference between the two groups in the number of identified proteins.
The glomeruli samples of AL patients were completely different from patients with minor
glomerular disease, as shown in (Supplementary Figure S3). There was large amount of
amyloid fiber precipitation in the glomerulus of AL amyloidosis patients, which led to
great pathological changes in the glomerulus; however, there was not any amyloid fiber
in the glomerulus of control patients. AL amyloidosis is typically found in individuals
with monoclonal gammopathy, a disorder that is characterized by the proliferation of
clonal plasma cells. It was resulted in the increased production of clonal immunoglobulin
light chains; these light chains aggregate into amyloid fibrils, leading to organ damage.
This process is complex, and it can be influenced by several factors, such as mutations that
destabilize the native protein structure and expose hydrophobic and protease-sensitive
regions, increasing protein concentrations, owing to either greater protein synthesis or
reduced clearance [26,27]. When intracellular proteostasis and/or extracellular proteostasis
fail, protein aggregation might occur. On one hand, we hypothesized that the deposition of
amyloid in the kidney stimulated the injury of endothelial cells, which then activated the
complement system, and stimulated the release of a large numbers of inflammatory factors.
On the other hand, the body needs to remove and degrade excess amyloid. Amyloid
deposits are in general persistent and unusually resistant to degradation. However, slow
natural clearance of amyloid deposits, by endogenous immunological mechanisms in
which macrophages play an important part, does occur. In these processes of pathological
change in AL-λ patients, many biological pathways participate and it produces much more
proteins compared with control patients. We can also find the related pathways from KEGG
analysis (Figure 2c) which are related to the greater protein synthesis or reduced clearance
process. Hence, the great pathological change of amyloid fibers leads to the difference in
the numbers of protein identification between control and AL patients.

Immunoglobulin (Ig) light chain (LC) amyloidosis (AL) is characterized by an abnor-
mal extracellular deposition of a monoclonal Ig LC protein of either lambda (λ) or kappa (κ)
isotype [8]. According to the results of FFPE-based proteomics retrospective diagnosis
analysis, it can distinguish AL patients from control patients. Criteria for diagnosis and
typing of amyloidosis was AL λ light-chain amyloid which contains large spectra of Ig
lambda light-chain C region with or without λ light-chain V region, and absence of signifi-
cant κ light-chains [19]. Four AL-λ patients expressed high abundance λ subtype proteins.
The deposited LC variable region (LCV) is clonotypic and unique to each patient, and
thought to be the primary pathogenic driver of the disease [28]. Maybe it can explain the
indolent/localized nature of this disease with MS results. FFPE-based proteomics can not
only distinguish patients with minor glomerular disease from AL patients but also can
show other amyloid fiber proteins in every AL patient for further molecular subtypes. Here
we also found Ig heavy chain in four AL-λ patients’ proteomic results. Heavy chain amyloi-
dosis (AH amyloidosis) caused by renal deposition of a monoclonal immunoglobulin heavy
chain, is a much rarer type of immunoglobulin-related amyloidosis, with only a limited
number of cases having been reported [29]. Criteria for diagnosis and typing AH: heavy
chain: λ, a, µ, with large number of spectra, in comparison with light-chain spectra [19].
Four AL-λ cases were typed AL-λ instead of AH or mixed AH+AL amyloidosis because
staining for immunoglobulin light chain is the first step—if renal immunoglobulin light
chain staining was positive, it would be typed AL amyloidosis. We can find Ig heavy
chain fragments form proteomics results, and FFPE-based proteomics was useful to reach
a final diagnosis and helpful to explain the mechanism why heavy chain staining gave the
negative results of IHC. From the results of FFPE-proteomics, there were other amyloid
precursors but low abundance compared with Ig λ light-chain. This result suggests that one
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type of renal amyloidosis may contain one or several pathogenic amyloid fiber proteins.
It would be difficult to type the patient by immunofluorescence or immunohistochemistry
when there were two or more pathogenic amyloid proteins. The application of proteomics
can perform a more comprehensive and in-depth analysis of all amyloid precursor proteins
of patients without limited in antibodies. Compared with the control group patients, the
profile of amyloid precursor proteins detected by proteomics was different in four AL-λ
cases. Although four patients were the same disease type, the amyloidosis protein types
and abundances were not exactly the same; in addition, the abundance of Ig λ light-chain
detected in the four patients were different, too. The AL-λ type cases can be further an-
alyzed according to different λ amyloid precursor proteins to provide accurate clinical
classification and individualized treatment, and to further explore its pathogenesis.

AGXT2 was the only down-regulated protein in differentially expressed proteins and
was mainly expressed in the kidney. It was reported that AGXT2 may play a part in the pro-
gression of renal diseases through affecting ADMA (Asymmetric dimethylarginine)/SDMA
(symmetric dimethylarginine) level [30]. AL amyloidosis results from extra-cellular deposi-
tion of fibril-forming monoclonal Ig LC, usually produced by a small plasma cell clone [16].
The role of AGXT2 in renal function is worthy of further investigations especially in AL
amyloidosis, as maybe it had something to do with the occurrence and development of the
AL amyloidosis. Here we provide an experimental basis for further research.

Lysozyme amyloidosis (Alys) is a systemic amyloidosis, and one of the rarest types
of such. Alys is regarded as a type of autosomal dominant genetic disease caused by
mutations in genes encoding proteins [25]. Alys is a type of hereditary amyloidosis that
is extremely rare in clinical practice, first described in 1993 by Pepys et al. [31]. It is so
rare that only about thirty families have been noted across the world [10]. The hereditary
amyloidosis was usually caused by genetic mutations that lead to amino acid mutations
in the encoded protein, which affect the three-dimensional structure of the protein and
its interaction with other proteins, forming amyloid deposits [19,22]. The diagnosis and
treatment of Alys are significantly different from other types, which directly affect the
prognosis. Liver or kidney transplantation may be useful as a palliative method for
patients with spontaneous liver rupture or renal failure [10]. Proteomics can directly
detect pathogenic amyloid fibrin precursors and accurately type hereditary amyloidosis,
while traditional IHC technology often cannot type for lack of hereditary amyloidosis
antibody. In this study, the patient was finally typed by gene sequencing technology
because of lack of antibody for IHC. Whether genetic abnormalities will be translated
into protein level is difficult to predict. Here we have identified the p.Trp 82Arg variant
genetic mutation peptide by the mass spectrometry for the first time in a Chinese patient.
FFPE-based proteomics is particularly advantageous in the diagnosis and type of hereditary
amyloidosis. Proteomics is supplementary to immunohistochemistry and gene sequencing
for amyloid typing, and it can achieve individualized and accurate diagnosis of amyloidosis.
Since this study was a small sample size experiment, we successfully applied proteomics
for disease diagnosis and molecular typing. Subsequently, we need to conduct large-scale
clinical samples for verification.

4. Materials and Methods
4.1. Reagents and Chemicals

Ammonium bicarbonate and acetonitrile (ACN) were purchased from Fluka (St. Louis,
MO, USA). Trypsin and dithiothreitol (DTT) were purchased from Promega (Madison, WI,
USA). Iodoacetamide (IAA), trifluoroacetic acid (TFA) and heptane were purchased from
Sigma (St. Louis, MO, USA).

4.2. FFPE Tissue Collection

FFPE renal biopsies of five cases were clinically diagnosed renal amyloidosis tissue
samples (including 4 cases of AL-λ type and 1 case of hereditary ALys amyloidosis);
two FFPE tissues with minor glomerular disease were used as control samples. There were
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several glomeruli in every FFPE slide which were heterogeneity between samples of
different patients. The research study was implemented in accordance with the relevant
guidelines and regulations. All FFPE samples were provided by Ruijin Hospital affiliated
with Shanghai Jiao Tong University School of Medicine. The utilization of anonymized
archival material in retrospective studies was approved by the Ethics Committee of Ruijin
Hospital affiliated with Shanghai Jiao Tong University School of Medicine.

4.3. Sample Preparation for Proteomic Analysis

The method was conducted as follows: Collect the FFPE pathological section into
a 1.5 mL centrifuge tube, add 1000 µL heptane, vortex vigorously and let stand at room
temperature for 1 h. Add 100 µL methanol, centrifuge vigorously and discard the super-
natant. Repeat this step 2–3 times and transfer to the paraffin. After being completely
taken off, blow-dry the tissue in a fume hood. Add 100 µL EXB (QIAGEN) extraction
solution (beta-mercaptoethanol final concentration 4%), incubate on ice for 5 min and
vortex. Incubate the thermomixer at 100 ◦C for 30 min, and then continue to incubate at
80 ◦C at 750 rpm for 2.5 h. After that, centrifuge at 14,000× g, 4 ◦C for 15 min, transfer the
supernatant to a new 1.5 mL centrifuge tube, add 1 µL 1 M DTT (in 100 mM NH4HCO3)
and incubate at 37 ◦C, rotating for an hour at a speed of 750 rpm. Add 1 µL 500 mM IAA
(in 100 mM NH4HCO3) and react in the dark for 45 min at room temperature. After the
reaction is over, add 600 µL of acetone, vortex vigorously for 10 s and place in a refrigerator
at −20 ◦C overnight. Centrifuge at 14,000× g for 30 min the next day, and discard the
supernatant; wash three times, discard the supernatant and finally blow-dry the protein
pellet. Resuspend the protein with 20 µL, 100 mM NH4HCO3, and add 2 µL trypsin
(0.25 µg/µL). Incubate overnight at 37 ◦C (16–18 h). Add 2 µL of 10% (v/v) TFA afterwards.
Desalt using Zip tip C18.

4.4. Mass Spectrometry Conditions and Methods

The eluted peptides were lyophilized using a SpeedVac (Thermo Savant) and resus-
pended in 10 µL of 1% formic acid/5% acetonitrile. All mass spectrometric experiments
were performed on a Thermo Fusion Lumos mass spectrometer connected to an Easy-nLC
1200 via an Easy Spray (Thermo Fisher Scientific). The peptides mixture was loaded onto
a 15 cm column with 0.075 mm inner diameter column packed with C18 2-µm reversed
phase resins (PepMap RSLC), and separated within a 60 min linear gradient from 95%
solvent A (0.1% formic acid/2% acetonitrile/98% water) to 28% solvent B (0.1% formic
acid/80% acetonitrile) at a flow rate of 300 nL/min. The spray voltage was set to 2.1 KV
and the temperature of ion transfer capillary was 275 ◦C, and RF lens was 60%. The mass
spectrometer was operated in positive ion mode and employed in the data-dependent
mode to automatically switch between MS and MS/MS using the Tune and Xcalibur
4.0.27.19 software package. One full MS scan from 350 to 1500 m/z was acquired at high
resolution R = 60,000 (defined at m/z = 400), followed by fragmentation of the twenty most
abundant multiply charged ions (singly charged ions and ions with unassigned charge
states were excluded), for ions with charge states 2–7 and collision energy of 30%. Dynamic
exclusion was used automatically.

4.5. Database Search and Data Analysis

All MS/MS ion spectra were analyzed using Peaks Studio 8.0 software (Bioinfor-
matics Solutions Inc., Waterloo, ON, Canada) for processing, de novo sequencing and
database searching. Resulting sequences were searched against the UniProt Human Pro-
teome database (downloaded 5 May 2018) with mass error tolerances of 10 ppm and
0.02 Da for parent and fragment, respectively. The digestion enzyme trypsin allowed for
two missed tryptic cleavages, Carbamidomethyl of cysteine specified as a fixed modifica-
tion, and Oxidation of methionine and acetyl of the N-terminus as variable modifications.
FDR estimation was enabled. Peptides were filtered for −10log p ≥ 20, and proteins were
filtered for −10log p ≥ 15 and one unique peptide. For all experiments, this gave an FDR
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of <1% at the peptide-spectrum match level. Proteins sharing significant peptide evidence
were grouped into clusters.

4.6. Statistical Analysis and Enrichment Analysis

Screening for differentially expressed proteins uses 1.5-times fold change as the crite-
rion for selecting differentially expressed proteins. When the fold change (protein abun-
dance ratio) ≥ 1.5 and p < 0.05, it is defined as up-regulation of protein. Principal compo-
nent analysis was performed on the relative expression of the protein in the samples of
the control group and the disease group, and clustering heat maps were drawn for all the
identified proteins and proteins related to renal amyloidosis.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis were applied to significantly differentially expressed proteins
using Fisher’s exact test in R programming language. Enriched GO terms and KEGG
pathways are filtered out using p-value < 0.05.

4.7. Gene Sequences Analysis

The gene sequences were determined by the Illumina Hiseq 3000 sequencer using
Roche Company’s proprietary custom-made Nimblegen targeted capture probe in the
gene sequencing. BWA software, GATK 3.1.1 mutation detection software and ANNO-
VAR software were used to compare the reads of the sequencing results to the known
human reference genome sequence hg19 (UCSC), annotate the mutation sites and align
the positions. Points are graded for variation, respectively. According to site annotation
information combined with biology, genetics and clinical characterization information,
suspicious mutation sites were comprehensively analyzed and screened. The selected
suspicious sites were verified using ABI 3730 sequencer for Sanger sequencing.

5. Conclusions

This retrospective pilot study demonstrates that FFPE-based proteomics and statistics
analysis method for trace renal amyloidosis is reliable and specific. However, this method
has some limitations—the sample size is small and the instrument is expensive, which
requires professional operation and analysis. With significant technical advantages over im-
munohistochemistry, it has great prospects in clinical application. Even though the method
cannot be applied to clinical practice on a large scale, it is a step in the right direction.
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