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Light stimulation with precise and complex spatial and temporal modulation is demanded

by a series of research fields like visual neuroscience, optogenetics, ophthalmology,

and visual psychophysics. We developed a user-friendly and flexible stimulus generating

framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers

access to GPU computing power, and allows interactive modification of stimulus

parameters during experiments. Furthermore, it has built-in support for driving external

equipment, as well as for synchronization tasks, via USB ports. The use of GEARS

does not require elaborate programming skills. The necessary scripting is visually aided

by an intuitive interface, while the details of the underlying software and hardware

components remain hidden. Internally, the software is a C++/Python hybrid using

OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL

shading language. However, all GPU settings, including the GPU shader programs, are

automatically generated by GEARS. This is configured through a method encountered in

game programming, which allows high flexibility: stimuli are straightforwardly composed

using a broad library of basic components. Stimulus rendering is implemented solely in

C++, therefore intermediary libraries for interfacing could be omitted. This enables the

program to perform computationally demanding tasks like en-masse random number

generation or real-time image processing by local and global operations.

Keywords: light stimulus, patterned illumination, video processing, retina, psychophysics, GPU

1. INTRODUCTION

Investigating light-sensitive tissues, analyzing the optic tract or doing experiments in visual
psychophysics require light stimulation with complex spatio-temporal modulation. The growing
demand is fulfilled by several free and commercial light stimulus-generating software, having
different benefits and disadvantages. The most notable of these are the Psychtoolbox, PsychoPy,
VisionEgg, OpenSesame, E-Prime and Presentation (Yoonessi and Yoonessi, 2011; Strasburger,
2015; Software Comparision, 2016).

Psychtoolbox (Lu and Dosher, 2013; Psychtoolbox, 2016) is a package of interface routines
betweenMatlab and OpenGL. It also handles computer hardware like graphic cards, sound devices,
and mechanical feedback tools. It has a large user community, and offers most of the presently used
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light and sound stimuli. In order to run it at its full potential,
commercial software (Matlab) has to be installed on the
computer. Matlab is available for all common operating systems
(Windows, Linux, and Mac).

PsychoPy (Peirce, 2009; Kubilius, 2014; Psychopy, 2015)
is freeware, platform-independent application to allow the
presentation of light and sound stimuli. It uses the Pyglet library
to interface between Python and OpenGL, and consists of about
20 submodules which can be used as building blocks to create
visual and sound stimuli. The interpreted Python code redirects
computationally intensive tasks to C and FORTRAN via the
Numpy module of Python. PsychoPy can also interact with
external hardware. Beside traditional programming, it offers a
GUI as well.

VisionEgg (Straw, 2008; VisionEgg, 2009; Muller et al., 2015)
is another freeware cross-platform library to generate visual
stimuli. OpenGL commands are accessed through the PyGame
multimedia modules. Particular attention is given to luminance
and temporal calibration. Several interfacing techniques to input
devices such as mice, or digital triggers are also supported. In
contrast to PsychoPy, it uses a strongly object-oriented model
of programming. However, for users who are less experienced in
software development, it is hard to understand object-oriented
frameworks.

OpenSesame (Mathôt et al., 2012; OpenSesame, 2016) is a
free graphical experiment builder software compatible with all
common operating systems. It has comprehensive and intuitive
GUI, but also allows Python scripting for more complex tasks.
The software supports various external devices. Although it just
offers a small number (about 20) of functions for implementing
visual stimuli, it is compatible with PsychoPy routines. Therefore,
the same considerations as for PsychoPy apply.

E-Prime (Spapé et al., 2014; E-Prime2, 2016) and
Presentation (Presentation, 2016) are commercial software
available only for theWindows operating system. They offer GUI
and custom scripting language for assembling visual stimulation
experiments, with building elements covering the most common
patterns. Both software can interface with external hardware.

The ViSaGe MKII Stimulus Generator and the corresponding
CRS Toolbox Matlab package represents a system consisting of
dedicated hardware and corresponding software. This solution,
offering wide functionality, has been developed by the Cambridge
Research Systems (DepthQ 360 DLP Projector, 2016). However,
purchasing expensive hardware and commercial software is
required to run the system.

A public domain software which enables straightforward
stimulus development without prerequisites in programming
skills, is flexible enough to meet the demands of various fields,
offers interactivity, and can perform computationally demanding
tasks like real-time video processing, is still in demand. Our
software, GEARS (www.gears.vision), is a standalone freeware
solution, based on a new computational workflow model.
Although most common requirements can be addressed by
the software listed above, none of them is optimized for
computationally intensive tasks and interactivity. In classic
packages, computations are executed by a small number of
CPU processors, while hundreds of GPU processor cores that

are present on an average graphics card, and could run the
task in parallel, are not utilized. By taking advantage of the
parallel architecture of GPUs for non-graphical tasks, GEARS
is able to perform real-time operations like tone mapping,
histogram equalization or contrast stretching, filtering operations
like edge enhancement by difference-of-Gaussian kernels, image
sharpening, as well as further operations in real or Fourier
space (Klette, 2014). If a large batch of random numbers is
required in every frame, GPU-based parallel random number
generation is also possible. Only some of the previously
mentioned packages can perform these tasks in real-time,
and not without challenges to the user and the hardware.
Pre-computing stimuli, recording and playing them back as
video streams could be used for computation-intensive cases.
However, such a solution has a series of drawbacks. Facilitating
interactivity is obviously not possible. Video compression
artifacts may be prohibitive for some artificial stimuli, and
handling uncompressed high resolution footage carries storage
and bandwidth requirements not widely available. Decoding high
resolution video may not be possible at or above 60 frames
per second. Moreover, it is extremely difficult (and conflicts
with frame rate requirements) to implement synchronization
with external electronic signals marking time points, which is of
pivotal importance for physiology experiments.

In order to illustrate the advantage of GPU-based
parallelization, let us consider a two-dimensional Fast Fourier
Transformation (FFT) of a 1024 × 1024 image. This is an
operation that needs to be performed twice in every frame to
realize real-time convolution with large kernels. At 60 Hz, 0.016 s
are available to compute a frame. On a laptop computer with
an Intel I5 processor, we measured 0.08 s for CPU execution,
which is prohibitively large. However, using an nVidia GeForce
Titan GPU with 3072 GPU cores, the computation is performed
in 0.002 s, i.e., in 40 times less time than the CPU solution. If
further processing of the data also happens on the GPU (as in
GEARS), we do not have to consider the time cost of transferring
the input and the output between the CPU and the GPU.

The new workflow model of GEARS is more inclusive than
any of the software mentioned above. Previous solutions adhered
to the classic image synthesis method of drawing polygons by
filling image pixels. Therefore, variation of pixel color within
shapes could only be achieved using precomputed textures. Our
model exploits the full computational capabilities of the GPU as
it does not rely on polygon rendering, but evaluates formulas that
describe shapes, spatial and temporal patterns for every pixel.
This provides more flexibility, and allows a framework where
individual aspects can be combined freely without writing new
programs.

Thus, compared to previous packages, GEARS offers a
much broader selection of components, at multiple levels of
granularity, to build stimulus sequences. Executable spatio-
temporal light patterns, namely the stimuli, are used to build up
diverse stimulus sequences. Similar to computer game engines,
elements of the rendering software underlying the stimuli can
be assembled using a component-based system, which consists
of a large number of elementary building blocks referred to
as stimulus building components (SBC). SBCs are written in
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Python, but they configure a rendering backend implemented
solely in C++. Only the C++ engine has to access the
GPU hardware. Thus, GEARS does not require intermediary
libraries for PythonOpenGL interfacing. These solutions endow
GEARS with unprecedented flexibility and computational power.
Moreover, real-time, interactive changing of stimulus features
via simple feedback mediated by mouse, keyboard, or a
microcontroller is also possible, even during computationally
demanding applications.

Since GEARS represents a radically new framework for
computationally demanding stimulus generation, with some
elements coming from high-performance computer game
software, features present in already existing software (PsychoPy
and VisionEgg in particular) had to be re-created. GEARS
includes hundreds of scripts (Python programs interpreted
by GEARS in runtime) implementing mainstream stimulus
elements for physiology and psychophysics that can easily be
modified and combined.

In most light stimulus software developed up to this
time, simple usage and flexibility were conflicting demands.
A graphical user interface (GUI) has inherent limitations and
requires permanent development. In contrast, if customizing the
software is implemented through an application programming
interface (API), the user has to possess deep programming skills.

In order to avoid drawbacks of application programming
interfaces (APIs) and graphical user interfaces (GUIs), we have
developed a solution that we call the visually aided scripting
interface, or VSI. This is an integrated, Python-based script
editor to create and configure stimulus sequences. This combines
the potential of Python programming with an entry-level user
experience that is not more challenging than setting parameters
on a GUI.

In order to correlate experimental data (like voltage traces)
with stimulus events, timing information of the stimuli has
to be recorded as well. GEARS offers high precision signaling
of significant temporal markers like start and termination of
relevant stimulus elements, or presentation of individual frames.
Driving external devices like shutters, filters, or monochromators
can also be required: for this purpose, stimulus definitions
include strategies for emitting TTL signals via USB ports
equipped with RS232/TTL adapters. The software warns the
user if the computational demand exceeds computer power,
and adjustments to performance-critical stimulus parameters are
needed. It is also possible to prepare the frames of a stimulus
or stimulus sequence in advance, and project it as a plain video
during the experiment—but this may pose comparably steep
hardware requirements for high frame rates, resolution, and
fidelity. Control of external devices is possible through their
runtime library interfaces.

The software has been developed in a teamwork with retina
physiologists and psychophysicists. Demands of experimental
scientists have been implemented in GEARS. Presently GEARS
runs on the Windows platform, but most of its code base
is platform-independent, relying on Python and OpenGL.
Implementation of performance-critical, platform-dependent
window management and event handling functionality for the
Linux operating system is in progress.

2. SOFTWARE OPERATION

GEARS is a C++/Python hybrid using OpenGL graphics,
that generates GLSL shaders dynamically. Figure 1 shows
the software stack. Stimulus rendering is implemented solely
in C++, while Python is used for user interface and
scripting. Thus, it is the role of the Python layer (detailed
in section 2.1) to assemble stimulus sequences via calls to
the C++ layer. Afterwards, stimulus sequence display runs
natively, with direct operating system calls. We do not have to
use intermediary libraries for window management or Python-
OpenGL interfacing (e.g., PyQt, PyOpenGL, and PyGame). This
allows us to sidestep overhead or limitations of existing APIs, e.g.,
for combining video rendering with OpenGL.

2.1. Scripting Model
GEARS offers a comprehensive library of mainstream stimulus
sequences prevalent in retina science. These are implemented
by stimulus sequence scripts, which are intuitive Python scripts
consisting of concatenated stimuli with their parametrizations.
For example, a stimulus sequence may consist of animations
of bars progressing in different directions, with uniform gray
fullfield illuminations in between. A large set of pre-fabricated
stimuli is available in GEARS. For example, a moving bar
stimulus can be parametrized by the dimensions, sweeping speed
and direction, among others. The scripts defining the stimuli
themselves consist of simple and intuitively parametrizable
stimulus building components (SBCs), which control a certain
feature of the stimulus. For example, the moving bar stimulus
combines a rectangle shape SBC with a sweeping motion SBC,
while a stimulus showing a spot with varying intensity is
composed using a shape SBC and a modulation SBC.

New, custom stimuli can also be assembled using the same
mechanism, applying an arbitrary number of SBCs. This does not
require the user to edit the SBC implementations that connect to
the C++ layer or define functions in the GLSL shading language.
The user has to deal solely with the interface of SBCs for intuitive
parametrization.

2.2. Stimulus Sequence Control GUI and
Visually Aided Script Editing
GEARS is equipped with a GUI developed for the design,
configuration, tone mapping calibration, overview, and
execution of stimulus sequences. The stimulus execution screen
shows the sequence overview with sample frames, and/or
timeline plots of important temporal characteristics (e.g.,
modulation intensity or synchronization signals).

The authoring of the stimulus sequence scripts using
intuitively parametrizable stimuli, as well as composing custom
stimuli from SBCs, is supported by a visually aided scripting
interface, or VSI (Figure 2). Although the scripts defining the
stimulus sequences are valid Python code, they were designed
to be concise and well readable even for complex stimuli. In
practice, for a typical user of GEARS, it is sufficient to list
and parametrize pre-made stimuli, accompanied by elementary
flow control commands like for loops. Even authoring of
new stimuli can be performed without low-level programming
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FIGURE 1 | The GEARS software stack. Stimulus sequences can be executed using the GEARS GUI. New sequences can be composed with a built-in visually aided

script editor. A library of ready-to-use, parametrizable stimuli and stimulus sequence scripts are provided. Custom stimuli can be assembled from stimulus building

components.

FIGURE 2 | The (A) sequence overview and (B) visually aided script editor of GEARS. Editable Python code of the stimulus sequence script is listed. Call tips

displaying currently edited SBC parameters with their default values and descriptions are shown automatically. A seekable dynamic preview of the stimulus is also

displayed while marking the part of the script under execution.

skills, as our component-based model allows fast and flexible
stimulus assembly using SBCs. Both the components and the
stimulus classes already assembled are highly customizable, with
numerous parameters. GEARS offers more than a hundred of
different SBCs and dozens of stimuli implemented, and all of
them have their own parameter interfaces. Users are not expected
to keep them all in mind, since the VSI of GEARS incorporates
a customized Integrated Development Environment (IDE). This
solution is based on the QScintilla (Hodgson, 2016) source
code editor, but enhanced to specifically support SBC interfaces,
and synergize with an instant visual representation of the
edited components, stimuli, and the stimulus sequence script.
Customized code completion and call tips provide instant
documentation, as well as clickable, floating listings of possible
components and parameters.

The VSI offers side-by-side visual presentation of the editable
features of the stimulus elements. Moreover, it shows the time

flow of the stimulus sequence prepared for execution. The scripts
can be saved and recalled straightforwardly.

The creation of new SBCs for innovative stimuli is not in
the scope of the VSI, but it is a fairly simple Python/GLSL
programming task that typically only requires changing some
formulae in existing program code.

For further details on GUI, we refer to Supplementary
section 5, to the user’s manual, and to the homepage of GEARS
(www.gears.vision).

3. COMPUTATIONAL WORKFLOW

3.1. Shaders, Render State, Pipeline, and
Workflow
In this section, we review computer graphics and GPU
programming concepts relevant to the implementation of the
GEARS workflow model.
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Computer graphics cards are programmed through various
specialized Application Programming Interfaces (APIs). Some of
them are designed for rendering graphics, while others exploit the
parallel architecture of the GPU for general purpose computing.
There are two widely used graphics APIs, Direct3D (Hughes
et al., 2014) and OpenGL (Shreiner et al., 2013). GEARS employs
OpenGL, which is an API based on the C language. Graphics
APIs provide an abstraction of the GPU hardware components,
implementing a sort of virtual computer, constructed as a
pipeline for rendering images.

A pipeline has multiple stages, which can be programmable
or fixed-function. Fixed-function stages can be customized by
setting so-called render states. The operation of programmable
stages is defined by special pieces of software called shaders.
Shaders can be written in OpenGL’s own shading language,
namely GLSL. Pipeline stages perform tasks like filling the GPU
memory buffers with arrays of vertices of a shape, applying
geometrical operations, breaking down triangles to pixels, and
finally, assigning color to the pixels and sending the information
to the target graphics buffer.

A drawing sequence that uses a certain configuration of
shaders and render states is called a pass. The output of a pass
is not necessarily a visible image. It can also be an intermediary
dataset, which is streamed for further processing to a later pass.
Multiple passes can be organized into a chain, which we refer to
as a workflow.

Modern GPU programming libraries enable low level
access to the parallel hardware described above. This allows
for efficient compute-intensive rendering, but requires deep
understanding of the GPU. GEARS automates the process of
programming the GPU to produce stimuli. The method was
engineered with the aim to maintain efficient rendering,
without demanding advanced knowledge in computer
graphics.

3.2. Workflow Organization in GEARS
In GEARS, all stimuli are constructed as a combination of
previously defined stimulus building components (SBCs). The

scheme is depicted in Figure 3. Our approach is inspired by
modern game engine systems, where aspects of game world
entities are represented by components that can be freely
combined (Eberly, 2006). An SBC is a Python class (program
code for creating and managing similar objects) that defines a
certain aspect of a stimulus by invoking lower level software
methods. Functions of SBCs can be various.Most of them address
graphical tasks, either individually (e.g., spatial filtering), or in
combination (e.g., providing a shape, pattern, or motion path).
Some SBCs individually handle non-graphical features like sound
or external devices.

Most widespread software packages designed for a similar
purpose use a low number of shaders (GPU programs),
while stimuli are implemented by setting appropriate shader
parameters. This structure cannot guarantee the flexibility and
efficiency that shaders tailored for specific tasks would provide.
Moreover, the continuous demand for new stimuli will inevitably
exceed the limitations of previously written shaders, while
new ones cannot be implemented without resorting to GPU
programming.

In GEARS, the core software mechanism dynamically
generates graphical (GLSL) shaders from SBC combinations.
Therefore, creating custom-made shaders for specific tasks
does not need GPU programming expertise. This modular
structure is the key to the flexibility and simplicity, and at
the same time the high computational power of GEARS.
A large library of parametrizable SBCs is provided, which
covers the needs for displaying the overwhelming majority
of the stimuli we identified in the literature up to 2017
(see Supplementary section 3). Only fundamentally new
spatio-temporal light patterning could require extending the
capabilities of GEARS, for which several options are discussed in
section 3.4.

Figure 4 shows the workflow for rendering (image synthesis)
of a single frame of a stimulus. We call the nucleus of the
workflow core rendering, which is a set of passes designed to
produce an intermediate version of a stimulus image, which
may be further processed before being displayed on the screen.

FIGURE 3 | A GPU pass is defined by a full configuration of fixed function stages and programmable shader stages. The GEARS C++ engine automatically

generates shaders, parametrizes fixed function and programmable stages, and constructs the workflow of passes. This process is controlled by Stimulus Building

Components (SBCs) that define various aspects of stimuli.
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FIGURE 4 | Generation procedure of a single stimulus frame. Prerequisites, core rendering and post processing phases are each composed of passes marked by red

boxes.

The core rendering may be preceded by operations like video
decoding, random number generation, and/or 3D OpenGL
rendering, and can be followed by post-processing steps like
spatial and temporal filtering, or gamma compensation.

Non-graphical functions of the stimulus are realized outside
of the GPU. The most important of these are emitting signals
to drive or to be recorded by the measurement electronics,
playing sounds, and controlling external devices. Any new
device with a runtime library (e.g., a manufacturer-provided
DLL offering functions for controlling the hardware) can be
operated from Python scripts using the ctypes foreign function
library to access the DLL. These tasks, performed by the
CPU, are precisely synchronized with the presentation of the
images.

3.2.1. Rendering in GEARS
The classical forward rendering process draws polygonal shapes
defined by vertex positions. This is the rendering model of
classic OpenGL, which is straightforward and efficient, but
only supports solid polygonal shapes, and limited modes of
image composition (alpha blending for transparency, and depth
testing for occlusions). These restrictions can be circumvented
if the polygons are textured with images. However, using static
textures precludes interactivity and limits animation. In order to
overcome this problem, textures must be generated dynamically,
meaning that their pixels are computed procedurally, using a
formula or an algorithm.

In GEARS, forward rendering is only used for 3D content
and free-form shapes that are easier to describe using polygons
than with membership functions. All the other features are
rendered in a per-pixel manner, extending the concept of
dynamic texture generation to the entire screen. This approach
allows an easy implementation of set operations ( e.g.,
difference or intersection) on multiple shapes, mixing and
masking of patterns by linear interpolation, or non-linear spatial
distortions with pixel precision. Moreover, soft-edged shapes
can straightforwardly be defined, with full control over anti-
aliasing to counter artifacts due to finite image resolution.
Although this solution might need to process more pixels in
case of the simplest, smallest shapes, the overall time cost is

still far below the time available for rendering a frame, which is
typicallymore than 1/120 s.We refer to our approach as pointwise
rendering.

3.2.2. Stimulus Building Components (SBC)
A large number of SBCs realize specific tasks in the graphical
workflow and accompanying non-graphical functions (see
Supplementary section 2). Multiple SBCs may influence a single
GPU pass in the workflow, and conversely, functionality of a
single SBC (notably filterings) may be used by multiple passes
(refer back to Figure 3). In this article, we typeset SBC types in
bold (e.g.,motion), and concrete SBC realizations in italics (e.g.,
sweep).

Certain SBC types are responsible for computing
prerequisites for image generation. Core rendering passes
are composed using combinations of so-called primer SBCs that
represent elementary stimulus features like patterns or shapes.
Combination of primer SBCs with each other, as well as with
SBCs defining motion, intensity modulation, or distortions,
are also allowed. The image resulting from core rendering
can be subject to various SBCs performing image processing
operations like spatio-temporal filtering or convolution.
Additionally, non-graphical tasks performed alongside stimulus
rendering are defined by further SBCs. Parameters of all
SBCs can be given explicitly or through interaction SBCs.
These specify bindings for input devices like the mouse or the
keyboard.

3.3. Details of Pivotal Functionality
In this section we present the most significant operations, and
some respective SBCs, in more detail. An exhaustive description
of all SBCs can be found in the user’s manual.

3.3.1. Pseudo-Random Number Generation (PRNG)
Several stimuli, like random checkerboards or randomly moving
objects, require a large set of (pseudo-)random numbers for each
of their frames. Generating random numbers on the CPU, and
uploading them on the GPU in every frame might critically slow
down the rendering process. Therefore, GEARS incorporates a
GPU-based pseudo-random number generator, which produces
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2D arrays of random numbers in parallel on the GPU. The SBCs
capable of performing this task are called PRNG SBCs. One
example is the XorShift128 (Marsaglia, 2003) SBC, which can
be parametrized by a random seed. The very same sequence of
pseudo-randomnumbers will arise during the repeated execution
of a certain stimulus. Knowing the seed, these sequences can be
re-created by the data analysis software, but they can also be
exported to text files. Other PRNG SBCs allow shifting the 2D
array of random numbers as well. This option is beneficial for
generating moving random patterns, where only a small amount
of random numbers, covering the newly arising regions, needs to
be computed during the rendering of a new frame.

3.3.2. 3D Rendering
Implementing a specific virtual reality environment is a
demanding task with respect to algorithmic challenges,
computational requirements, and content modeling. Most of
these are addressed by specialized software called game engines.
Our program does not try to implement a full-fledged 3D
rendering engine. However, full access to OpenGL functionality
is exposed via forward rendering components. Forward-rendered
scenes can be used as inputs in combination with any image
processing capability.

As a most typical example, GEARS provides flythrough of an
easily configurable labyrinth with textured walls. The labyrinth
SBC, which features parametrizable maze layout and camera
path, demonstrates the integration of classical forward rendering
using PyOpenGL into the GEARS workflow.

Note that 3D content can also be rendered by ray casting,
which finds the first intersections between the scene elements
and the half-lines from the eye through every pixel. This is
a per-pixel method that fits our pointwise rendering scheme.
GEARS incorporates a set of further, procedurally generated
virtual reality scenes implemented by ray casting (e.g., terrain
flyover and 3D fractal exploration).

3.3.3. Core Rendering
The strength of core rendering SBCs lies in their easy
combinability. We emphasize that combining SBCs is
implemented on the level of Python scripting, and the procedure
does not assume deep knowledge in GPU programming. For
example, moving bars are simply implemented by joining the
sweep SBC (amotion SBC, responsible for moving shapes across
the field) to a rectangle SBC that defines a rectangle shape. The
mouse wheel interaction SBC adds the possibility of adjusting
both the speed and the angle interactively using the mouse.

Numerous SBCs require color parameters. GEARS performs
computations in the RGB color space, but is able to convert from
widely used color spaces like CMYK, HVS, or XYZ. It is also
possible to specify color sensitivity curves or RGB conversion
tables for arbitrary receptors. Although the capabilities of
the display device may not allow independent stimulation of
receptors, GEARS is able to compute and display the stimulation
levels resulting from an interactively set color input.

A particularly important SBC is mixing, which allows linear
interpolation between the pixel values of two primer SBCs,
taking interpolation parameters from a third primer. This

allows mixing a background and a foreground pattern according
to a certain masking shape. As a result of this operation,
the foreground pattern is only visible inside the masking
shape, while the background pattern outside of it. Since this
foreground/mask/background scheme is sufficient for a majority
of the stimuli, GEARS offers a template for the definition of new
stimuli that merely requires the listing of the desired masking
shape, foreground, and background primer SBCs.

Any of these SBCs can be further decorated with motion,
modulation, and warp SBCs, all of which have meaningful
defaults. For example, a grid of spots with a grating pattern and
a black background can be constructed with this template by
just listing the spot primer, sine primer, and repeat warp SBCs,
respectively.

Generating a smooth interchange (fading) between two
patterns is another prominent example of stimulus building: it
requires a mixing composition over two arbitrary primer SBCs,
with interpolation values from a fullfield primer with linear
modulation. GEARS also offers a template for this common
scenario. For simple cross-fading the only required parameter is
the duration, given in seconds or frames.

The grid points SBC is a special warp component that repeats
a primer at preset positions, for example on the vertices of
a random, rectangular or hexagonal grid. This functionality
is especially useful for doing experiments with multielectrode
arrays (MEAs), or optogenetically labeled cells. Other SBCs
(e.g., the linear motion component) also accept positions given
by custom-defined grid vertex labels, which further simplifies
certain tasks performed with MEAs.

Random checkerboard SBCs take random numbers generated
by the PRNG and display randomly flickering binary, grayscale,
or color checkerboards. The shapes used in polygon mask SBCs
can be interactively edited using the GUI, or they can be
loaded from the most common vector graphics file formats.
The polygon mask functionality is especially useful if the light
stimulus has to be confined to arbitrarily given, free-form regions,
or optogenetically labeled cells.

3.3.4. Spatial Filtering
GEARS offers a feature which most similar software does not,
namely the possibility for real-time spatial and temporal filtering
of the rendered frames. Spatial filtering SBCs take the image
provided by core rendering, and perform spatial filtering by
spatial or frequency domain processing, depending on the choice
of the user. Filtering with large kernels is computed more
efficiently in the frequency domain, whilst for filterings with
small ones, the spatial domain method demands less resources.

Certain filtering operations are nonlinear, and cannot be
simply defined by a kernel. GEARS includes SBCs specifying such
shaders, e.g., the median filtering used for de-noising images,
and adding new ones is certainly possible. However, it is more
typical to use linear filtering, convolving the image with a kernel
given by a mathematical function. New filtering SBCs can easily
be specified by modifying the kernel functions of existing ones.
For filtering in the Fourier space, the kernel can directly be given
in the frequency domain, offering a convenient way to specify
low-pass, band-pass, high-pass, or anisotropic filterings.
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GEARS offers the possibility to change the kernel parameters
in real time, for example by moving the mouse. This operation
may incur some transient performance penalty, as the kernels and
their transforms have to be recomputed.

3.3.5. Temporal Filtering
During temporal filtering the pixel values of the stimulus frames
are regarded as discrete time signals. Filtering can be performed
either by convolution with a temporal one-dimensional filter
kernel, or, if the kernel is smooth enough to be well approximated
by a composition of complex exponentials, a linear time invariant
(LTI) signal processing operation is also suitable.

Users may specify the convolution kernel, choosing between
direct convolution or using an LTI system. The LTI state
representation can be directly given as well. This option is
useful, for example, if a theoretical system realization is being
investigated, where the differential equations governing the
system are known.

SBC realizations that configure temporal filtering include
rectangular, triangular, Hamming, and Hann windows,
exponential attenuation, and a mixture-of-Gaussians model
for the approximation of retina cell response. Note that only past
frames can be considered in filtering, but this is equivalent to
taking future frames into account and presenting the stimulus
with a delay.

3.3.6. Histogram Manipulation and Tone Mapping
GEARS has another feature which, besides the possibility of
real-time spatio-temporal filtering, is extraordinary among the
visual stimulus generating software available for medical and
scientific application. This functionality is real-time dynamic
tone mapping operations with linear (contrast stretching) and
sigmoidal transfer functions, as well as histogram equalization of
picture sequences or videos.

These methods are applied to increase the global contrast of
an image by adjusting the distribution of image intensities. It
is also possible to specify parameters that result in decreasing,
and not increasing, the contrast. Tone mapping SBCs include
sigmoid, contrast stretching, and equalization, applying the above
functions to map the intensity range into the unit interval.
All of these can be set to dynamic operation, adjusting the
transfer function for individual frames. The desired contrast and
brightness level can be changed interactively, while histogram
equalization can be switched on and off during stimulus
display.

The intensity values resulting after a filtering operation
may go beyond the unit interval. Therefore, a renorming tone
mapping operation is necessary. This can be done dynamically
for each frame, or using the same mapping for all the frames of
a stimulus.

GEARS provides a function for the in-silico measurement
of the global intensity distribution of the whole stimulus. This
extracts and displays the histogram, along with the intensity
minimum, maximum, mean, and variance values marked.
The user can accept or override the histogram manipulation
parameters derived from the measurement. These settings can be
changed interactively as well.

3.3.7. Calibrating the Gamma Curve of the Light

Emitting Device
Finally, the stimulus is subject to gamma compensation. This
is required because most commercial visualizing tools, like
projectors, are configured to take human visual psychophysics
into account. Accordingly, the same intensity variation produces
the same differential change in light intensity perception for
both high or low values, according to theWeber-Fechner/Stevens
psychophysics law.

However, scientific applications assume a strictly linear
relationship between the value specified in the software and
the resulting change in light intensity. Therefore, the gamma
distortion of the device must be compensated. Since the gamma
curve can vary depending on the amount of the time the light
emitting device has been used, the safest way is to regularly
measure it by an appropriate photometer, and provide the
obtained values to GEARS.

3.3.8. Synchronization
Neurophysiology and psychophysics experiments demand exact
timing, as well as high precision recording of the onset, offset,
and other significant time points of the delivered light stimuli. In
order to provide timing data for recording electronics, GEARS
emits high precision voltage signals through virtual RS232
ports RTS and BREAK pins (see Supplementary section 4.1,
and the Hardware section of the www.gears.vision website).
In current computers (2017), RS232 ports are realized by
converters plugged into USB ports. Each USB port supports
two output channels, and an arbitrary number of them can
be handled by GEARS. The user can freely define the signals
emitted on these channels. By default, one channel is reserved
for signaling the onset and offset of individual stimulus
elements, while another one delivers the stop signal arresting the
experiment.

Display devices refresh their screens continuously, row by
row, pixel by pixel, with a short interval between the refreshes,
called the vertical blank. The vertical blank occurs at regular
intervals (e.g., at 60Hz). The GPU drives the display from a
piece of memory called the front buffer, and renders the next
frame in a separate back buffer. Only after rendering a frame
can a buffer swap take place, starting to drive the display with
the new image data. If the buffer swap occurs during a refresh,
the boundary between the refreshed and non-refreshed parts
of the screen can show up as a discontinuity. This is called
tearing (see Supplementary section 4.2). It can be avoided, if the
buffer swap happens during the vertical blank. This is ensured
by the GPU feature called vertical sync, enabled either by user
applications of through the manufacturer-provided hardware
control application (e.g., NVidia Control Panel). With vertical
sync enabled, the GPU does not perform a buffer swap until
it receives a VSYNC signal from the display device, indicating
a vertical blank. Delaying the buffer swap means the back
buffer does not become available for rendering. The GPU blocks
requests coming from the CPU to present new frames, thus
making the program wait for the buffer swap. This, in case of
visual stimulation software, is a useful feature, as it synchronizes
the operation of the display device, the GPU, and the CPU.
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In a visual stimulation software, tearing is not acceptable, so
vertical sync must be enabled. However, it is equally important
to display the exact frames required by the experiment, meaning
exactly one buffer swap has to be performed at every vertical
blank. If the rendering of a frame takes more time than the
refresh interval, then the buffer swap cannot occur at a vertical
blank, and we have missed an opportunity to display one of the
stimulus frames. This is called a frame drop (see Supplementary
section 4.3).

If tearing is possible, GEARS refuses to execute stimulus
sequences and instructs users to adjust hardware settings. The
program offers the means to test experiment hardware for frame
drops in concrete stimulus sequences. If frames are dropped, a
visual or audio warning signal is sent out, and the indices of
dropped frames are reported. In this case, either the frame rate,
or other performance-critical parameters like FFT resolution
need to be adjusted until no frame drops occur. Benchmarks for
representative stimuli using an increasing number of hardware
configurations are posted to the Hardware section at www.
gears.vision continuously. As an alternative to scaling back
performance-critical parameters, the real-time condition has to
be canceled, and processing of the stimulus has to be performed
in advance. Consideration must be given to eventual artifacts
resulting from video compression.

Sound signals can be desired not only for research, but also
for experiment conducting purposes. GEARS does not want to
compete with sound synthesis software, but offers playing sound
files. The playback of audio frames is precisely synchronized to
graphics display, and to video frames in particular.

3.4. Extending GEARS
Since graphical SBCs rely on functions written in the GLSL
language, implementing new SBCs is possible but demands
more advanced programming skills. For example, creating a
new temporal modulation SBC that performs absolute-value-
of-cosine modulation can be achieved by slightly modifying
the formula (given in GLSL code) in a copy of the SBC
script implementing cosine modulation. However, replacing the
Fourier transformation used for filtering stimuli with alternative
processing (e.g., Zernike transformation) would require editing
the C++ source code of the rendering backend layer. Once
the new functionality has been added in C++, it is naturally
possible to incorporate it into the SBC system, allowing other,
non-programmer users to use it through the high-level visually
aided scripting interface.

Forward rendering SBCs allow access to the entire low-level
OpenGL API through PyOpenGL. Resulting images can still
be used in the GEARS workflow. It is also possible to create
entirely new stimulus classes in Python that do not use the
SBC components, but directly interact with the C++ layer to
construct shaders and configure other settings. These stimuli can
register callback functions to perform tasks in every frame or on
other events like keypresses. Thus, while the main focus is on
enabling non-programmer scientists to create stimuli easily but
efficiently, functionality can be accessed on all of the several lower
levels to allow extending GEARS.

4. DISCUSSION

4.1. Practical Aspects and Examples of
Light Stimuli
In order to comprehend the rationale behind the stimuli
generated by GEARS, in Supplementary section 1 we shortly
review the fields of science where these stimuli are applied. For
further details on hardware, see Supplementary section 4.

4.1.1. Shapes
Supplementary section 3.1 reviews applications for stimuli with
simple shapes like the fullfield, spots, squares, or freeform shapes
which can vary in size, shown individually or in groups.

In GEARS, simple shapes like discs, annuli, or rectangles—
and even tilings built of them—can be defined by parametrizing
appropriate primer SBCs. New geometrical shapes can easily be
constructed by providing their implicit equations or polygon
vertices. Free-form shapes can be edited as piecewise Bezier
curves (Boehm and Müller, 1999) using an integrated graphics
editor. Defining soft shapes with fuzzy membership functions are
also possible. SBC parameters allow the setting of the luminance,
color, and size of the shapes. Switching them on or off with
high temporal precision, or altering their size and position is
supported. Figure 5 shows some examples rendered in GEARS.

4.1.2. Motion
Supplementary section 3.2 reviews applications for stimuli with
shapes, like spots, bars, and freeform shapes, moving at various
velocities and orientations.

GEARS offers a broad variety of motion SBCs that can be
attached to arbitrary primer SBCs (see Figure 6 for examples). In
the linear motion SBC, either the velocity, or the time necessary
for a shape to cross the screen has to be specified. The free-form

FIGURE 5 | Simple shapes and patterns in GEARS. (A) Two frames from a stimulus displaying shapes with changing size and intensity. (B) Shapes under non-linear

pinch-twist distortion. (C) Campbell-Robertson pattern with frequency and contrast gradient.
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FIGURE 6 | Sample frames taken from moving (shifting and rotating) patterns: (A) Moving and deforming shapes, (B) Square grating and sinusoid grating, separated

by an annulus, and moving in opposite directions. Note that implementing phase inversion is also straightforward. (C) 5,000 shapes with random size, orientation, and

motion, rendered without performance issues.

motion SBC allows arbitrary motion paths, interpolated from
provided control points of the trajectory and the velocities of
the shapes at these points. Superimposing random shaking over
any smooth motion is also possible. Appropriate SBCs allow
the speed and direction of motion to be interactively changed
by pressing certain keys or by moving the mouse during the
experiment.

4.1.3. Temporal Modulation
Supplementary section 3.3 reviews applications for stimuli with
shapes with contrast or intensity regularly modulated in space
(grids) or in time (sinusoidal or other waveform with fixed or
varying period).

GEARS allows the realization of stimuli of this type by
combiningmodulation and primer SBCs. Ready-made SBCs for
intensity modulation include linear fading, sinusoidal and square
waveforms (Figure 7 shows some examples). Note that frequency
and amplitude can be configured to change during the stimulus,
by giving their initial and final values. Newmodulation SBCs can
be realized by providing the intensity value as a function of time.

4.1.4. Flickering Checkerboards
System identification is an efficient tool that can promote
the understanding how certain subsystems of the visual tract
work, provided that the input (the light stimulus) and the
output (voltage trace of certain neurons) are known. In visual
neuroscience, typically nonparametric system identification is
applied. The visual input is spatio-temporal, and usually
white noise implemented by a flickering checkerboard is used
for probing (Chichilnisky, 2001). Supplementary section 3.4
reviews applications for stimuli using pseudo-random flickering
checkerboards.

The random numbers, generated by the XorShift128 SBC for
each frame, are accessible for other components in the stimulus
as well, and they can be exported to files for the evaluation
of measurement results. Variants, like shifting the array while
introducing randoms at the border, are also supported. Image

SBCs that make use of the random numbers to render
a checkerboard can be defined (Figure 8), including binary
random and Gaussian white noise checkerboards rendered in
grayscale and in color, with adjustable luminance and contrast
levels. Note that these randoms can be used for other purposes,
like randomly moving a high number of shapes.

Supplementary section 3.5 reviews applications creating
virtual environments for stimuli using pseudo-random flickering
checkerboards.

4.1.5. Natural Videos and Virtual Environments
Beside simple geometric shapes, examination of the visual tract
also requires more complex, realistic patterns (Felsen and Dan,
2005; Hyvärinen et al., 2009), which are usually provided as a
video record. GEARS can stream videos of mainstream formats
(avi, asf, mov, and mp4) into GPU textures, and all per-frame
real-time processing options available in our software can be
applied. Most importantly, videos can be subjected to real-time
and interactive spatio-temporal filtering, contrast manipulation,
and brightness adjustment. The real-time histogram equalization
can be switched on and off interactively. Ready-to-use SBCs
include various filtering options like edge detection and contrast
enhancement (Figure 9). Local image distortions can also be
performed by applying warp SBCs.

In order to extract statistical properties of videos, GEARS
features global or framewise histogram generation, as well
as Fourier transform, average Michelson and RMS contrast
determination, and entropy calculation of individual frames.

Computationally-generated stimuli can be projected via
specialized imaging systems, on hemisphere and torus-shaped
display screens covering most of the visual field (Takalo et al.,
2012; Geuss et al., 2015). Depending on the mirrors and the
screen used, different predistortion (warping) can be required
in order to lead to a realistic final image (Bourke, 2004, 2005).
GEARS offers warp SBCs for custom transformation which
can be parametrized for projection onto spherical surfaces
via flat or spherical mirrors (see Supplementary Figure S10).
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FIGURE 7 | Intensity plotted vs. time for various modulation options: (A) changing frequency on sine and square waves, (B) changing amplitude on sine and square

waves, (C) combinations of dissimilar and similar frequency components, and (D) synthesis from a multitude of frequency components.

FIGURE 8 | Random checkerboard stimuli. Binary (black and white) figures are colored depending on whether the magnitude of the random numbers, spread within

[0 . . .1], is greater or less than 0.5. Gray shades are generated by linear mapping of random numbers to the dynamic range. Colored checkerboards are generated

using three sets of random numbers, for the red, green and blue channels. (A) Binary, restricted to annulus. (B) Binary, in polar coordinates. (C) Grayscale. (D) Color.

FIGURE 9 | Real-time filtering and subsequent tone mapping on a frame of a natural video: (A) unfiltered frame, (B) difference-of-Gaussians filtering applied, (C)

subsequent tone mapping by linear transfer function, (D) subsequent tone mapping by sigmoidal transfer function. (E–H) Subfigures in the second row show

respective histograms measured and displayed in GEARS. Histogram segments extending beyond the dynamic range [0 . . .1] are shown in red. These regions are

“squeezed back” by the tone mapping transfer function to the dynamic range. Insets in the last two figures show the transfer functions used.

Supplementary section 3.5 reviews applications of virtual reality,
and simulation of various environments like labyrinths.

Virtual Realities may be realized by forward rendering SBCs.
For example, in case of the labyrinth, important features of the
journey, like camera path and labyrinth layout can simply be

parametrized. Camera motion can also be controlled by feedback
from an external device (e.g., a treadmill). Texturing walls
with patterns like stripes or scale-free images is also possible.
For rendering 3D environments by ray casting of procedural
scenes (like fractal-like terrain, vegetation, industrial, and indoor
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scenes), shaders can be found in the public domain in great
abundance (Quilez, 2014) (see Supplementary Figure S11).

Handling multiple displays is also allowed by extending the
desktop to multiple screens and setting the field size to their
combined extents. Composition SBCs to assign different stimuli
to desired parts of the field are provided. Prerequisites are
shared by stimuli appearing on different monitors, and filtering
is applied to them uniformly.

4.1.6. Stimuli for Visual Psychophysics
Classical psychophysical methods like various types of
adjustments and judgments all require the recording and
statistical analysis of the response of the subject (Pelli and Farell,
1995; Lu and Dosher, 2013). GEARS takes feedback by mouse
and keyboard, and other options including specialized devices
or microcontroller can also be implemented. All feedback events
are logged. Static or dynamic white noise can be added, for
example, by combining any stimulus with a specially adjusted
checkerboard SBC set to the same dimensions as the screen
resolution.

Some of the classic examples of visual stimuli and illusions
are already implemented in GEARS (e.g., drifting Gabor patches,
rotating snakes (see Supplementary Figure S12), or Hermann
grids). An effective tool in investigating visual illusions is the
parametrization of the images between a form where the effect
appears, and another one where it is not present (Schrauf et al.,
1997). In order to address this task, GEARS can use image files
as primer SBCs, and fade between them. The SBC toolkit of
GEARS allows easy implementation of further visual illusion or
psychophysics stimuli.

4.1.7. Interactive, Real-Time Filtering, and Histogram

Equalization
Real-time image processing plays an important role in the fields
where fast feature extraction from, or quality enhancement
of a video stream is necessary. Pre-processing for visual
prostheses, quality enhancement of the images delivered by night
vision cameras (Jungenfelt and Raski, 2012) or other recorders
working in reduced visibility (Beckman, 2015) all require
various image manipulation algorithms. Real-time operation
requires substantial computing power. A series of commercially
available video processing systems (Beckman, 2015) apply special
hardware, while some of them (Ikena ISR, 2016) perform the
task using commercial software. Edge enhancement (Kwon et al.,
2012) and histogram equalization (Livingston et al., 2011) are the
most important algorithms in the applications mentioned above.

GEARS is able to perform such operations, including like real-
time image enhancement, using the computing power of the
GPU. In the figure below (Figure 10), we present as example
edge enhancement realized by a difference-of-Gaussians filtering,
which is followed by two possible tone mapping operations.

4.2. Validation and Application
We validated stimulus timing using submillisecond-precision
electronic light sensors. We found that stimulus durations were
in absolute agreement with the prescribed values, accounting for
the time quantization due to the finite refresh interval of the
display device.Wemeasured a constant, invariant time difference

between the display of a stimulus frame and the recording of a
simultaneously emitted signal in the measurement electronics.
Details can be found in Supplementary section 4.1.

We validated geometric accuracy by measuring object
dimensions both on direct screenshots and on images projected
onto the specimen. This was accomplished by analyzing the
images of a CCD camera coupled to the microscope that was
installed for the purposes of the experiments on rodent retina.

The software was used for various experiments performed
on C57/BL6 mouse retina on USB-MEA256 multielectrode array
manufactured by Multichannel Systems. The sample preparation
and the technical details of the recordings were conducted as
described in Cronin et al. (2014). Details and results of the
experiments are given in the Supplementary section 6, we only
summarize them here.

We reconstructed linear kernels of retinal ganglion cells and
their upstream circuitries. This was performed by projecting
checkerboards implementing different forms of white noise onto
the retina.

A stimulus sequence with segments where the illumination
uniformly decreases has been elaborated to investigate the
response of a subset of OFF-type retinal ganglion cells in mice.
This was used to measure the dependence of cell behavior on the
rate of light decrease.

We investigated changes in spiking characteristics of the retina
when videos with sudden intensity histogram changes were
displayed. We measured activity patterns suitable for ganglion
cell classification.

Experiments described in Supplementary sections 6.1 and 6.2
were performed according to standard ethical guidelines
(European Communities Guidelines on the Care and Use
of Laboratory Animals, 86/609/EEC) and were approved by
the Veterinary Department of the Canton of Basel-Stadt.
Experiments were performed on 4–8 week old female C57Bl/6
mice that were maintained on a 12 h light/dark cycle.

Experimental procedures described in Supplementary
section 6.3 were carried out in compliance with the institutional
guidelines at the NMI. Housing and euthanasia of animals were
compliant with applicable German and European law for the
protection of animals used for scientific purposes and were
approved by the Regierungspräsidium Tübingen, Germany
(AZ 35/9185 82-2).

5. CONCLUSIONS

We have implemented a universal, flexible, and user-friendly
light stimulus generating software (GEARS, www.gears.vision)
for conducting research in visual science, with the ability to
perform computationally intensive operations. These operations
comprise, among others, real-time spatio-temporal filtering,
contrast manipulation, histogram equalization, and image
generation demanding a large amount of pseudo-random
numbers. Parameters of the stimuli can be varied interactively
during the experiments. Shaders drawing the images are
generated from a large number of elementary stimulus building
components. This technique, often encountered in game
programming, offers great flexibility when new stimuli are
assembled. Since GEARS offers an intuitive visually guided script
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FIGURE 10 | Real-time filtering on an annulus. Insets show 1D cross-sections of the spatial and frequency domain plots of filter kernels, having zero integral.

(A) Unfiltered frame, (B) after small-sized difference-of-Gaussians filtering, (C) after larger difference-of-Gaussians filtering. Note that after a double-Gaussian filtering

with zero integral, a homogeneous area is mapped to zero (black), while around the edges, intensity values beyond the [0 . . .1] dynamic range can occur. In order to fit

into the dynamic range, a linear mapping from the resulting intensity interval into the dynamic range has been applied. Therefore, the regions with zero intensity get a

value corresponding to a gray shade. (D) Small spot filtered with phase-shifted Gaussian (Gabor) filter.

editor, editing and configuring new stimuli does not require deep
knowledge in GPU programming. The software meets the widest
spectrum of requirements identified in existing applications in
the electrophysiology of the visual tract, psychophysics, and
ophthalmology.

The unique functions of GEARS will help physiologists,
ophthalmologists and psychophysicists with a demand for
computationally intensive tasks. We expect that a broad and
constructive user community will rapidly build up.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2017.00070/full#supplementary-material

The software and the user’s manual can be downloaded from
www.gears.vision. Additional videos and screenshots showing
the capabilities of GEARS can also be found on this website.
In the Hardware section we publish documents describing
measurement methodology and equipment. In particular, we
provide details on the RS232/TTL adapter that is used to connect
the computer running GEARS with themeasurement electronics.

The supplementary text published with this article gives
more background on visual stimuli encountered in visual
sciences. It includes additional technical details on GEARS,
including information on components types, GUI, and display
synchronization. Results of validation experiments are also
presented.
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