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Simple Summary: In order to obtain accurate infrared predictions, a large number of training
animals are needed, aiming to increase the predictive ability of Fourier-transform infrared (FTIR)
predictions. In this study, we compared different validation scenarios that involved combining
specialized and dual-purpose dairy breeds in the training population FTIR predictions for three
different phenotypes in the major cattle breed, i.e., Holstein cattle. Results show that the design of
the training population is an important factor in improving predictive ability in the Holstein breed
with potential implications also for the minor breeds. However, this improvement is limited by the
phenotypic variability of traits of concern and spectral variability between the training and validation
sets and the number of animals in the training population.

Abstract: In general, Fourier-transform infrared (FTIR) predictions are developed using a single-
breed population split into a training and a validation set. However, using populations formed
of different breeds is an attractive way to design cross-validation scenarios aimed at increasing
prediction for difficult-to-measure traits in the dairy industry. This study aimed to evaluate the
potential of FTIR prediction using training set combining specialized and dual-purpose dairy breeds
to predict different phenotypes divergent in terms of biological meaning, variability, and heritability,
such as body condition score (BCS), serum β-hydroxybutyrate (BHB), and kappa casein (k-CN) in the
major cattle breed, i.e., Holstein-Friesian. Data were obtained from specialized dairy breeds: Holstein
(468 cows) and Brown Swiss (657 cows), and dual-purpose breeds: Simmental (157 cows), Alpine
Grey (75 cows), and Rendena (104 cows), giving a total of 1461 cows from 41 multi-breed dairy herds.
The FTIR prediction model was developed using a gradient boosting machine (GBM), and predictive
ability for the target phenotype in Holstein cows was assessed using different cross-validation (CV)
strategies: a within-breed scenario using 10-fold cross-validation, for which the Holstein population
was randomly split into 10 folds, one for validation and the remaining nine for training (10-fold_HO);
an across-breed scenario (BS_HO) where the Brown Swiss cows were used as the training set and
the Holstein cows as the validation set; a specialized multi-breed scenario (BS+HO_10-fold), where
the entire Brown Swiss and Holstein populations were combined then split into 10 folds, and a
multi-breed scenario (Multi-breed), where the training set comprised specialized (Holstein and
Brown Swiss) and dual-purpose (Simmental, Alpine Grey, and Rendena) dairy cows, combined with
nine folds of the Holstein cows. Lastly a Multi-breed CV2 scenario was implemented, assuming the
same number of records as the reference scenario and using the same proportions as the multi-breed.
Within-Holstein, FTIR predictions had a predictive ability of 0.63 for BCS, 0.81 for BHB, and 0.80
for k-CN. Using a specific breed (Brown Swiss) as the training set for prediction in the Holstein
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population reduced the prediction accuracy by 10% for BCS, 7% for BHB, and 11% for k-CN. Notably,
the combination of Holstein and Brown Swiss cows in the training set increased the predictive ability
of the mok-CNdel by 6%, which was 0.66 for BCS, 0.85 for BHB, and 0.87 for k-CN. Using multiple
specialized and dual-purpose animals in the training set outperforms the 10-fold_HO (standard)
approach, with an increase in predictive ability of 8% for BCS, 7% for BHB, and 10% for k-CN.
When the Multi-breed CV2 was implemented, no improvement was observed. Our findings suggest
that FTIR prediction of different phenotypes in the Holstein breed can be improved by including
different specialized and dual-purpose breeds in the training population. Our study also shows that
predictive ability is enhanced when the size of the training population and the phenotypic variability
are increased.

Keywords: dual-purpose dairy breed; Fourier-transform infrared; specialized dairy breed; validation
strategies

1. Introduction

Fourier-transform infrared spectroscopy (FTIR) technique is used to obtain the infrared
spectra of absorption, emission, and photoconductivity of solids, liquids, and gases. It
measures the vibration and rotation of molecules determined by infrared radiation at
a specific wavelength [1]. In the animal breeding context, the increasing availability
of genomic information has pushed the practice towards the implementation of high-
throughput phenotyping techniques such as FTIR, which is able to generate real-time,
non-invasive, accurate phenotypic predictions at the population level. In dairy cattle, FTIR
spectroscopy is extensively applied to the milk matrix for the prediction of standard milk
composition, but it has been also proven to be a useful tool for predicting phenotypes that
are difficult or expensive to measure such as milk fatty acids [2], milk proteins [3], methane
emission [4], fat, and animals’ metabolic and production efficiency [5]. In the context of
genomic selection, the use of a multi-breed framework was investigated with the purpose
to increase prediction accuracy for difficult to measure traits in dairy cattle [6].

Phenotypic prediction using FTIR milk spectra requires the construction of calibration
and validation sets, generally from a small dataset, which may affect the predictive abil-
ity, especially for complex phenotypes. A solution to this problem might be to combine
information from different breeds and/or populations in the training set. Indeed, some
studies in the field of genomic selection have done so, and this has increased the available
information for developing the calibration equations, resulting in improved model predic-
tive ability and robustness [7–10]. However, in FTIR prediction, different cross-validation
(CV) strategies have not yet been evaluated. In particular, integrating information from
different breeds to increase sample size and phenotypic variability could be useful to
improve predictive ability [7].

Using multi-breed information in a training dataset is an attractive tool to numerically
increase the training set and obtain accurate predictions. A critical step towards imple-
menting FTIR prediction using different breeds is the assembly of a training population to
exploit phenotypic variability and improve the prediction accuracy. Multi-breed predic-
tions are more complex than single-breed predictions, and the use of a CV strategy that
exploits the potential of different breeds improved the accuracy of genomic prediction [7,8].
We hypothesized that this approach could be potentially transposed at the phenotypic
level to improve the accuracy of FTIR predictions. Therefore, the aim of this study was to
investigate the effect of combining phenotypic information from different specialized and
dual-purpose breeds in the training population to predict difficult-to-measure phenotypes
not directly measured from milk (body condition score [BCS] and serum β-hydroxybutyrate
[BHB]) and those directly measured in milk, (kappa casein—k-CN), from FTIR spectra to
maximize the accuracy in the major cattle breed, i.e., Holstein.
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2. Materials and Methods
2.1. Ethics Approval

This study did not require any specific ethics permit. The cows sampled belonged to
private commercial herds and were not experimentally manipulated. Milk samples and
blood samples were collected during routine milk recording carried out by technicians
from the Breeders Federation of Trento Province (FPA, Trento, Italy), and were therefore
authorized by a local authority.

2.2. Data

Phenotypic records were obtained from 1461 cows (specialized and dual-purpose breeds)
belonging to 41 multi-breed dairy farms located in the province of Trentino (northeastern
Italy) as part of a broader project (Cowplus project), described by Cecchinato et al. [11], inves-
tigating cattle farming in mountain areas. All the cows were enrolled in the milk-recording
program of the Provincial Federation of Breeders (FPA, Trento, Italy) and monitored for
milk production. The multi-breed dairy farms operate according to different production
systems: small, traditional farms in the mountainous areas, and farms with larger, modern
operations [12]. The 41 selected farms comprised from 1 to 5 breeds, which could be divided
into two groups: (i) specialized dairy breeds—Holstein (31 herds, 468 cows) and Brown
Swiss (35 herds, 657 cows); and (ii) dual-purpose breeds—Simmental (20 herds, 157 cows),
Alpine Grey (14 herds, 75 cows), and Rendena (9 herds, 104 cows). Milk production was
recorded by the official milk recording system.

Milk samples and phenotypic records were collected from one herd per day. Cow
health status was determined based on rectal temperature, heart rate, respiratory profile,
appetite, and fecal consistency. Only cows that were clinically healthy at the time of
the visit were included in the study. Milk samples (50 mL) were collected from each
cow during the evening milking and either (i) maintained at 4 ◦C (without preservative)
until processing (within 24 h) at the Department of Agronomy, Food, Natural Resources,
Animals, and Environment (DAFNAE) of the University of Padua, or (ii) stored at −80 ◦C
until chromatographic analyses at DAFNAE’s Central Chemical Laboratory (LaCHI). To
quantify BHB, blood samples were collected by a veterinarian via jugular venepuncture
using vacutainer tubes. On the same day as milk sampling, BCS was assessed by technicians
from the Breeders Federation of Trento Province (FPA, Trento, Italy). Milk FTIR spectra
were stored during the milk sak-CNmpling by the Breeders Federation of Trento Province
(Trento, Italy).

Prediction in Holstein cows of three different phenotypes with different biological
meanings and variabilities, i.e., BCS, serum BHB, and k-CN in % N, were assessed using
an ensemble method (gradient boosting machine, GBM), with alternative cross-validation
designs (within-breed, across-breed, and multi-breed).

Body condition score (BCS) was measured by a trained operator on the same day
as milk sampling in cows, defined as days in milk (DIM), ranging from 10 to 380 days,
based on Edmonson et al.’s [13] methodology, which classifies cows on a scale ranging
from 1 (emaciated) to 5 (extremely fat).

β-Hydroxybutyrate (BHB, mmol/L) was measured in individual blood samples col-
lected by jugular venepuncture using vacutainer tubes without anticoagulant. The blood
samples were centrifuged at 1780× g for 10 min at 4 ◦C and stored at −20 ◦C until anal-
ysis at the laboratory of the Department of Animal Medicine, Production, and Health of
the University of Padua (Padua, Italy). Blood BHB level was determined by the Ranbut
RX Monza test (Randox, Crumlin, UK) on a Cobas C-501 analyzer (Roche Diagnostics,
Mannheim, Germany).

Kappa casein (k-CN, % N) was measured in individual milk samples collected during
the evening milking and stored without preservative at −80 ◦C until protein fraction
analysis at DAFNAE, University of Padua. The separation of milk proteins was performed
using validated reversed-phase high-performance liquid chromatography (RP-HPLC), as
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proposed by Maurmayr et al. [14], and expressed as a percentage of the total milk nitrogen
content (% N).

Phenotypic quality control was performed for each breed separately by removing
observations outside the interval between 3.0 standard deviations below and above the
mean. After quality control, normal distribution for each phenotype was checked and at
least five animals of each breed in a herd were required for inclusion in the analysis.

2.3. Infrared Milk Spectra

Spectra were obtained from the milk of all cows using a MilkoScan FT6000 (Foss
A/S, Hillerød, Denmark) in the laboratory of the Breeders Federation of Trento Province
(northeastern Italian Alps). Two milk spectra per animal were collected, covering the
region from the short-wavelength infrared (SWIR) to the long-wavelength infrared (LWIR),
with a total of 1060 spectral points in the region from 5011 to 925 cm−1 [15]. Milk spectra
transmittance (T) was transformed to absorbance (A) using the equation A = log(1/T),
and the two spectra from animals within each breed were then averaged before data
analysis (Figure 1A). A principal component analysis integrating Mahalanobis distance was
performed on the FTIR spectral data to remove possible outliers, at probability level < 0.01,
according to Shah and Gemperline [16]. After quality control for phenotypic information
and milk spectra through Mahalanobis distance, data from 460 Holstein, 646 Brown Swiss,
155 Simmental, 99 Rendena, and 73 Alpine Grey cows were included in the subsequent
analyses (Figure 1).
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Figure 1. (A) Average value for Fourier-transform infrared (FTIR) spectra absorbance across spe-
cialized and dual-purpose breeds (solid line represents the average and color region represents the
mean ± 3.5 × SD) and (B) principal component (PC) for the FTIR spectral data of milk samples
recorded on specialized dairy breeds (Holstein and Brown Swiss) and dual-purpose breeds (Simmen-
tal, Alpine Grey, and Rendena). The big dot represents the PC means, and Holstein and Simmental
breeds are overlapping the mean.
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2.4. Design of the Cross-Validation (CV) Populations

Prediction of the three target phenotypes in Holstein cows was assessed using within-
breed (10-fold_HO), across-breed (BS_HO), and multi-breed (BS+HO_10-fold and Multi-
breed) CV strategies.

Within-breed (10-fold_HO): The Holstein dataset was randomly split into 10 non-overlapping folds
of approximately equal size. The training population consisted of 9 folds (414 cows for BCS,
407 for BHB, and 358 for k-CN), and the testing population was made up of the remaining
fold (46 cows for BCS, 45 for BHB, and 35 for k-CN). To evaluate the reliability of the model,
the cross-validation process was repeated ten times with each fold used as the testing
population only once. We calculated predictive ability in each repetition, as well as the
average across 100 estimates (10 folds and 10 replications) and the standard deviation.

Across-breed (BS_HO): Brown Swiss cows were assigned to the training dataset in
order to develop the calibration equations for BCS (646 cows), BHB (620 cows), and k-CN
(520 cows), and these equations were then used to predict the three target phenotypes
in the whole Holstein population for BCS (460 cows), for BHB (468 cows), and for k-CN
(393 cows). This CV scenario was used to evaluate the possibility of using a prediction
equation from a specialized breed in Holstein cattle.

Breed combination: this CV design included three scenarios:
(i) BS+HO_10-fold, using only specialized dairy breeds (Brown Swiss and Holstein):

the training population consisted of all the available Brown Swiss cows (646 cows for
BCS, 620 cows for BHB, and 520 cows for k-CN) and 9 folds of the Holstein population
(414 cows for BCS, 423 for BHB, and 358 for k-CN), while the testing population consisted
of the remaining fold of the Holstein population (46 cows for BCS, 45 for BHB, and 35 for
k-CN). We calculated predictive ability in each repetition, as well as the average across
100 predictions (10 folds and 10 replications), and the standard deviation.

(ii) Multi-breed, where both specialized and dual-purpose dairy breeds were assigned
to the training population. In this scenario, Brown Swiss (646 cows for BCS, 620 cows for
BHB, and 520 cows for k-CN), Simmental (154 cows for BCS, 155 cows for BHB, and 93 cows
for k-CN), Rendena (99 cows for BCS, 97 cows for BHB, and 95 cows for k-CN), Alpine
Grey (73 cows for BCS, 73 cows for BHB, and 68 cows for k-CN) and 9 folds of the Holstein
cows (414 cows for BCS, 423 for BHB, and 358 for k-CN) comprised the training population,
while the testing population was comprised of the remaining fold of the Holstein cows
(46 cows for BCS, 45 for BHB, and 35 for k-CN). As previously described, each Holstein
fold was used as the testing population only once, the entire analysis was repeated ten
times, and the average predictive ability and its standard deviation were calculated from
100 replications.

(iii) Multi-breed CV2, in which both specialized and dual-purpose dairy breeds were
assigned to the training population, and we fixed the number of animals in the training
population to be similar to that of 10-fold CV (417 cows for BCS, 407 for BHB, and 358 for
k-CN). To this aim, the training population from the Multi-breed CV was split into 3 folds,
considering a total of 417 cows for BCS (Brown Swiss—189 cows, Holstein—116 cows,
Simmental—51 cows, Alpine Grey—25 cows, and Rendena—33 cows), 423 for BHB (Brown
Swiss—198 cows, Holstein—116 cows, Simmental—51 cows, Alpine Grey—25 cows, and
Rendena—33 cows), and 358 for k-CN (Brown Swiss—167 cows, Holstein—103 cows,
Simmental—33 cows, Alpine Grey—23 cows, and Rendena—32 cows). Each training fold
was used to predict the phenotypes in the testing population as in the 10-fold HO CV
(46 cows for BCS, 45 cows for BHB, and 35 cows for k-CN); this process was repeated
10 times for the testing population and three times for the training set. The average
predictive ability and its standard deviation were calculated from 900 replications.

2.5. Statistical Method

Phenotypic prediction using FTIR spectra was assessed using GBM, a forward learning
ensemble method that converts weak learners into strong learners by combining different
predictors in a sequential way to reduce both bias and variance [17–19]. GBM sequentially
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builds regression trees with some shrinkage and variable selection, and each new model
is added to the previous model with the aim of reducing the predictive error of the prior
tree model considering dependencies among the trees [17,20,21]. The GBM model can be
represented as follow:

ŷ =
M

∑
m=1

βmb(x,γm)

where ŷ is the target phenotype (BCS, BHB, or k-CN); M is the number of iterations (ex-
pansion coefficients); βm are the function increments, also called “boosts”; and b(x,γm) are
the base learners, simple functions of the multivariate argument x with a set of parameters
γm = {γ1, γ2, . . . ,γm}. In GBM, expansions of the coefficients {βm}M

1 and parameters
{γm}M

1 are used to map associations between FTIR predictor variables (x) and the target
phenotype (y), considering the joint distribution of all values (y, x) that minimise the loss
function L{yi, F(x)}, given [y, Fm−1(xi) + h(yi; xi, pm)], where pm is the FTIR (only 1 FTIR
spectrum is selected at each iteration) that minimises the ∑n

i=1 L[y, Fm−1(xi) + h(yi; xi, pm)].
GBM uses the algorithm specified by Hastie et al. [17]. GBM analyses were performed
using the h2o R package (https://cran.r-project.org/web/packages/h2o, accessed on
7 May 2021).

The predictive performance of the GBM method depends on four parameters to
minimize the error of predictions on the validation subset. These parameters are: (1) the
number of trees (Ntree represents the total number of trees in the sequence used in the
model), (2) learning rate (determines the contribution of each tree to the final model and
performs shrinkage to avoid variable overfitting), (3) maximum tree depth (establishes the
level of complex interactions between predictors), and (4) minimum samples considered in
each leaf (controls the complexity of each tree). The Ntree values used in the random search
ranged from 10 to 8000 in intervals of 10, the learn rate ranged from 0.001 to 1 in intervals
of 0.001, maximum tree depth was determined using the values from 1 to 80 in intervals of
1, minimum samples per leaf was determined from 1 to 100 in intervals of 5. We performed
a random grid search of hyperparameters using the h2o.grid function in the h2o R package
(https://cran.r-project.org/web/packages/h2o, accessed on 7 May 2021) in order to select
the optimal hyperparameters combination that minimizes the predictive loss function
(i.e., prediction error) of the model for each trait (Figure 2). The random grid search was
performed using the training set from each CV design (10-fold_HO, BS_HO, BS+HO_10-
fold, Multi-breed and Multi-breed CV2) for each trait, splitting it into a 5-fold CV [22]. Thus,
4 folds were assigned to hyperparameter optimization, aiming to find the best combination
of the main hyperparameters for GBM approach, while the 1 remaining fold was used
to evaluate the model performance based on the loss function (root mean square error—
RMSE) and prediction accuracy (r-square—r2) [19]. After finding the best-trained model
with the lowest root mean square error (RMSE) and highest prediction accuracy (r2), it
was applied to a disjointed testing population for each CV scenario (10-fold_HO, BS_HO,
BS+HO_10-fold, Multi-breed, and Multi-breed-CV, previously described in Section 2.4
Design of the Cross-Validation) to obtain the final prediction parameters (Figure 2).

2.6. Assessment of Model Performance

The predictive ability of the GBM across the CV scenarios was assessed by Pear-
son’s correlation (rp) between the observed and predicted phenotypes, root mean square
error (RMSE), and the bias of prediction on the testing dataset. To assess the differ-
ences in predictive ability (rp) across CV scenarios, evaluation was performed using a
Hotelling–Williams t-test [23]. The unbiasedness of the prediction was given by the slope
of the linear regression of the observed and predicted values in each cross-validation
design. The mean percentage error (MPE%) was used as another model bias parameter:

(MPE(%) =
n
∑

i=1

( yi,obs−yi,pred
yi,obs

)
× 100

n ), where yi,obs is the average value of the observed phe-

notypic information, yi,pred is the predicted value in the testing population, and n is the
number of animals with phenotypes predicted in the testing population. We also evaluated

https://cran.r-project.org/web/packages/h2o
https://cran.r-project.org/web/packages/h2o
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the relative difference (RD) in predictive ability, calculated as RD = (rm−rC)
rC

× 100, where
rm represents model performance using the BS_HO, BS+HO_10-fold, and Multi-breed CV
scenarios, and rC represents model performance using 10-fold_HO CV for the training sce-
nario. Fisher’s Z-transform test based on Zou [24] was used to determine the significance
level of the differences in predictive ability (Pearson’s correlation) between the BS_HO,
BS+HO_10-fold, Multi-breed, and Multi-breed CV2 CV scenarios and the 10-fold_HO.
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Figure 2. An illustration of a random search of hyperparameter optimization for a gradient boosting machine (GBM). The
general process includes splitting the training population from each validation scenario (10-fold_HO, BS_HO, BS+HO_10-
fold, Multi-breed, and Multi-breed CV2) into 5 folds, aiming to optimize the main parameters of the GBM approach to
accurately learn the mapping from the milk spectra data to the target trait, i.e., lowest root mean square error estimation
(RMSE). Thus, the trained model is then evaluated on the disjointed test population from each cross-validation scenario.

3. Results
3.1. Phenotypic and FTIR Spectra Information

The across-breed descriptive statistics for BCS, BHB, and k-CN are shown in Table 1.
Specialized breeds (Holstein and Brown Swiss) had lower BCS than dual-purpose breeds
(Simmental, Rendena, and Alpine Grey), with the Holstein breed differing significantly
from the dual-purpose breeds (p < 0.0005) and the Brown Swiss differing significantly
from the Simmental (p < 0.0035). Simmental cows had the highest value for serum BHB
(0.62), statistically different from the other breeds (p < 0.005), while the Brown Swiss
and Alpine Greys had the highest values for k-CN proportions (16.13% N and 15.34% N,
respectively), which were also statistically different from the other breeds (p < 0.01), and
Holstein cows had the lowest phenotypic values (13.73% N; Table 1). Principal component
analysis (PCA) was applied to the milk FTIR spectra to visualize the differences across
breeds (Figure 1B). The first two principal components (PCs) accounted for 25.80% and
12.25% of the FTIR spectra variability, respectively. We observed no differences in FTIR
spectra among breeds, indicating similarity across the specialized and dual-purpose breeds
(Figure 1B). Comparing the mean values for the principal components (i.e., the big dots
in Figure 1B), we observed a greater similarity between the Simmental and the Holstein
breeds against the other breeds. However, the distance existing between Holstein and
Brown Swiss was comparable to the distance observed between Holstein and dual-purpose
breeds, except for Simmental breed.
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Table 1. Descriptive statistics for body condition score (BCS), blood β-hydroxybutyrate (BHB,
mmol/L), and kappa casein (k-CN, % N) assessed in specialized and dual-purpose breeds.

Breed N Mean 1 SD Min Max

BCS

Holstein 460 2.81 c 0.324 2.00 3.75

Brown Swiss 646 2.96 b 0.339 2.00 4.00

Simmental 154 3.06 a 0.342 2.50 4.00

Rendena 99 2.97 ab 0.346 2.00 3.75

Alpine Grey 73 3.07 ab 0.342 2.50 4.00

β-hydroxybutyrate (BHB, mmol/L)

Holstein 449 0.55 bc 0.163 0.22 1.01

Brown Swiss 620 0.58 b 0.136 0.32 1.03

Simmental 155 0.62 a 0.146 0.34 1.01

Rendena 97 0.53 c 0.112 0.32 0.90

Alpine Grey 73 0.56 bc 0.109 0.33 0.87

Kappa casein (k-CN, % N)

Holstein 392 13.73 c 2.151 8.27 20.15

Brown Swiss 520 16.13 a 1.632 11.31 21.40

Simmental 93 14.25 b 1.386 9.83 17.80

Rendena 95 14.53 b 2.219 8.89 19.55

Alpine Grey 68 15.34 b 1.882 10.60 20.18

N—number of samples, SD—standard deviation, Min—minimum, Max—maximum. 1 Different letters represent
significant differences (p < 0.05, Tukey test).

3.2. Cross-Validation Scenarios

The within-breed (10-fold_HO), across-breed (BS_HO), and multi-breed (BS+HO_10-
fold, Multi-breed, and Multi-breed CV2) cross-validations were compared on the basis of
the model fit parameters (Table 2). The sizes of both the training and validation sets of
each CV scenario are reported in Supplementary Figure S1. The accuracies of the FTIR
predictions for BCS, BHB, and k-CN using the different CV strategies are shown in Table 2.
Prediction accuracies obtained with BS_HO were 7.5% lower than 10-fold_HO (Table 2
and Figure 3). Interestingly, the use of multi-breed training sets increased phenotypic
prediction accuracy by around 6.5% (BS+HO_10-fold) and 8.5% (Multi-breed) (Table 2).
To demonstrate the effect of the CV scenarios on predictive ability, the relative difference
(RD) was assessed comparing the alternatives CV against the 10-fold Holstein. Including
different breeds in the training set led to an increase in model predictive performance,
which was more evident with the multi-breed scenario (8% for BCS, 7% for BHB, and 10%
for k-CN). On the other hand, splitting the multi-breed training population to consider an
equal number of animals as in the 10-fold_HO training population led to a slight relative
difference among the 10-fold_HO and Multi-breed CV2 scenarios (−1.23% for BHB,−0.47%
for BCS, and 2.47% for k-CN; Table 2).

When we investigated the significance of these relative differences using the Hotelling–
Williams t-test, we found the RDs were significant for all traits (p < 0.05), except for BCS with
the BS+HO_10-fold CV, although here the increase was 4.76% with Pearson’s correlation
(Table 2). The relative gains observed with the multi-breed scenario were significantly
higher than with all the other CV scenarios (p < 0.005).
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Table 2. Average model predictive performance and its standard deviation values (in parentheses) 1 obtained using gradient
boosting machine (GBM) for phenotypic prediction of body condition score (BCS), blood β-hydroxybutyrate (BHB, mmol/L),
and kappa casein (k-CN, % N), with the prediction of Holstein Friesian as the final target.

Trait Model Fit 1 Validation Strategies for Holstein Prediction 2

10-fold_HO BS_HO BS+HO_10-fold Multi-Breed Multi-Breed CV2

BCS

rp 0.63 (0.023) b 0.57 c 0.66 (0.025) ab 0.68 (0.022) a 0.63 (0.036) b

RD (%) − −9.52 4.76 (0.025) 7.94 (0.022) −0.47 (0.036)

MPE −1.54 (0.882) −3.33 0.84 (0.869) 0.70 (0.664) −1.05 (0.904)

RMSE 0.25 (0.017) 0.28 0.25 (0.019) 0.23 (0.015) 0.27 (0.031)

slope 1.07 (0.030) 1.15 0.97 (0.029) 0.99 (0.023) 1.10 (0.093)

BHB

rp 0.80 (0.023) bc 0.75 c 0.85 (0.027) ab 0.87 (0.025) a 0.79 (0.035) bc

RD (%) − −7.41 4.94 (0.027) 7.41 (0.025) −1.23 (0.035)

MPE −0.96 (2.085) 2.29 −0.62 (2.033) −0.39 (0.851) 0.89 (1.046)

RMSE 0.09 (0.009) 0.10 0.08 (0.009) 0.07 (0.006) 0.09 (0.010)

slope 1.03 (0.026) 0.94 1.05 (0.028) 1.00 (0.021) 0.97 (0.033)

k-CN

rp 0.81 (0.025) b 0.76 c 0.87 (0.022) ab 0.88 (0.023) a 0.82 (0.076) b

RD (%) − −11.25 8.75 (0.022) 9.99 (0.023) 2.47 (0.076)

MPE −6.82 (3.356) −21.09 −5.33 (3.061) −2.94 (1.983) 3.56 (2.851)

RMSE 1.08 (0.052) 1.42 0.96 (0.036) 0.84 (0.027) 1.01 (0.107)

slope 1.06 (0.034) 1.21 1.08 (0.039) 1.00 (0.029) 0.95 (0.059)
1 rp —Pearson’s correlation; RD—represents the relative difference in predictive ability of CV scenarios against the 10-fold_HO in percentage;
MPE—mean percentage error; RMSE—root mean square error; slope—represents the slope value of regression of observed and predicted
value. Different letters represent the statistical difference based on Hotelling–Williams t-test (p < 0.05). 2 10-fold_HO—Holstein cattle were
split in 10 folds of approximately equal size, where 9 folds were used to generate the prediction equations and tested on 1 fold of Holstein,
and the average model predictive performance and its standard deviation were obtained from 100 replications; BS_HO—Brown Swiss breed
was used as a training set to create the prediction equations; BS+HO10-fold—Brown Swiss cattle and 9 folds of Holstein cross-validation
was used to generate the prediction equations and tested on 1 fold of Holstein, and the average model predictive performance and its
standard deviation were obtained from 100 replications; and Multi-breed—specialized dairy breeds (9 folds of Holstein and Brown Swiss)
and dual-purpose breeds (Simmental, Alpine Grey, and Rendena) were used as the training set to predict 1 fold of Holstein cattle and the
average predictive ability and its standard deviation were calculated from 100 replications. Multi-breed CV2—specialized dairy breeds
(9 folds of Holstein and Brown Swiss) and dual-purpose breeds (Simmental, Alpine Grey, and Rendena) were split into 3 folds and then
used as the training set to predict 1 fold of Holstein cattle and the average predictive ability and its standard deviation were calculated
from 900 replications.

3.3. Bias and Predictive Error Parameters of the Cross-Validation Scenarios

The coefficient of regression (slope) of the observed values on the predicted values
was calculated as a measure of the bias of each CV scenario. A value of bias equal to one is
ideal, indicating unbiased predictions [25]. For all traits, the slopes of all the CV scenarios
were not significantly different from one, indicating no significant bias in the predictions
(Table 2). Nonetheless, the slope value of the BS_HO CV scenario was slightly higher
than 1.1 for BCS and k-CN traits (average across traits 1.18), and lower than 0.95 for BHB.
Notably, with the larger training populations, i.e., the Multi-breed CV scenario, there were
more unbiased predictions (i.e., closer to 1) than with the other cross-validation designs.

Predictive error parameters (MPE and RMSE) showed that FTIR predictions with
the BS+HO_10-fold and multi-breed scenarios led to lower residual parameters (Table 2).
Model fit assessment using RMSE indicated that the multi-breed CV considerably reduced
the predictive error, from 8% to 22% for Multi-breed and from 0.1% to 11% for BS+HO_10-
fold. Both the BS+HO_10-fold and Multi-breed CV scenarios had higher probabilities of
lower residual values compared with 10-fold_HO and BS_HO scenarios (Figure 3). The
use of a predictive equation developed in a specific breed, i.e., the BS_HO CV, resulted in a
higher number of extreme residual values, suggesting more biased predictions (Figure 3).
Using the BS_HO CV scenario, we observed the highest MPE estimation, mainly for k-CN
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trait with −21.09%, indicating that this scenario CV led to a higher overestimation of the
prediction, leading to a slope of 1.21 (Table 2).
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Figure 3. Residual diagnostics comparison across cross-validation designs for the FTIR prediction of body condition score
(BCS), blood β-Hydroxybutyrate (BHB, mmol/L), and kappa casein (k-CN, % N). Absolute residual distribution ((A) for BCS,
(B) for BHB and (C) for k-CN) and box plot of the absolute errors ((D) for BCS, (E) for BHB and (F) for k-CN) between the
observed and predicted phenotypic values.

4. Discussion

Assembling sufficiently large training populations to make accurate FTIR predictions
is a major challenge for high-throughput phenotyping in dairy cattle, especially for traits
that are difficult or time-consuming to measure. To overcome this problem, we investigated
the feasibility of using combinations of different populations and/or different breeds in the
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training set to obtain greater variability in the available information, and hence improve
the prediction accuracy of FTIR spectra. Specifically, we evaluated the performance of
within-breed, across-breed, and multi-breed FTIR training sets for phenotypic prediction
in the Holstein breed. The results show that combining different breeds in the training
set greatly increased FTIR prediction accuracy. Moreover, the phenotypic variability and
composition of the training population had a large impact on prediction performance.

Using a pure Brown Swiss training population to predict phenotypes in Holstein
resulted in lower accuracies compared with using Holsteins in both the training and
validation sets. Although, the predictive equation that was developed exhibited poor pre-
dictive ability, there were no differences in FTIR variability between these two specialized
dairy breeds. This means that the major factor affecting model predictive performance is
probably related to phenotypic differences between training and validation individuals
(Supplementary Figure S2). These observed differences in phenotypes across breeds were
an important factor in the reductions in predictive ability of 10% for BCS, followed by
6.19% for BHB and 6.18% for k-CN when a specific breed was used as the training set
(BS_HO scenario) for predictions in the Holstein breed (Table 2). Attaining high predictive
ability (rp > 0.55) for FTIR prediction is of interest in the context of genetic selection for the
target traits in dairy breeding programs due to the fact that its high accuracy is associated
with the highest genetic relationship between measured and predicted traits [26]. The
predictive accuracy observed was affected by differences in the number of observations
and the extent of phenotypic variability in the training population used to develop the
calibration equation (Table 2). In this framework, McParland et al. [27] and Maurice-Van
Eijndhoven [28] observed that use of the calibration equation was similarly limited in
phenotype and spectra variability among the training and validation subsets. The authors
reported that inclusion of different Holstein populations [27] and different breeds [28] in
the training population used to create the calibration equations for phenotype prediction
is of paramount importance in obtaining more accurate predictions. Differences in milk
composition across different breeds is an additional important factor, as the FTIR wave-
lengths extract interpretable information linking the complex presence of specific chemical
bonds in milk and the target phenotype. In this case, the calibration equations were less
accurate in linking either the complex trait or the spectral data from the training data with
the validation data set.

The BS_HO design, where the training population was Brown Swiss and the validation
population Holstein, was not useful as it led to poor FTIR predictions, caused by the phe-
notypic differences between the breeds (Table 2). Studies comparing different CV strategies
using a single breed, where the training and validation sets overlapped to a greater (k-folds)
or lesser (leave-one-herd-out) extent, confirmed the hypothesis that where there is less
overlap prediction accuracy decreases, the residual parameters increase (MPE and RMSE),
and there are more biased predictions [4,29]. In principle, FTIR prediction performance
could be affected by CV strategies and the inherent nature of the target phenotype, as
well as by the populations assigned to the training and validation sets [17]. Major factors
accounting for the reduction in predictive ability with the BS_HO CV design could be the
number of animals in the training and testing populations (Supplementary Figure S1) and
phenotypic differences between the Brown Swiss (training set) and Holstein cows (testing
population; Table 1).

The prediction ability of FTIR is directly associated with the number of animals in
the training population (Supplementary Figure S1) and similarity in terms of phenotypic
variation between the training and validation populations. Here, when the equations
were calibrated using the target Holstein cows (9 folds) jointly with the Brown Swiss cows
(BS+HO_10-fold) or using Brown Swiss plus dual-purpose dairy breeds (Multi-breed),
with the aim of increasing the training population, the predictions were more accurate
and robust, which shows that better performance is obtained by combining breeds in
the training set than by using single (10-fold_HO) or specific breeds (BS_HO). However,
when the CV scenario was designed to combine the specialized and dual-purpose breed,
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maintaining a similar number of animals in the training population as 10-fold_HO, a slight
difference was observed, which evidenced that not only the phenotypic variability but
also the size of the training set is essential to build robust predictions (Table 2). This could
be explained by the greater number of animals in the training population and by the
closely related phenotypic values in the training and testing populations, which could be a
key factor in increasing predictive ability and obtaining unbiased FTIR predictions [2]. It
seems, therefore, that differences in FTIR prediction accuracies are linked to differences
in phenotypic and spectral variability [28]. Increasing the number of training cows and
the phenotypic variability seems to be important for more accurately determining the
contribution of FITR to phenotypic variability and also for distinguishing their effects from
random noise regions. Compared with the 10-fold_HO, FTIR predictive ability with the
BS+HO_10-fold and Multi-breed CV scenarios increased by 6% and 9%, respectively.

This increase in prediction accuracy when using an admixture of breeds in the training
population could be a useful tool to predict phenotypes with economic importance in
dairy cattle. Our results show that training populations consisting of different breeds,
including the target breed (Holstein), represent an efficient way of increasing the accuracies
of predictions (Table 2). For multi-breed predictions, it is crucial that milk spectra and
phenotypic information exhibit the same variability.

The design of the training population using different breeds had a strong influence on
the prediction accuracy (Figure 1B). It was observed that using a single specialized dairy
breed (i.e., Brown Swiss) BS_HO provided lower predictive ability against 10-fold_HO,
which was confirmed by the difference in PCA average (Figure 1B). The observed dif-
ferences between Holstein and Brown Swiss breeds may be due to differences in milk
composition, which are captured by FTIR spectroscopy. This led to a general decrease in
accuracy by around 10% for BCS and 6% for BHB and k-CN, and an increase in prediction
error by 18% for RMSE with an overestimation of around 168% for BCS and k-CN and
underestimation of 139% for BHB based on the MPE parameter (Table 2), which could be
due to the FTIR relationship between breeds (Figure 1B). We have also shown that increas-
ing the number of animals in the training population (BS+HO10-folds and Multi-breed)
increased prediction accuracy and reduced prediction errors (MPE and RMSE), leading to a
less unbiased prediction (MPE) with a slope slightly different from 1 (Table 2). On the other
hand, the Multi-Breed CV2, which included different breeds in the training set, keeping the
same number of animals as the 10-folds_HO scenario, did not improve accuracy, indicating
that the variability and size of the training set represent the main factors to improve the
prediction accuracy. Overall, the effectiveness of FTIR predictions in small training popula-
tions can be improved by increasing the variability and size of the training set and target
population. These results suggest that FTIR spectra (when prediction accuracy is moderate
to high) may represent a valid alternative to “standard” phenotyping and can be exploited
in dairy breeding programs for traits that are expensive and difficult to measure, achieving
a similar or slightly inferior genetic response to the measured traits [30,31]. Furthermore,
the use of multi-breed CV scenarios seemed to improve prediction accuracy, explaining a
greater proportion of the phenotypic variation of the target trait.

5. Conclusions

Our findings confirm that accurate Fourier-transform infrared-based predictions in
dairy cattle can be achieved by increasing the size and the phenotypic variability of the
training population. Our comparison of different validation strategies showed that pheno-
typic prediction of Holstein records using a pure Brown Swiss training set resulted in the
worst performance, while the best performance was obtained with Multi-breed training
populations that included Holstein animals, which increased predictive ability by 6% to
8%. Overall, these results indicate that validation scenarios using combinations of different
dairy breeds constitute a promising strategy to improve Fourier-transform infrared-based
phenotypic prediction. Moreover, they open the possibility of using a similar approach for
improving the phenotypic prediction accuracy also in minor cattle breeds.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ani11071993/s1, Supplementary Figure S1. Number of animals considered as training popula-
tion and validation set for body condition score (BCS), β-hydroxybutyrate (BHB, mmol/L), and kappa
casein (k-CN, % N) using different CV schemes: 10-folds, BS_Holst, BS+HO10-fold, Multi-breed, and
Multi-breed CV2. Supplementary Figure S2. Boxplot and histogram of the phenotypic values for
body condition score (BCS—A), blood β-hydroxybutyrate (BHB—B), and κ-casein expressed as % N
(k-CN—C), respectively, for across-breed cross-validation design (BS_Holst), in which the Brown
Swiss cows were assigned as the training set and Holstein as the validation set.
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