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Abstract: Due to the limitations of data transfer technologies, existing studies on urban traffic
control mainly focused on isolated dimension control such as traffic signal control or vehicle route
guidance to alleviate traffic congestion. However, in real traffic, the distribution of traffic flow is
the result of multiple dimensions whose future state is influenced by each dimension’s decisions.
Presently, the development of the Internet of Vehicles enables an integrated intelligent transportation
system. This paper proposes an integrated intelligent transportation model that can optimize
predictive traffic signal control and predictive vehicle route guidance simultaneously to alleviate
traffic congestion based on their feedback regulation relationship. The challenges of this model
lie in that the formulation of the nonlinear feedback relationship between various dimensions
is hard to describe and the design of a corresponding solving algorithm that can obtain Pareto
optimality for multi-dimension control is complex. In the integrated model, we introduce two
medium variables—predictive traffic flow and the predictive waiting time—to two-way link the
traffic signal control and vehicle route guidance. Inspired by game theory, an asymmetric information
exchange framework-based updating distributed algorithm is designed to solve the integrated model.
Finally, an experimental study in two typical traffic scenarios shows that more than 73.33% of the
considered cases adopting the integrated model achieve Pareto optimality.

Keywords: traffic congestion; traffic signal control; vehicle route guidance; Internet of Vehicles

1. Introduction

Traffic congestion is a phenomenon in which vehicles move slowly due to traffic
surges [1,2]. It costs serious direct and indirect economic losses in almost all modern
cities [3]. Traffic congestion has become a major issue for city managers. Various traffic
management systems and methods are proposed to alleviate traffic congestion [4–7].

Engineers usually balance the distribution of traffic flow to mitigate traffic conges-
tion [8]. They adjust the timing or direction of traffic flow elements (such as cars, pedes-
trians, and bicycles) to avoid vehicular excessive concentration. The existing studies in
this field can be divided into two categories: traffic signal control (TSC) and vehicle route
guidance (VRG) [9–12].

TSC releases or blocks traffic flow at intersections in the time dimension by switching
traffic signal between “green” and “red” [13]. The process of signal switching can be
described as a nonlinear programming model [14]. For example, the work in [15] takes
the minimum delay time of vehicles as an objective function and obtains the well-known
Webster Equation for traffic signal timing. The authors in [16] take the expected travel
time and standard deviation of travel times as a multi-objective function. Then a genetic
algorithm is adopted to solve their TSC model. In [17], Chiou proposes a bi-level TSC
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model to minimize total travel time and risk exposure for transport of hazardous material
at intersections.

VRG adjusts the trajectories of traffic flow in space dimension for alleviating con-
gestion [18]. A route guidance system uses advanced positioning and computation tech-
nologies to provide drivers optimal paths based on travel requirements [19]. Selecting
vehicular optimal paths can be described as an integer programming problem [11]. For
example, the work in [20] takes the shortest distance as an objective function using the
well-known Dijkstra Algorithm for path optimization. In [21], the authors add a safety index
into the traditional shortest distance to propose a multi-objective VRG model, and adopt
a reinforcement learning algorithm to compute the improved routes. The study in [22] is
based on an energy consumption prediction model to integrate an energy index into VRG,
where an improved Dijkstra Algorithm is used to calculate routes in real-world experiments.

The above precise calculation models of TSC and VRG are the main research topics
for urban traffic engineers [8]. They use the advanced intelligent algorithms (such as a
heuristics algorithm, machine learning, etc.) to solve various complex nonlinear program
models based on historical traffic data. Since real-time traffic information collection is both
costly and insufficient due to limited detection technologies [19], these methods can only
generate fixed or segmented dynamic schemes for alleviating traffic congestion but are
infeasible for the varying traffic conditions.

In recent years, the emergence of the Internet of Vehicles (IoVs) enables huge potential
in the area of intelligent transportation [23–31]. It mainly includes vehicle-to-vehicle (V2V),
vehicle-to-road (V2R), vehicle-to-infrastructure (V2I) and so on. This technique can make
effective use of the real-time traffic network information through wireless sensor networks,
and provides various functional services for the vehicle operation [25]. IoVs has become
an intensively studied area with a multitude of articles.

For example, the work in [23] builds a smart traffic management platform to collect
available real-time traffic data based on IoVs, and successfully demonstrates this system
on real roads. The research in [27] builds a car-following model to propose a car-following
model using vehicles to everything (V2X) technique. In [28], a way of transmitting warning
messages by V2V and V2I are designed to avoid road accidents. The study in [30] designs
a context-aware antenna selection model to optimize the locations of 5G antennas. The
authors in [31] propose the concept of Mobile-Generated Content to enhance the production
efficiency of intelligent connected vehicles in sustainable cities. With the increasingly
mature of IoVs, a large amount of literature adopts this technique to address the dynamic
reconfiguration of TSC and VRG [32–37].

For the IoVs-based dynamic TSC, the study in [32] combines the real-time position data
from connected vehicles with intersection information from inductive loops to produce
dynamic signal timing at isolated intersections. The work in [33] introduces the joint
passing rates between adjacent intersections to present an adaptive multiple intersections
TSC model based on the IoVs technique that enables vehicles to communicate with each
other. The authors in [34] use Vehicular Ad hoc Networks to optimize TSC schemes and
build a vehicular cloud computing platform.

For the IoVs-based dynamic VRG, the work in [35] uses infrastructure agents to receive
vehicle route plans and recalculates vehicle paths based on vehicle-to-infrastructure com-
munication. The authors in [36] employ Road Side Units to detect current road congestion
and use Fog-Cloud computing to update vehicular route plans constantly. With the help
of vehicle-to-infrastructure technique, a deep Q-network algorithm is proposed in [37] to
determine autonomous vehicle routes based on fuel economy and driving safety.

The above IoVs-based methods for alleviating traffic congestion only use real-time
traffic data to produce decisions in isolated dimension control of TSC or VRG. In real
traffic, however, the distribution of traffic flow is the result of multi-dimension working
together [38]. The decisions of each dimension can influence other dimensions’ results by
feedback regulation in the whole traffic system. For example, vehicular path reconfigu-
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rations could change future distribution of traffic flow in TSC. Reversely, different signal
control schemes determine the time taken for vehicles passing intersections in VRG.

No matter how efficiently the isolated dimension control is improved, it can only
produce decisions without considering different dimensions’ interplay which results in
the waste of city since of the non-coordinated schemes. Although the works in [38,39]
attempt to combine the two dimensions using IoVs technique to alleviate traffic congestion
together, their coordinated mechanism ignores the two-way feedback regulation between
TSC and VRG. Specifically, they suppose that each vehicle deposits intention pheromone
(route schemes) along its route, and use these data to predict future traffic densities to help
signal controllers reconfiguring. Their coordinated mechanisms are designed based only
on one-way regulation from vehicle routes to signal schemes.

Based on the feedback regulation between TSC and VRG and their basic models—Webster
Equation and Dijkstra Algorithm, this paper proposes an integrated predictive intelligence
transportation (PIT) model to optimize signal schemes and vehicle routes simultaneously by
considering the future traffic coming from other dimensions’ decisions (two-way feedback
regulation). Compared with the isolated-dimensional TSC and VRG control strategies, the
challenges of this model lie in that the formulation of the complex nonlinear relationship
between TSC and VRG is hard and the design of a corresponding solving algorithm that
can obtain Pareto optimality for multi-dimension control is complex.

For the nonlinear relationship of TSC and VRG, taking the Webster Equation as a
benchmark model, we first introduce the predictive traffic flow as a medium variable to
formulate the link from the varying route plans to TSC. A predictive traffic signal control
(PTSC) model considering the future traffic flow influence from VRG is built. Second,
taking the Dijkstra Algorithm as a benchmark model, the predictive vehicular waiting time
is introduced to formulate the link from different signal schemes to VRG. A predictive
vehicle route guidance (PVRG) model is formulated considering the future waiting time at
intersections determined by TSC. Third, the proposed PTSC and PVRG are integrated into
one integrated PIT model by adopting the two medium variables based on their bidirection
feedback regulation.

For the corresponding solving algorithm, the proposed PIT model is a multi-objective
mixed integer programming that calculate the coordinated optimal solutions for two in-
teracting decision variables (traffic signal scheme and vehicle route plan). Traditional
intelligence algorithms (such as heuristics) are low-efficient for solving it due to the dy-
namic nonlinear relationship between PTSC and PVRG. Inspired by the idea of the game
theory [40], a special updating distributed algorithm is designed for solving the PIT model
under an asymmetric information-based coordinated framework.

Five typical experimental methods are designed to test the validity and robustness
of our contributions by changing certain variables. The results show that: (1) By taking
into account the future traffic changes due to other dimensional reconfigurations, all the
experiments adopting the isolated improvement in PTSC or PVRG perform better than the
existing non-predictive strategies since the future traffic conditions influenced by other
traffic dimensions are considered. (2) More than 73.33% of the considered cases adopting
the PIT achieve Pareto optimality compared with the isolated improvements in PTSC and
PVRG due to the feedback regulation-based iterative optimization. To alleviate traffic
congestion, the main contributions of this paper are summarized as follows:

• Compared with the isolated-dimensional TSC strategy, we formulate a PTSC model
based on the feedback regulation from VRG whose decisions are considered by in-
troducing a medium variable—predictive traffic flow (determined by the changes in
vehicular path plans);

• Compared with the isolated-dimensional VRG strategy, we formulate a PVRG model
based on the feedback regulation from TSC whose schemes are considered by introduc-
ing a medium variable—predictive vehicular waiting time (determined by different
traffic signal schemes);
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• We propose a novel “coordinated control” model—PIT for a whole traffic management
system based on the two-way feedback regulation between PTSC and PVRG to acquire
the coordinated schemes, and design an asymmetric information-based updating
distributed algorithm to solve it.

The rest of this paper is organized as follows. Section 2 illustrates the assumptions
and formalizations of the art. Section 3 describes the models for alleviating congestion.
Section 4 presents the running experiment and comparative results. Conclusions and
potential future works are given in Section 5.

2. Formalization for This Art

In this section, some preliminary notions are formalized based on general assumptions.
The main notations used in this paper are shown in Abbreviations.

2.1. Formalization of Traffic Network

For the formalization of the traffic network, this paper assumes typical 4-leg for each
intersection and 1-lane (two-way) for each road. Let j be an intersection (j ∈ J) and i be a
vehicle (i ∈ I). Let hi

j,m denote an optional route node of vehicle i, which is the mth entrance

of intersection j (m ∈ {1, 2, 3, 4} in 4-leg intersections), Hi = {hi
j,m|m ∈ {1, 2, 3, 4}, j ∈ J}

denote the set of optional route nodes of vehicle i, and H =
⋃
i∈I

Hi denote the set of optional

route nodes of all vehicles. Let lj↔j′ be the distance between two intersections j and j′.
The widths of intersections are ignored in this paper. The classic traffic networks and
corresponding distance parameters used in simulation experiments are shown in Figure 1.
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Figure 1. Road networks in a smart city. (a) Scenario 1: simple traffic unit, (b) Scenario 2: complex traffic network.

In Figure 1, all adjacent intersections are connected by one two-way road. Scenario 1
shows a basic traffic network unit for alternative paths in Figure 1a. Assume all vehicles
leave the start point H to destination D. In Figure 1b, it is assumed that each intersection
have an original traffic flow towards its farthest diagonal vertex. Scenario 2 shows a com-
plex traffic network of various path combinations (note: the parameters of two scenarios is
independent). To study the operating mechanism of our contributions at the micro-level,
we consider the two classic traffic scenario to validate in Section 4.

In this papers’ assumption of intelligent transportation, vehicular route plans and
traffic signal schemes can be collected and exchanged by the IoVs [35] and the penetration
of vehicles equipped with IoVs devices is 100% [11]. The collecting at each isolated
intersection can be assumed in Figure 2, where the information collection protocol is
executed periodically as follows:
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Sensing vehicles
on one road:

Sub-sinking head 
vehicle on one road:

Sinking traffic signal controller 
at one intersection: 

Fog device of part
of the area:

Cloud center of the
whole city:

Road 1 Road 4Road 2 Road 3

Figure 2. IoVs framework at each intersection j.

• Step 1. Based on the V2V technique, all non-head vehicles as sensor nodes send their
route plans to the vehicles in front of them until all route information is gathered into
the head vehicles (sub-sink nodes) on each road;

• Step 2. Based on the V2I technique, All head vehicles transmit these gathered route
plans to the signal controller (sink devices) at intersection;

• Step 3. The sets of route plans and signal schemes are delivered to the cloud center
from all signal controllers via the fog devices.

Similarly, the collected path information and signal schemes are delivered from cloud
center to edge devices (vehicles and signal controllers) by reverse transmission routing. We
assume that there is no case of information deadlock due to excessive distance between
mobile nodes (vehicles). Using the assumed IoVs framework, vehicles can receive the
signal control schemes at their routes, and signal controllers can collect the vehicular path
plans in their control areas.

2.2. Formalization of Traffic Signal at Intersections

When a large number of vehicles converge at the same intersections, traffic congestion
will occur due to limited traffic capacity. Adjusting the timing or direction of traffic flow
elements can avoid vehicular excessive concentration. The existing studies usually adopt
TSC or VRG to manage the distribution of traffic flow for reducing traffic congestion.

Traffic signal controllers assign different way leave to entrances of intersection by red
and green signals. Let pj,n denote the nth phase of intersection j, which is a traffic signal
combination of entrances, and P be the set of phases of all intersections.

This paper sets four phases (n ∈ {1, 2, 3, 4}) for signal controllers. Each phase has both
green and red signals alternating to regulate traffic flow at intersections (assume that there
are no yellow and all-red signals). The vehicles at the red signal entrances have to wait
until the green signal, which results in delay time for vehicles. When traffic signals change
to green, vehicles need lost time τ (assuming τ = 0 in this paper) to restart and speed up.
Different signal combinations of entrances at intersection j are shown in Figure 3.

In Figure 3, the west flow entrance (m = 1) is assigned a green signal and other
three entrances are assigned a red signal in pj,1 (n = 1). In phase pj,2 (n = 2), the north
flow entrance (m = 2) is assigned a green signal and other three entrances are assigned
a red signal. In phase pj,3 (n = 3), the east flow entrance (m = 3) is assigned a green
signal and other three entrances are assigned a red signal. In phase pj,4 (n = 4), the south
flow entrance (m = 4) is assigned a green signal and other three entrances are assigned a
red signal.
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Figure 3. Phases of intersection j.

Let TG
pj,n

denote the green time of phase pj,n. The combination of the green time of
4-phases forms a whole signal cycle Tj for intersection j, i.e.,

Tj =
4

∑
n=1

TG
pj,n

, ∀j ∈ J.

Let TR
pj,n

denote the red time of phase pj,n. We have

TR
pj,n

= Tj − TG
pj,n

.

Let Zj be the signal schemes for intersection j. Then

Zj = {TG
pj,n
|n ∈ {1, 2, 3, 4}}, ∀j ∈ J

and Z = {Zj|j ∈ J } be the set of signal schemes of all intersections.
When the current signal scheme Zj(t) is about to end at time t, a next signal control

scheme Zj(t′) needs to be recalculated and reconfigured at intersection j. To avoid the
head-vehicles waiting too long and give them enough time to pass intersections, we set the
minimum green time TG

min and maximum green time TG
max as done in [16]:

TG
min ≤ TG

pj,n
≤ TG

max, ∀pj,n ∈ P. (1)

TSC releases or blocks traffic flow at intersections by assigning different signals to
each phase. For calculating the control schemes Zj, vehicular delay time is usually adopted
as the evaluation indicator in TSC [8]. Let φi

pj,n
be the delay time of vehicle i at the green

signal entrances of phase pj,n. Take minimum total delay time Φj

Min Φj =
4

∑
n=1

∑
i∈I

φi
pj,n

, ∀j ∈ J (2)

as the objective function to generate signal scheme Zj for the isolated intersection j. Dif-
ferent traffic signal schemes result in a unique delay time φi

pj,n
. For the mapping from Zj

to φi
pj,n

, based on the assumption that traffic flow is constant, many researchers propose
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various delay models by theoretical derivation and computer simulation. For example,
Webster’s delay model can be simplified as [15]:

φi
p

j,n
= f (Zj) (3)

where f denotes the mapping function from Zj to φi
pj,n

. Let qpj,n denote the traffic flow
at entrances of phase pj,n, qmax

pj,n
denote the maximum traffic flow at entrances of phase

pj,n, and AR be the all-red signal time of controller. Webster uses equivalent substitu-
tions and approximate calculations to solve their TSC model and proposes the well-know
Webster Equation:

TG
pj,n

=
1.5(4 · τ + AR) + 5

1−
4
∑

n=1

qpj,n
qmax

pj,n

·
qpj,n

4
∑

n=1
qpj,n

(4)

that can generate the fixed signal scheme Zj for isolated intersection j statically. Due to the
limited space, the details of the mathematical derivation are not described in this section.

2.3. Formalization of Vehicle Driving

For the formalization of vehicle driving, this paper assumes that vehicles can turn in
three directions (going straight, left-turning, and right-turning) at intersections and 100%
penetration of on-board computing systems [11]. Let hi

j,m(k) denote the kth route node
through which vehicle i plans to pass. Each vehicle i chooses a path direction vector Si:

Si = (hi
j,m(1), hi

j,m(2), · · · , hi
j,m(k), · · · ), ∀i ∈ I

from its current location to destination in the traffic networks of Figure 1. All drivers will
follow the suggested routes [41].

Let βµ,µ′ be the path weight from route node µ to another node µ′ (µ, µ′ ∈ H), Ai be
the vector of estimated arrival time of vehicle i arriving at corresponding route nodes hi

j,m
in Si, Ri = (Si, Ai) be the route plan of vehicle i, and R = {Ri|i ∈ I } be the set of route
plans of all vehicles. It means that the vehicle route plan includes the information of path
direction and arriving time. We have{

Ai = (ti(1), ti(2), · · · , ti(k), · · · )
ti(k) = ti(k− 1) + βhi

j,m(k−1),hi
j,m(k)

, ∀i ∈ I

where ti(k) denotes the predictive arrival time when vehicle i arrives at its kth route node
hi

j,m(k). Path weight βhi
j,m(k−1),hi

j,m(k), consisting of free-flow driving time and waiting time

at intersections, means the estimated driving time from route node hi
j,m(k− 1) to hi

j,m(k).
VRG adjusts the directions of traffic flow by providing recommended paths to drivers.

For calculating the route plan RI , Vehicular driving time is usually adopted as the eval-
uation indicator in VRG [19]. Let xi

µ,µ′ denote whether the link from route node µ to a

different route node µ′ belongs to the path of vehicle i. If yes, xi
µ,µ′ = 1, otherwise, xi

µ,µ′ = 0.
Take minimum driving time Ci

Min Ci = ∑
µ∈Hi

∑
µ′∈Hi

βµ,µ′ · xi
µ,µ′ (5)

as the objective function to calculate route plan Ri for vehicle i. Different route plans
result in a unique set of xi

µ,µ′ . For the mapping function g from Ri to xi
µ,µ′ , based on the

assumption that path weight is constant, Dijkstra simplifies their nonlinear relation as [20]:

xi
µ,µ′ = g(Ri). (6)
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Take xi
µ,µ′ as decision variable to propose the well-know Dijkstra Algorithm:

min ti(k)= min{ti(k− 1) + βµ,µ′} (7)

that can select an optimal route direction vector Si for vehicle i statically. Due to the limited
space and the classic of Dijkstra Algorithm, the details of the mathematical derivation are
not described in this section.

To improve the management efficiency in the whole intelligent transportation system,
the challenges of the integrated model are: (1) the formulation of the nonlinear relationship
between TSC and VRG is not easy and (2) designing an effective algorithm to solve the
model is not trivial.

3. Contributions for Alleviating Traffic Congestion
3.1. Motivation

Traffic congestion has caused huge unnecessary consumption of urban resources. In
real traffic, there exists a two-way feedback regulation between TSC and VRG. As shown
in Figure 4, the reconfigurations of vehicle paths could change future distribution of traffic
flow. Reversely, different signal control schemes can also determine how long it takes the
vehicles to pass through intersections.

Signal controllers

feed their schemes

information back to

vehicles by IoVs to let

them optimize their

routing plans

Vehicles estimate the 

passing time at 

intersections determined 

by future signal schemes 

Signal controllers predict 

the traffic flow at 

intersections resulted 

from vehicle rerouting

Vehicles feed their

rerouting information

back to signal

controllers by IoVs to

let them optimize their

signal schemes

VRG SYSTEM

TSC SYSTEM

On-board computers

recalculate optimal

paths based on future

road conditions

Signal controllers

generate schemes

based on future traffic

flow at intersections

Figure 4. Feedback regulation between TSC and VRG.

In the past, the studies for reducing traffic congestion work solely for TSC or VRG
due to the limitation of the communication technologies. The future traffic changes caused
by other dimensions’ decisions are largely ignored. In recent years, the emergence of
IoVs enables real-time traffic data exchange between different dimensions. Although the
works in [38,39] attempt to combine the two dimensions using IoVs technique to alleviate
traffic congestion together, their coordinated mechanism ignores the two-way feedback
regulation between TSC and VRG. The detailed comparison of related works is shown in
Introduction section.
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Based on their feedback regulation, we propose the PIT model that is an integration of
the PTSC and PVRG to address their respective limitations in this section. To improve this
paper’s contributions with the simplest computations, we adopt the most widely known
algorithms—Webster Equation and Dijkstra Algorithm as the benchmark models for PTSC
and PVRG to describe our improvements. PTSC and PVRG are the subsystems for PIT.
Three contributions are explained in the sequel.

3.2. Contribution of PTSC and PVRG
3.2.1. Contribution of PTSC

In TSC, signal controllers assign different signal combinations to each phase to regulate
traffic flow. The existing works mainly use advanced IoVs technologies to collect current
traffic information to produce signal schemes. In fact, the reconfigurations of vehicle route
could change the future distribution of traffic flow that is the supporting data for TSC.

In this section, based on the assumption of 100% penetration of IoVs in Figure 2, we
introduce the predictive traffic flow as a medium variable to formulate the link from the
varying route plans to the PTSC model. A non-complex future traffic flow prediction
algorithm is presented in Algorithm 1 based on dynamic route plans.

Algorithm 1 Short-term flow prediction for intersections.

Input: Set of current route directions S(t) = {Si(t)|Si(t) = (hi
j,m(1), hi

j,m(2), · · · , hi
j,m(k),

· · · ), i ∈ I} and set of vehicular estimated arriving time A(t) = {Ai(t)|Ai(t) =
(ti(1), ti(2), · · · , ti(k), · · · ), i ∈ I}

Output: Set of predictive short-term flow Q(t + ∆t) = {qpj,n(t + ∆t)
∣∣pj,n ∈ P}

1: for j = 1, 2, 3, ..., |J| do
2: for n = 1 : 4 do
3: for i = 1, 2, 3, ..., |I| do
4: if the route direction vector Si(t) of vehicle i contains the entrances of phase pj,n

then
5: Find the corresponding arrival time ti(k) of vehicle i at this entrance (optional

route node)
6: if ti(k) ∈ [t, t + ∆t] then
7: qpj,n(t + ∆t) = qpj,n(t + ∆t) + 1
8: end if
9: end if

10: end for
11: Return qpj,n(t + ∆t)
12: end for
13: end for
14: Return Q(t + ∆t)

In Algorithm 1, let qpj,n(t + ∆t) be the predictive traffic flow at the entrance of phase
pj,n during future time ∆t. The time complexity of Algorithm 1 is O(n2) (note: n in time
complexity is not the notation of phases). We set ∆t = 4TG

max in this paper since the vehicles
arriving at the intersection beyond time 4TG

max must not belong to the current signal control
cycle. The idea of the flow predictive algorithm is to analyse the arrival time and the
corresponding route nodes in route plans. By inputting the set of vehicle route plans R(t),
the set of predictive traffic flow Q(t + ∆t) is calculated and output by Algorithm 1.

The Webster Equation is a classical static signal timing method that is still adopted by
the British government to manage traffic flow [8]. In this section, we add the updating
predictive traffic flow determined by vehicle rerouting into the traditional Webster Equation
to formulate the dynamic PTSC model. Let f1 be the mapping function from the set of route
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plans R(t) to the predictive traffic flow Q(t + ∆t) in Algorithm 1. The improved constraint
conditions of PTSC are as follows:

φi
pj,n

(t) = f (Zj(t), qpj,n(t + ∆t))
Q(t + ∆t) = f1(R(t))
TG

min ≤ TG
pj,n

(t) ≤ TG
max

qpj,n(t + ∆t) ∈ Q(t + ∆t)
TG

pj,n
(t) ∈ Zj(t)

(8)

Compared with the traditional static constraint conditions of Equation (3) in iso-
lated TSC, Equation (8) implies that the traffic flow is dynamic and the vehicular delay
time φi

pj,n
(t) is caused by the varying route plans R(t) which determine the future traffic

flow Q(t + ∆t).
Imitating the derivations of the traditional Webster Equation (Equation (4)), the im-

proved PTSC model is as follows:

TG
pj,n

(t) =


TG

min
1.5(4·τ+AR)+5

1−
4
∑

n=1

qpj,n (R(t))

qmax
pj,n

·
qpj,n (R(t))

4
∑

n=1
qpj,n (R(t))

TG
max

(9)

In Equation (9), the dynamic signal scheme Zj(t) is calculated, implying that the route
plans determine the future flow ratio between different phases to influence signal schemes.
The formulated PTSC model considers the decisions of VRG by introducing a medium
variable—predictive traffic flow Q(t + ∆t).

3.2.2. Contribution of PVRG

In VRG, a vehicle route guidance system provides recommended paths to drivers
to adjust traffic flow trajectories in the space dimension. As the existing works mainly
use monitoring devices to detect current traffic conditions to calculate route plans, the
future intersection conditions resulting from other dimensions’ decisions, such as TSC, are
not considered.

In this section, based on the assumption that all vehicles are equipped with the IoVs
in Figure 2, we introduce the predictive vehicular waiting time as a medium variable
to formulate the link from different signal schemes to the PVRG model. Let wµ be the
estimated waiting time for vehicle i at optional route node µ, and φ̄µ denote the last delay
time of vehicle that has just passed optional route node µ. Based on dynamic signal
schemes, a non-complex future waiting time prediction method is formulated as:

wµ(t) = max{φ̄µ(t), TR
µ (Z(t))}, ∀µ ∈ H (10)

where TR
µ denotes the red signal timing of the phase to which the optional route node

(entrance) µ belongs. Equation (10) means that the maximum value between φ̄µ and TR
µ

is adopted as the estimated future waiting time of vehicles at node µ. It can avoid the
error caused by the waiting for multiple signal cycles. By inputting the set of traffic signal
schemes Z(t), the set of estimated waiting time W(t) = {wµ(t)|µ ∈ H} is generated by
Equation (10).

The Dijkstra Algorithm is an exact algorithm for static optimal path problems, suitable
for the low-dimensional traffic network such as the simulation scenarios in this paper.
In this section, we add the updating predictive waiting time determined by the signal
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controllers’ decisions into the traditional Dijkstra Algorithm to formulate the dynamic PVRG
model. The improved constraint conditions of PVRG are as follows:

xi
µ,µ′(t) = g(Ri(t))

βµ,µ′(t) = lj↔j′/v + wµ′(t)
wµ′(t) = max{φ̄µ′(t), TR

µ′(Z(t))}
xi

µ,µ′(t) = 0 or 1

(11)

where v denotes the free-flow speed of vehicles, and lj↔j′ denotes the distance between the
corresponding intersections of nodes µ and µ′. Compared with the traditional constraint
conditions of Equation (6) in isolated VRG, Equation (11) indicates that the vehicle route
plan Ri(t) minimizes the vehicular driving time Ci in Equation (5) with the red signal
timing TR

µ′(Z(t)) together. Imitating the derivations of Dijkstra [20], we formulate the
improved PVRG for vehicle i as:

min ti(k, t)= min{ti(k− 1, t) + βµ,µ′(Z(t))}. (12)

Equation (12) determines the next optimal route node µ′ in vehicle route Si based on
minimum arriving time ti(k, t). By iterating from the start point to destination, the route
direction vector Si(t) for vehicle i is generated. The formulated PVRG model considers the
decisions Z(t) of TSC by introducing a medium variable—predictive vehicular waiting
time W(t).

3.3. Contribution of PIT

In a whole intelligent transport system, the distribution of traffic flow is the common
results of multi-dimension working together. In this section, we integrate the proposed
PTSC and PVRG to formulate a global optimal model—PIT by introducing two medium
variables W(t) and Q(t + ∆t). Inspired by game theory, we design an asymmetric informa-
tion exchange framework-based updating distributed algorithm to solve the PIT model.

3.3.1. Model of PIT

Let α be the weight of a single-objective. Based on the feedback regulation between
PTSC and PVRG in Figure 4, the proposed PIT model integrated by PTSC and PVRG is:

Min (α1 ∑
j∈J

Φj(t) + α2 ∑
i∈I

Ci(t))

= Min (α1 ∑
j∈J

4
∑

n=1
∑
i∈I

φi
pj,n

(t) + α2 ∑
i∈I

∑
µ∈Hi

∑
µ′∈Hi

βµ,µ′(t) · xi
µ,µ′(t))

(13)

subject to: 

φi
pj,n

(t) = f (Zj(t), qpj,n(t + ∆t))
Q(t + ∆t) = f1(R(t))
TG

min ≤ TG
pj,n

(t) ≤ TG
max

qpj,n(t + ∆t) ∈ Q(t + ∆t)
TG

pj,n
(t) ∈ Zj(t)

xi
µ,µ′(t) = g(Ri(t))

βµ,µ′(t) = lj↔j′/v + wµ′(t)
wµ′(t) = max{φ̄µ′(t), TR

µ′(Z(t))}
xi

µ,µ′(t) = 0 or 1
Zj(t) ∈ Z(t)
Zj(t) ∈ Z(t)

(14)

where the sets of signal control schemes Z(t) and vehicle route plans R(t) are the deci-
sion variables for PIT. The constraint conditions in Equation (14) show that both decision
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variables have dynamic nonlinear relationship through two medium variables W(t) and
Q(t + ∆t). The solutions of PIT have the global optimality for a whole traffic manage-
ment system.

3.3.2. Solving Algorithm for PIT

The proposed PIT model is a multi-objective mixed integer programming that has
two interacting decision variables—Z(t) and R(t). Traditional precise algorithms (such
as heuristic algorithms) are low-efficient for solving it due to the dynamic nonlinear
relationship between decision variables. Inspired by game theory, this section designs an
asymmetric information exchange framework-based updating distributed algorithm to
approximate the optimal solutions of PIT.

A complete game model includes four basic elements—players, strategies, payoff
functions, and game rules. Each player tries to improve its payoff by determining an
optimal strategy based on the game rules. In our updating distributed algorithm, the set of
vehicles I and set of intersections J are two players. The selectable paths and signal control
schemes are strategy sets for vehicles and intersections, respectively. The payoff functions
of players I and J are the total vehicular driving time C and delay time Φ, respectively. It
should be noted that a symmetric information exchange framework could result to the
“route flapping” phenomenon where a congestion switches from one road to an alternative
road when numerous vehicles obey a same guidance [38]. The asymmetric information
exchange framework-based dynamic game processes and rules are shown in Figure 5.

Setting the initial 

solutions for PIT: 

Z*(0)= Z(t), R*(0) =R(t)

Current 

traffic 

signal  

schemes  

Z(t)

Current  

vehicular 

routing 

plans  R(t)

Initialization 

System

Input

The 𝜼𝒕𝒉
iteration for 

solutions

Data Exchange System Under an 

Asymmetry Information Environment 

Traffic 

signal 

controllers

All data 

receivers

Vehicles

All data 

transmitters

Part of the 

data receivers 

Z*(𝜼 + 𝟏) R*(𝜼)

Estimating the future 

traffic flow Q based on

R*(𝜼) by running 

Algorithm 1

Iterating the better signal 

schemes Z*(𝜼+1) by

running PTSC—Eq. (9)

Predicting the future 

waiting time W at 

intersections based on 

Z*(𝜼+1) by running Eq. (10)

Iterating the better path 

plans R*(𝜼+1) by running 

PTSC—Eq. (12)

Updating the solutions of 

PIT: (Z*(𝜼+1) , R*(𝜼+1) ); 

Setting 𝜼 = 𝜼+1

Iterative System

Stop ?

No
Solutions of PIT:

Z(𝒕′) =Z*(𝜼), 

R(𝒕′)=R*(𝜼) 

Yes

Output

PTSC PVRG

Input

All data 

transmitters

Figure 5. Dynamic game processes and rules in the updating distributed algorithm.

In the designed dynamic game processes of Figure 5, in the fact, we decompose the
interacting multi-objectives function Equation (13) to:

α1 ∑
j∈J

Min
4
∑

n=1
∑
i∈I

φi
pj,n

(t) + α2 ∑
i∈I

Min ∑
µ∈Hi

∑
µ′∈Hi

βµ,µ′(t) · xi
µ,µ′(t) (15)
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where only the single-objective Zj(t) of PTSC and Ri(t) of PVRG need to be calculated
and pursued by players. We set intersections as the dominant players in the game. The
updating sequence of the distributed agents’ schemes is like a difference equation:

R∗(η)→ Z∗(η + 1)→ R∗(η + 1)→ Z∗(η + 2)→ · · ·

where signal controllers receive all vehicles’ virtual plans but only transmit their attempts
to part of the vehicles. By receiving each other’s virtual decisions constantly, the signal
controllers and vehicles iterate their better virtual plans. They constantly exchange their
last virtual schemes in an asymmetry information environment, which can reduce the
“route flapping” phenomenon by preventing vehicles to divert themselves to the same
alternative roads simultaneously. The pseudo-code of our updating distributed algorithm
compiled from Figure 5 is shown in Algorithm 2.

Algorithm 2 Pseudo-code of our updating distributed algorithm for solving proposed
PIT model.
Input: Sets of current signal control schemes Z(t) and current vehicular route plans R(t)
Output: Sets of next signal control schemes Z(t′) of PTSC and next vehicle route plans

R(t′) of PVRG
1: Set the current schemes as the initial value: Z∗(0) = Z(t); R∗(0) = R(t)
2: for η = 0, 1, 2, · · · , η0 do
3: Vehicles transmit their last virtual route plans R∗(η) to all signal controllers based

on the IoVs framework in Figure 2
4: Execute Algorithm 1 to predict traffic flow Q(t + 4TG

max) at intersections
5: Execute PTSC model (Equation (9)) to update the virtual signal control schemes

Z∗(η + 1)
6: Signal controllers transmit their last virtual schemes Z∗(η + 1) to part of the vehicles

based on the IoVs framework in Figure 2
7: Execute Equation (10) to estimate the vehicular waiting time W(t) at intersections
8: Execute PVRG model (Equation (12)) to update the virtual route plans R∗(η + 1)
9: Let η = η + 1 and decide whether to stop iteration.

10: end for
11: Return the set of next schemes of PIT: Z(t′) = Z∗(η); R(t′) = R∗(η)

In Algorithm 2, since there is not a proof to guarantee the convergence of the updating
distributed algorithm, the experiments choose other stop criteria such as the maximum
iteration times η0 in each cycle. The output of the designed updating distributed algorithm
is an approximate solutions for PIT compared with the precise global optimality. The time
complexity of Algorithm 2 is O(n3).

3.4. Discussion

The existing IoVs-based methods for alleviating traffic congestion only use real-time
traffic data to produce decisions in isolated dimension control of TSC or VRG, which
results in the waste of city resources due to the ignorance of influence from other traffic
dimensions. In this section, by introducing two medium variables—predictive traffic flow
and predictive vehicular waiting time, we formulate a PIT model based on the two-way
feedback regulation between TSC and VRG to alleviate traffic congestion by generating
the coordinated reconfiguration schemes for multi-dimension together. Moreover, an
asymmetric information exchange framework-based updating distributed algorithm is
designed to solve the PIT based on the idea of the game theory, which can reduce the “route
flapping” phenomenon by preventing numerous vehicles to divert themselves to the same
alternative roads simultaneously.
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4. Simulation Experiments

The performance of the PIT and the corresponding updating distributed algorithm
is hard to be studied by rigorous mathematical discussion. In this section, simulation
experimental methods (shown in Table 1) are designed based on the single-variable control
(each experimental condition varies in turn) to verify the validity of our contributions.
They are run on the typical scenarios in Figure 1 to test the validity and robustness of
the experimental variables—PTSC, PVRG, and PIT. The MATLAB R2016a tool is used to
compile one vehicular driving environment in which information between PTSC and PVRG
is constantly exchanged. The pseudo-code of the experiments is shown in Algorithm 3 (the
time complexity of Algorithm 3 is O(n4)).

Algorithm 3 Pseudo-code for vehicles driving in the experiments.

Input: Set of initial configuration schemes of signal control Z(0) and the set of initial
configuration plans of vehicle route R(0)

Output: Set of intersections’ delay time Φ = {Φj|j ∈ J} and the set of vehicular driving
time C = {Ci|i ∈ I}

1: for t = 1, 2, 3, ..., do
2: Vehicles that do not arrive intersections move forward one unit on the traffic grid
3: Vehicles queuing in front of the green signal move forward one unit on the traffic

grid
4: if All experimental vehicles arrive their destinations then
5: BREAK
6: end if
7: if Existing signal controllers are about to end their current schemes then
8: Generating and configuring next schemes (using the PIT model and Algorithm 2)

for signal controllers and vehicles
9: end if

10: Setting t = t + 1
11: end for
12: Return the set of intersections’ delay time Φ and set of vehicular driving time C

4.1. Preparation

For the common parameters of experiments in Table 1, the TG
min and TG

max are set
to 1 and 5 time-units, respectively, except for intersection 3 of Scenario 1. The TG

max of
intersection 3 in Scenario 1 is increased to 15 time-units to ensure sufficient flow for
downstream intersections due to the unbalanced flow distribution. The maximum traffic
flow of phases is qmax

pj,n
= 1 (veh/time-unit). The all-red signal time AR = 0 and the vehicle

speed v = 1 in this paper [42]. Vehicles change their route plans after the traffic signal
has been reconfigured. To eliminate the interference from other irrelevant factors, this
paper chooses the most concise comparison experiments (shown in Table 1) to verify the
three contributions:

For method 1 in Table 1, the average time (TG
min + TG

max)/2 is adopted as signal timing
in the fixed TSC strategies, where do not exists the feedback regulation to vehicle routing
due to the invariable signal schemes. The corresponding VRG system considers only free-
flow driving time calculated by constant distance parameters to generate vehicle routes.

For method 2 in Table 1, the dynamic TSC is added into method 1. The current
vehicular number on the road is collected and used to generate dynamic signal schemes
without considering the future vehicles coming into this road. By compared to the fixed
TSC in method 1, the feasibility of the basic dynamic TSC (referenced model for PTSC) can
be analyzed.

For method 3 in Table 1, the dynamic function is added into the fixed VRG of method
2 by predicting waiting time at intersections using changing signal schemes. Their detailed
calculations are described in Section 3.2.2. By comparing with the non-predictive fixed
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VRG in method 2, the feasibility of our proposed PVRG which considers the feedback
regulation from the dynamic traffic signal schemes can be verified.

Table 1. Methods of simulation experiments.

Methods Explanation Purpose

Method 1: Fixed TSC + Fixed VRG

Signal controllers adopt the fixed timing

strategies; Vehicles calculate routes based

on constant distance parameters

Control group

Adding non-predictive dynamic TSC into Method 1

Method 2: Dynamic TSC + Fixed VRG

Signal controllers generate dynamic

signal schemes based only on current

traffic flow on their roads; Vehicles

calculate routes based on constant

distance parameters

Verifying the feasibility of non-predictive

dynamic TSC

Adding the proposed PVRG into Method 2

(for example the work in [43] adopts the predictive vehicle reroute strategy to alleviate traffic congestion)

Method 3: Dynamic TSC + PVRG

Signal controllers adopt the

non-predictive dynamic TSC strategies;

Vehicles reroute considering predictive

waiting time influenced from dynamic

TSC schemes (PVRG in Section 3.2.2)

Verifying the feasibility of the proposed

PVRG

Adding the proposed PTSC into Method 3

(for example the work in [6] adopts the predictive signal control strategy to alleviate traffic congestion)

Method 4: PTSC + PVRG without the

coordinated mechanism of PIT

Signal controllers generate the dynamic

schemes considering future traffic flow

determined by dynamic VRG (PTSC in

Section 3.2.1); Vehicles reroute based on

the proposed PVRG

Verifying the feasibility of the proposed

PTSC

Adding the feedback regulation-based coordinated control framework of the proposed PIT model into Method 4

Method 5: PIT

PTSC and PVRG iterate together based

on an asymmetric information exchange

environment in Section 3.3

Verifying the feasibility of this paper’s

PIT model and the solving algorithm

For method 4 in Table 1, the predictive function is added into the dynamic TSC of
method 3, which means the future traffic flow regulated from VRG is evaluated and used
for PTSC. Their detailed calculations are described in Section 3.2.1. Compared with the
non-predictive dynamic TSC in method 3, the feasibility of our proposed PTSC which
considers the feedback regulation from vehicle rerouting can be demonstrated. It should
be noted that although the two dimensions (PVRG and PTSC ) work together in method
4, there is no iterating and updating for the better coordinated schemes based on their
feedback regulation relationship.

For method 5, the asymmetric information exchange framework-based coordinated
mechanism between PTSC and PVRG in PIT is added into the non-iterative method 4.
The detailed calculations are shown in Section 3.3. To simplify calculations, the maximum
iteration times η0 in Algorithm 2 is set to a fixed value 10. The coefficient of asymmetric
information is set to a fixed value 0.5, implying that 50% of the vehicles can receive the
virtual signal schemes randomly in each iteration. Compared with the non-coordinated
dynamic PTSC and PVRG in method 4, the feasibility of our designed PIT can be concluded
which uses the two-way feedback regulation to iterate coordinated schemes for PTSC
and PVRG.
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4.2. Validity Test and Sensitivity Analysis
4.2.1. Validity Test

Scenario 1 in Figure 1 is a basic traffic network unit for an alternative path. The
feasibility of the contributions at the micro-level can be tested by running the above five
methods on Scenario 1. Let 150 vehicles leave the start point H to destination D with
1 veh/(unit-time) in Scenario 1. That means only two paths can be selected for each vehicle i
(Path 1: H→ hi

3,1 → hi
1,4 → hi

2,1 → D; Path 2: H → hi
3,1 → hi

4,1 → hi
2,4 → D). The results

are shown in Tables 2 and 3.

Table 2. Total driving time of vehicles.

Methods Path 1 Path 2 Total Driving Time Efficiency

Method 1 150 0 49,315 0
Method 2 150 0 24,159 51.01%
Method 3 94 56 22,626 54.12%
Method 4 51 99 22,117 55.15%
Method 5 71 79 21,626 56.15%

Note: The efficiency column denotes the percentages of improvement compared to method 1.

Table 3. Total delay time of intersections.

Methods Entrance
hi

1,4

Entrance
hi

2,1

Entrance
hi

2,4

Entrance
hi

3,1

Entrance
hi

4,1
Total Efficiency

Method 1 2431 441 0 33,318 0 36,190 0
Method 2 4767 1329 0 4938 0 11,034 69.51%
Method 3 1575 1092 856 4938 897 9358 74.14%
Method 4 498 249 1285 4944 1761 8737 75.86%
Method 5 818 336 1028 4944 1167 8293 77.08%

Note: The efficiency column denotes the percentages of improvement compared to method 1.

As shown in Tables 2 and 3, we can see that:

(1) The total driving time and delay time of method 2 have been decreased by 51.01%
and 69.51%, respectively, compared with method 1 due to the working of dynamic
TSC strategy. It proves the effectiveness of the non-predictive dynamic TSC model.

(2) Comparing the results of method 3 with 2, the total driving time and delay time of
method 3 have been decreased by 6.35% and 15.19%, respectively. About 56 vehicles
divert to path 2 due to the working of predictive rerouting in PVRG which can
consider the future waiting time (influenced from the dynamic TSC schemes) at
intersections. The potential of the built PVRG have been demonstrated to improve
traffic efficiency.

(3) Comparing the results of method 4 with 3, the total driving time and delay time of
method 4 have been decreased by 2.25% and 6.64%, respectively, due to the working
of the predictive function in PTSC model which. It shows that the function of the built
PTSC is effective since that the future traffic flow determined by the dynamic route
information is considered.

(4) Compared with the non-coordinated mechanism between PTSC and PVRG (method
4), the solutions of our PIT (method 5) reduce the driving time and delay time by 2.22%
and 5.08%, respectively, due to the asymmetric information exchange framework-
based coordinated mechanism. The asymmetric information-based coordinated be-
tween PTSC and PVRG can reduce the “route flapping” phenomenon by preventing
numerous vehicles to divert themselves to the same alternative roads simultaneously.
The feasibility of our PIT model is verified.

As the above analysis in simulation experiments, the built PTSC and PVRG introduce
medium variables—predictive traffic flow and vehicular waiting time, respectively, to
consider each other’s feedback regulation to achieve “Prediction” function in further
improving traffic efficiency. Furthermore, compared with the isolated improvement in
PTSC and PVRG, the asymmetric information exchange framework-based coordinated
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mechanism in PIT achieve Pareto optimization for the whole traffic management system
due to the reducing of “route flapping” phenomenon by preventing.

4.2.2. Sensitivity Analysis

To avoid the contingency of special parameter setting, this paper changes the numbers
of vehicles and intersections to test the robustness of the above results. First the vehicle
number is changed from 50 to 200 in Scenario 1. Then the vehicle number at each start
point is changed from 5 to 20 in Scenario 2 where the number of intersections is increased
to 9 compared with Scenario 1. We assume that the starting points and corresponding
destinations are as follows: A→ G, C→ F, D→ J, L→ I, hi

5,1 → H, F→ C, K→ D, I→ L,
H→ B in Figure 1b. The results of sensitivity analysis are shown in Figure 6. For economy
of space, the detailed data are not presented in this section. Some remarkable findings
are discovered:

(a) (b)

(c) (d)

Figure 6. Sensitivity analysis for the results. (a) Total driving time of vehicles in 4 intersections, (b) Total delay time of signal
controllers in 4 intersections, (c) Total driving time of vehicles in 9 intersections, (d) Total delay time of signal controllers in
9 intersections.
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(1) In Figure 6a,b, for the robustness of the non-predictive dynamic TSC model, method
2 still performs better than method 1 with the increased vehicle number in Scenario
1. The average improvement efficiency is 47.85% and 65.81% in driving time and
delay time, respectively. For the robustness of PVRG, all experiments in method
3 perform better than method 2 due to the working of predictive rerouting. The
average improvement efficiency is 4.69% and 11.82% in driving time and delay
time, respectively. For the robustness of PTSC, all experiments in method 4 achieve
better results than method 3 due to the prediction of future traffic flow in TSC. The
average improvement efficiency is 6.63% and 15.21% in driving time and delay time,
respectively. For the robustness of PIT, the overall performance of method 5 remains
better than the isolated improvements in PTSC and PVRG due to the function of our
coordinated mechanism. Compared with method 4, 73.33% of the experiments obtain
better results. The average improvement efficiency is 1.18% and 2.70% in driving time
and delay time, respectively.

(2) In Figure 6b,c, similarly, the functions of non-predictive dynamic TSC model, PVRG,
PTSC and PIT are still conspicuous with the increased number of intersections in
Scenario 2. Specifically, the average improvement efficiencies in driving time and
delay time are 23.75% and 29.04% (comparing method 2 with 1), 8.00% and 11.97%
(comparing method 3 with 2) 2.99% and 3.30% (comparing method 4 with 3), and
1.56% and 2.20% (comparing method 5 with 4), respectively. The efficiency of all
methods is consistent with the conclusions in Section 4.2.1.

As for the above analysis, the feasibility of PTSC, PVRG, and PIT still hold by changing
the numbers of vehicles and intersections in the sensitivity analysis. Equation (10) leads
to the main error in simulations since this formula cannot accurately predict signal color
when vehicles arrive at intersections.

4.3. Discussion

In this section, by controlling single-variable (PVRG, PTSC, PIT) and comparing
them with existing major strategies, the results can be summarized as follows: (1) The
improvement in isolated PVRG is consistently better than the non-predictive VRG strategy
due to the consideration of future vehicular waiting time at intersections determined by
TSC. (2) The improvement in isolated PTSC is consistently better than the non-predictive
TSC strategy due to the consideration of future traffic flow caused by VRG. (3) The solutions
to PIT can achieve Pareto optimality compared with isolated PTSC and PVRG by constantly
exchanging their future virtual schemes based on their two-way feedback regulation.
These conclusions still hold by changing the numbers of vehicles and intersections in the
sensitivity analysis.

5. Conclusions

This paper formulates the PTSC and PVRG models that consider future traffic changes
caused by other dimensions’ decisions, and integrates them into an integrated PIT model
(whose solutions are coordinated optimal in the whole traffic management system) based
on their feedback regulation relationship. Moreover, inspired by game theory, an asymmet-
ric information exchange framework-based updating distributed algorithm is designed to
solve the PIT model, which can prevent vehicles diverting to the same alternative roads
simultaneously to alleviate the “route flapping” phenomenon in iterative optimization.
Through the experiments we show that the formulated PVRG and PTSC consistently per-
form better than the non-predictive strategies since the future traffic conditions influenced
by other traffic dimensions are considered. The solutions of PIT achieve Pareto optimality
compared with the isolated improvements in PTSC and PVRG due to the working of
their feedback regulation. These conclusions also have good robustness in the sensitivity
analysis.
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Abbreviations

PIT Predictive intelligent transportation
IoVs Internet of Vehicles
(P)TSC (Predictive) Traffic signal control
(P)VRG (Predictive) Vehicle routing guidance
I Set of vehicles
J Set of intersections
lj↔j′ Distance between two different intersections j and j′

hi
j,m Optional route node of vehicle i at the mth entrance of intersection j

Hi Set of optional route nodes of vehicle i, Hi = {hi
j,m|m ∈ {1, 2, 3, 4}, j ∈ J}

H Set of optional route nodes of all vehicles, H =
⋃
i∈I

Hi

βµ,µ′ Path weight from route node µ to a different route node µ′, µ, µ′ ∈ H
wµ Estimated waiting time of vehicles at route node µ

W Set of estimated waiting time, W = {wµ|µ ∈ H}
Ri Route plan of vehicle i
R Set of vehicle route plans, R = {Ri|i ∈ I }
Ci Driving time of vehicle i
pj,n nth phase of intersection j, n ∈ {1, 2, 3, 4} in this paper
P Set of phases, P = {pj,n|n ∈ {1, 2, 3, 4}, j ∈ J}
qpj,n Estimated traffic flow at the entrances of phase pj,n

Q Set of estimated traffic flow, Q = {qpj,n

∣∣∣pj,n ∈ P }
Tj Traffic signal cycle of intersection j, Tj ∈ Z+

TG
pj,n

Green traffic signal of phase pj,n, TG
pj,n
∈ Z+

TR
pj,n

Red traffic signal of phase pj,n, TR
pj,n
∈ Z+

Zj Traffic signal scheme of intersection j
Z Set of traffic signal schemes, Z = {Zj|j ∈ J }
φi

pj,n
Delay time of vehicle i at the green signal entrances of phase pj,n

Φj Total vehicular delay time of intersection j
Z∗ Set of virtual schemes of traffic signal
R∗ Set of virtual plans of vehicle route
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