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Radiotherapy is an important treatment modality used for over

half of all patients with cancer and a few benign conditions.

Treatment planning, the design of radiotherapy for each indi-

vidual case, is at the heart of radiotherapy and is thought of as

both a science and an art. Due to the complex physics and

mathematics involved, radiotherapy treatment planning is a

pioneer among computationally supported medical processes.

However, conventional treatment planning is still performed by

humans—highly trained professionals called medical dosime-

trists—using computer tools. The human planner interacts

numerous times in the process of generating a plan with the

treatment-planning system based on experience and skills to

ensure satisfactory quality of each plan.

Like it has recently transformed and disrupted fields such as

computer vision, natural language processing, and automobile

autopiloting, artificial intelligence (AI) has promised to revo-

lutionize radiotherapy treatment planning. In this special col-

lection, we curated a series of articles reporting on the cutting

edge of this important field at an exciting point of time. The

review article of Wang et al1 summarizes the current smart

planning tools in 3 main categories: automated rule implemen-

tation and reasoning (ARIR), modeling of prior knowledge in

clinical practice (KBP), and multicriteria optimization. The

article systematically reviews the development history, clinical

applications, and current progress on these main algorithms.

Other recent progress, as well as emerging directions in AI-

based treatment planning, are also reviewed, such as the appli-

cations of various deep learning algorithms, voxel-based dose

prediction, and reinforcement learning. The challenges of AI in

radiotherapy treatment planning are discussed alongside an

outlook of the necessary requirements in regulation and

collaboration.

As described in this review, one big impact of these AI

algorithms is the potential improvement in the treatment plan-

ning workflow efficiency through automation. With such auto-

mation, human planners can be spared from many manual

processes and therefore afforded more time to focus on further

improving the plan quality. Wang et al’s study2 shows such an

example in which a commercial ARIR algorithm, Pinnacle

AutoPlan, was used to explore the dose-escalation limit of

pancreatic stereotactic body radiotherapy (SBRT). Stereotactic

body radiotherapy is an important treatment modality for bor-

derline resectable and locally advanced pancreatic cancer that

has shown promise but can be limited by normal tissue toxicity.

Individualized target dose escalation within the normal tissue

dose limit is potentially clinically meaningful but usually too

time consuming to be practical. However, with the automation

afforded by AI, this becomes feasible. Another study by Smith

et al3 reports a rigorously designed comparison between 2

widely used commercial treatment-planning automation algo-

rithms on prostate bed planning, including 1 ARIR-based algo-

rithm (Pinnacle AutoPlan) and 1 KBP-based algorithm (Varian

RapidPlan). Although clinicians and researchers are naturally

interested in the performance comparison between these 2 fun-

damentally different algorithms, there has not been a good

comparison reported, especially one that is well designed to

rule out the human factors at play and ensure the comparison

objectivity. The study by Smith et al nicely filled this important

void. Using an established quantitative metric, the 2 algorithms

were compared and found to yield similar performance. Inter-

estingly, on one Plan Challenge case used for a human planner

competition, both automation algorithms were able to achieve
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above-human average performances with marked efficiency

improvement.

Our special collection also reports new applications in

AI-based treatment planning. While conventional algorithms

operate on inverse treatment planning and focus on dose opti-

mization, Wang et al4 report a method to automate and optimize

beam settings that can be followed by automatic fluence optimi-

zation for whole-breast radiotherapy. This typically requires a

medical dosimetrist to spend substantial time on manual forward

planning. In another study, Li et al5 investigate a collimator

setting optimization algorithm for pancreatic SBRT treated with

volumetric-modulated arc therapy (VMAT). This setting in con-

ventional treatment planning is usually not optimized. Using this

new algorithm to explore a new degree of freedom, significantly

better sparing was achieved for organs at risk, important for this

treatment modality.

Articles in this special collection also explore the practical

challenges of current AI algorithms. Landers et al6 report an

interesting study comparing 3 KBP dose prediction algorithms

for both 4p intensity-modulated radiotherapy (IMRT) and

VMAT on a few disease sites including head and neck, lung,

and prostate, each with limited patient data in terms of case

numbers. Their comparisons illustrate an important finding:

When patient data are limited for KBP, simple statistical learn-

ing is more robust to patient variability and hence better at dose

prediction than more sophisticated machine learning methods.

Addressing similar issues, Sheng et al7 propose a case-based

reasoning method by judiciously combining the use of atlas-

based and regression-based prediction to improve a model’s

overall robustness, particularly effective when dealing with

novel anatomy. The applicability of their method was demon-

strated on a cohort of patients having prostate cancer treated

with IMRT.

An important issue in data science is data size—limited data

increase the uncertainty of the data model. This is particularly

critical for AI-based treatment planning because the data size in

treatment planning is smaller than other big data applications in

health care such as imaging. As mentioned earlier, the study of

Landers et al6 highlights this problem and the importance of

proper method selection. In another study conducted by Zhang

et al,8 historical IMRT treatment plans of a large cohort of

patients with head and neck cancer from a single institution

(n ¼ 927) were used to demonstrate the effectiveness of a

knowledge-based statistical inference method for evaluating

plan quality based on similar plans from the database. With

this sufficiently large database, similar historical plans in terms

of both geometry and dosimetry were selected to provide sim-

ple statistical predictions for new plans. This work developed

useful infrastructures for automatic data extraction, anonymi-

zation, and analysis, which could also allow multi-institutional

data integration to further increase data size. On the other hand,

even from single institutional data, the challenges of data het-

erogeneity highlight the importance of proper data homogeni-

zation in data-based methods for AI-based treatment planning.

Finally, fully AI-based treatment planning requires automa-

tion of the entire treatment planning workflow. Artificial

intelligence-based segmentation is, therefore, an important

branch of research as delineating regions of interest (ROIs) is

an important and time-consuming step. The automatic segmen-

tation of ROIs could greatly improve efficiency and possibly

improve consistency. Conventionally, this has been done based

on intensity thresholding, edge detection, and other mathemat-

ical methods. These algorithms mostly work on ROIs distinct

from their backgrounds, such as lung, spinal cord, and brain but

have limited accuracy to be clinically useful for other applica-

tions. With the advent of modern AI, machine learning—espe-

cially deep learning—approaches have demonstrated great

potential in accurate ROI autosegmentation. In this collection,

2 noteworthy works on this topic are included.

In Li et al study,9 a deep learning U-Net model was used to

autosegment the tumor target for nasopharyngeal radiotherapy.

Using a large cohort of 502 patients divided into the training,

validation, and testing data sets, they were able to train an

algorithm to automatically segment the tumor targets in under

a minute and achieve over 70% of agreement in terms of Dice

similarity coefficient for primary tumors and over 60% agree-

ment for involved lymph nodes compared against manual seg-

mentation which takes a few hours to complete. While such

performances are encouraging, it is also important to note that

there remains much room for improvement before AI-based

algorithms could completely replace humans on such challen-

ging tasks. For the task investigated in this study, the remaining

30% to 40% inaccuracy compared to manual segmentation still

takes hours of manual effort, so the semi-autosegmentation

approach combining the AI algorithm and manual touch-up

saved on average less than half an hour on each case compared

to the completely manual approach.

To boost research in this important area, professional soci-

eties such as the Society of Photo-Optical Instrumentation

Engineers, the American Association of Physicists in Medicine,

and the National Cancer Institute have organized open competi-

tions to use AI-based algorithms to solve specific clinical tasks.

Chen et al’s work10 detailed the algorithms they developed for

the Prostate-X Grand Challenge held by the abovementioned 3

organizations. In this challenge, the clinical task was to detect

cancer on multiparametric magnetic resonance images from sus-

picious prostate lesions that included both cancer and benign

lesions. They applied a transfer-learning approach to retune a

deep convolutional neural network algorithm pretrained on Ima-

geNet, a large data set of regular (nonmedical) images, based on

the clinical task. Their best-performing model achieved the third

best score among the 72 models submitted from 33 competing

teams, and the performance was similar to radiologists following

the standard clinical protocol. This work highlights the potential

of using transfer learning to address the data size limitation in the

medical problems and also demonstrates the importance of

proper data processing and rigorous method design.

Artificial intelligence is rapidly propelling many revolution-

ary changes in our lives. Unmanned drones now share the sky

with the piloted aircrafts for various tasks, and self-driving cars

may completely reshape what “learning to drive” means for

today’s preteens. Like these other fields, radiotherapy
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treatment planning also holds tremendous opportunities and

challenges for AI-based automation. We hope the review arti-

cle and the original research articles in this special collection

provide our readers with an overview of current research and a

glimpse of what the future holds.
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