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Abstract: The Guangxi Partridge chicken is a well-known chicken breed in southern China with good
meat quality, which has been bred as a meat breed to satisfy the increased demand of consumers.
Compared with line D whose body weight is maintained at the average of the unselected group, the
growth rate and weight of the selected chicken group (line S) increased significantly after breeding
for four generations. Herein, transcriptome analysis was performed to identify pivotal genes and
signal pathways of selective breeding that contributed to potential mechanisms of growth and
development under artificial selection pressure. The average body weight of line S chickens was
1.724 kg at 90 d of age, which showed a significant increase at 90 d of age than line D chickens
(1.509 kg), although only the internal organ ratios of lung and kidney changed after standardizing by
body weight. The myofiber area and myofiber density of thigh muscles were affected by selection to a
greater extent than that of breast muscle. We identified 51, 210, 31, 388, and 100 differentially expressed
genes (DEGs) in the hypothalamus, pituitary, breast muscle, thigh muscle, and liver between the two
lines, respectively. Several key genes were identified in the hypothalamus-pituitary-muscle axis, such
as FST, THSB, PTPRJ, CD36, PITX1, PITX2, AMPD1, PRKAB1, PRKAB2, and related genes for muscle
development, which were attached to the cytokine–cytokine receptor interaction signaling pathway,
the PPAR signaling pathway, and lipid metabolism. However, signaling molecular pathways and the
cell community showed that elevated activity in the liver of line S fowl was mainly involved in focal
adhesion, ECM-receptor interaction, cell adhesion molecules, and signal transduction. Collectively,
muscle development, lipid metabolism, and several signaling pathways played crucial roles in the
improving growth performance of Guangxi Partridge chickens under artificial selection for growth
rate. These results support further study of the adaptation of birds under selective pressure.

Keywords: Guangxi Partridge chicken; growth rate; breeding; transcriptome; hypothalamus;
pituitary; muscle; liver

1. Introduction

Indigenous Chinese chicken breeds are distinct from commercial breeds of fowl due
to their excellent production traits, such as great meat quality and disease resistance, and
they possess a large share of the poultry market. Unlike developed breeds, however, native
birds barely achieved their growth potential [1]. To meet the increased command for meat
products, genetic selection for more yield in indigenous populations is essential. Selective
pressure on broilers contributes to greater yield of cut parts, such as breasts and thighs [2].
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Skeletal muscle is the largest organ of the body and, in addition to its role in motion,
muscle also functions as the endocrine and metabolic organ to regulate energy balance,
glucose uptake, and metabolic activities [3]. Meanwhile, quantity and quality of skeletal
muscle are important characters of yield and as factors of interest by breeders and con-
sumers. In recent years, increased studies have investigated the genetic mechanism that
affects growth performance or meat quality in different breeds or developmental stages.
Several genes (e.g., MYH15, MYOZ2, MYBPC3, IGF2, BCL-2, JUN, and FOS) were identified
in breast muscle of fast-growing fowl breeds, which were involved in muscle regulation,
muscle construction, and myoblast differentiation [4]. Differentially expressed lncRNAs
between slow-growing native Gushi chickens and fast-growing Arbor Acres chickens influ-
enced muscle development and growth [5]. SREBF1, GHR, and FASN have been recognized
widely as causal genes of meat quality, and they were distinctively expressed in cattle
muscle with diverse meat quality and growth performance [6]. Genome-wide association
study revealed that MLNR, MED4, CAB39L, LDB2, and IGF2BP1 may be potential candidate
gens for chicken growth and carcass traits [7].

Hormones of the endocrine system are important regulators in muscle development,
of which growth hormone (GH), thyroid hormone, and androgens have been researched
commonly in many species [8]. The secretion of hormones is primarily regulated by the
dual stimulatory and inhibitory of the hypothalamus and pituitary [9]. The hypothalamic
neurons also secrete orexigenic and anorexia neuropeptides, such as AGRP and α-MSH,
to influence appetite and food intake [10]. Transcriptome analysis of the hypothalamus
screened several genes in male Ross 308 strains with different growth rates, such as POMC,
NMU, NPW, PMCH, GAL, and FOS, which displayed different expression patterns [11]. A
total of 39 differentially expressed genes (DEGs) were identified by transcriptome analysis
between high egg-yielding and low egg-yielding hens, and these DEGs were involved
mainly in metabolism and transport of amino acids [12].

In addition, the liver similarly plays an important role in controlling energy home-
ostasis and metabolic activity. Increased growth may result in increased organ workload,
increased metabolism, and metabolic diseases, such as cardiovascular ailments and ascites,
which may lead to the failure of body systems [13]. Changes in gene expression and
metabolic activity in the liver were correlated significantly with lipid metabolism through
the PPAR signaling pathway and steroid biosynthesis [14]. Transcriptome analysis of meat
birds, layer strains, and a F1 hybrids showed that the FoxOs was correlated highly with
body weight through regulation of glucose metabolism [15].

Up to now, researchers have focused primarily on explaining discrepant production
performances in low- and high-performing individuals in the same population or in differ-
ent breeds, and they rarely explore effects on growth under generational selective pressure.
The Guangxi Partridge chicken is a well-known indigenous chicken breed in southern
China with good meat quality. Selective breeding has been used in Guangxi Partridge
chicken to produce two lines with high selection intensity. Line S has been under selection
for higher growth rate for four generations, while line D under selection for egg number.
These two chicken lines with different growth performance were employed to explore the
effect of short-term selection. In the present study, transcriptome sequencing was adopted
to investigate the expression profile of mRNAs in the hypothalamus, pituitary, breast
muscle, thigh muscle, and liver between two chicken lines that had different selection goals.
Identification and functional analysis of differentially expressed mRNA indicated several
important pathways that may be involved in rapid growth, development, and metabolism.

2. Materials and Methods
2.1. Experimental Animals and Tissue Samples

Breeding lines S and D of Guangxi Partridge chicken were raised at the Guangxi
Fufeng Agricultural and Animal Husbandry Group Co., Ltd. (Nanning, China). Lines S
and D have been selected for four generations from the same population of native Guangxi
Partridge chicken. In line S, the higher body weight is the main selection goal, and selection
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proportion is about 0.03 for the male and about 0.20 for the female. In line D, the higher egg
production is the main selection goal, under the premise of maintaining the body weight
not less than the mean value of its initial population. Hybrid chickens generally take 90 to
130 d to reach market weight. Ten cockerels were selected randomly from two lines at 90 d
of age. Body weight and organ weights (heart, liver, spleen, lung, kidney, and testis) of
each individual were measured separately after fasting for 12 h (10 individual chickens per
line). Then, the hypothalamus, pituitary, liver, breast muscle, and thigh muscle tissues were
collected immediately after the birds were sacrificed. The dissected tissues were placed
quickly into microtubes, which were frozen rapidly in liquid nitrogen and then preserved
at −80 ◦C.

2.2. Examination of Muscle Fibers

Three chickens in each group were selected for measurement of muscle fiber size and
density. Tissues of breast muscle and thigh muscle were dehydrated by gradient alcohol,
paraffin embedded, sectioned, and stained terminally with hematoxylin and eosin. Tissue
sections were observed using a CX31 microscope (Olympus Corporation, Tokyo, Japan)
at a magnification of 200×. For each sample, three images without tissue damage were
analyzed by Image-J (National Institute of Mental Health, Bethesda, MD, USA). Then,
muscle fiber area and fiber density were calculated.

2.3. RNA Extraction and Sequencing

The hypothalamus, pituitary, liver, breast muscle, and thigh muscle tissues from three
chickens from each group were used for RNA sequencing. Total RNA was extracted from
each sample using Trizol reagent (Invitrogen, Carlsbad, CA, USA). The purity of RNA
was measured by a Nanodrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA,
USA). Then, an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) and
RNase free agarose gel electrophoresis were used to detect RNA integrity and quality. RNA
integrity number (RIN), which ranged from 0 to 10, reflects the quality of RNA. The RIN
values of all RNA samples in this study were > 8.

mRNA was enriched with Oligo (dT) beads, and rRNA was removed using a Ribo-
ZeroTM Magnetic Kit (Epicentre, Madison, WI, USA). The enriched mRNA was fragmented
using fragmentation buffer, and then they were reversed into cDNA. RNase H, dNTP, DNA
polymerase I, and buffer were used to synthesize the second-strand cDNA. Then, the cDNA
fragments were purified, end repaired, poly (A) added, and ligated to Illumina sequencing
adapters. The ligation products were size selected by agarose gel electrophoresis, PCR
amplified. Paired-end sequencing was performed on Illumina Nova-Seq 6000 sequencing
platform by Gene Denovo Biotechnology Co. (Guangzhou, China).

2.4. Transcriptome Mapping and Assembly

Reads obtained from the sequencing machines were further filtered by fastp (v 0.18.0).
The reads that contained adapters or > 10% of unknown nucleotides (N) and low-quality
reads that contained > 50% of low quality (Q-value ≤ 20) bases were filtered. Clean reads
were then mapped to the chicken reference genome GCF_000002315.6 using HISAT (v2. 2.4).
Then, the mapped reads were assembled by using StringTie (v1.3.1). FPKM (fragment per
kilobase of transcript per million mapped reads) values were calculated to quantify the
expression abundance of transcript.

2.5. RNA-seq Data Analysis

Differential expression analysis of RNA of the two groups was performed using the
DESeq2 R package (v1.32.0). The transcripts with the parameters of adjusted p-value < 0.05
and |log2 (FoldChange)| > 1 were considered as DEGs. GO of the DEGs was performed
with the online software DAVID (https://david.ncifcrf.gov/summary.jsp, accessed on
3 September 2021). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
was performed by the R package ClusterProfiler (v4.0.5). The protein-protein interaction
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network was constructed based on DEGs using the online STRING (v11.5, https://cn.
string-db.org, accessed on 8 October 2021) database and was visualized using Cyto-scape
software (v3.8.2). The statistical power of this study was estimated by the SSPA R package
(v2.22.1) [16].

2.6. Validation of RNA Expression by Quantitative-PCR

Nine genes were selected from the DEG of breast muscle and thigh muscle for quan-
titative verification. The primers were designed using Primer3 (v.0.4.0). qRT-PCR was
determined using the Step-One plus Real-Time PCR System with ChamQ Universal SYBR
qPCR Master Mix (#Q441-02, Vazyme, Nanjing, China). The information on primers is
listed in Supplementary Table S1. The 20 µL reaction mixture contained 10 µL 2× ChamQ
Universal SYBR qPCR Master Mix, 0.4 µL forward primer, 0.4 µL reverse primer, 2 µL
cDNA, and 7.2 µL ddH2O. The procedure was as follows: 30 s of pre-denaturation at 95,
followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s, solubility curve period at 95 ◦C
for 15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s. Expression of all genes was normalized to the
GAPDH level. The relative mRNA expression levels were calculated using the normalized
relative quantification method followed by 2−∆∆CT.

2.7. Statistical Analysis

Data were analyzed using Prism (v.6.0; GraphPad Software, San Diego, CA, USA) for
Student’s t-test. Data were expressed as the mean ± standard deviation (SD). When the
p value was <0.05, the results were considered statistically significant. The linear regres-
sion and correlation of gene expression between RNA-seq and qRT-PCR were calculated
by Excel.

3. Results
3.1. Growth Performance and Differences in Muscle Fiber between the Two Lines

Guangxi Partridge chickens of lines D and S were raised for 90 d from hatching, and
the weights of the body, heart, liver, lungs, spleen, kidneys, and testes were recorded after
harvest. The mean weight of line S chickens was 1.724 ± 0.128 kg, which was significantly
heavier than line D birds at 1.509 ± 0.084 kg (p < 0.001). Mass of heart, liver, and kidneys
of line S chickens also increased (Table 1). The organ index quantified the ratio of organ
weight to total body weight. Only the lung index and kidney index exhibited obvious
alterations after being calibrated with body weight, but the other organ indices remained
stable (Figure 1).

Table 1. Body and organ weights of line D and line S at d90.

Line D (n = 10) Line S (n = 10)

Body weight (kg) 1.509 ± 0.084 *** 1.724 ± 0.128 ***
Heart (g) 7.61 ± 0.96 ** 8.99 ± 0.83 **
Liver (g)
Lung (g)

Kidney (g)
Spleen (g)
Testis (g)

29.56 ± 2.81 *
9.88 ± 1.97

3.20 ± 0.96 *
3.03 ± 0.77

10.90 ± 8.80

32.55 ± 2.73 *
9.42 ± 0.60

5.88 ± 2.78 *
3.65 ± 1.44

14.89 ± 7.18
Values are shown as mean ± SD. The asterisk in rows shows significant results for each indicator between two
lines: * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.

Muscle fiber morphology between the two chicken lines appeared similar (Figure 2a,b),
and the difference in myofiber area and myofiber density (count of myofibers per mm2 of a
cross-sectional area) in breast muscle between the two lines was not significant (p > 0.05)
(Figure 2c,d). However, the myofiber area was enhanced significantly, and there was a
lower quantity of myofiber of thigh muscle in line S (p < 0.05) (Figure 2e,f).

https://cn.string-db.org
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3.2. Analysis of Differentially Expressed Genes

In each line, three animals were selected with close to average body weight, and
five different tissues were collected from each sample. 30 RNA samples ware used to
construct separate RNA-seq libraries. A total 110 Gb of raw data were obtained from
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RNA sequencing. More than 90% of the clean reads were mapped to the broiler reference
genome (GCF_000002315.6), which included 87% in the exonic regions and 9% in the
introns. The average percentages of Q20 and Q30 bases were >97.34% and >92.75%,
respectively (Supplementary Table S2). There was an average of 50,244,659 clean reads for
each sample after quality control. Correlation analysis of gene expression levels showed
a high correlation among samples, which indicated that the selection of experimental
samples was reliable (Supplementary Figure S1). The statistical power ranged from 0.69
to 0.84 for different tissues (Supplementary Figure S2). A total of 51, 210, 31, 388, and
100 DEGs were identified in the hypothalamus, pituitary, breast muscle, thigh muscle, and
liver between lines S and D (Figure 3a). Heatmap of the DEGs showed that these DEGs
easily differentiated line S from line D (Supplementary Figure S3).
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3.2.1. Hypothalamus and Pituitary Tissues

A total of 42 up-regulated and 9 down-regulated genes were identified in the hypotha-
lamus, and 141 increased and 69 decreased genes were screened in the pituitary (Figure 3b,c,
Supplementary Table S3). Among them, there were 11 common DEGs in the hypothalamus
and pituitary, which included DS cell adhesion molecule (DSCAM), peptidase inhibitor 16
(PI16), leptin receptor (LEPR), and others. In total, 9 and 12 Gene Oncology (GO) terms
significantly enriched terms were found in the hypothalamus and pituitary, respectively
(Figure 4a,b). TNFRSF18, TNFRSF8, and TNFRSF1B dominated almost all enriched GO
items in the hypothalamus (Supplementary Table S4). Furthermore, these three genes and
LEPR were involved in the cytokine-cytokine receptor interaction pathway, which is the
prominent KEGG pathway in the hypothalamus (Figure 5a, Table 2 and Supplementary
Table S5). Nevertheless, only the PPAR signaling pathway was enriched significantly in
the pituitary, which included HMGCS1, ACSL6, and PLTP genes (Figure 5b, Table 2 and
Supplementary Table S5).
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Table 2. The significantly enriched KEGG pathway and related differential genes in each tissue.

Tissue Term and Pathways p-Value DEGs
No.

Genes

Up-Regulated Down-Regulated

Hypothalamus

Cytokine–cytokine
receptor interaction 6.7 × 10−4 4 TNFRSF18/TNFRSF8

/TNFRSF1B LEPR

Adipocytokine
signaling pathway 0.008 2 TNFRSF1B LEPR

Protein processing in
endoplasmic reticulum 0.043 2 DNAJA1/DNAJB1

Pituitary PPAR signaling pathway 0.040 3 HMGCS1/ACSL6/PLTP
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Table 2. Cont.

Tissue Term and Pathways p-Value DEGs
No.

Genes

Up-Regulated Down-Regulated

Thigh muscle

PPAR signaling pathway 0.004 6 GK2/ACOX2 APOA1/ACSL1/FABP3/CD36
Drug metabolism—

cytochrome P450 0.010 4 GSTA4L GSTO1/MAOB/FMO3

VEGF signaling pathway 0.014 5 PLA2G4B/RAC3 LOC107057170
/NFATC2/PLA2G4A

Arginine and proline
metabolism 0.020 4 P4HA2 LOC107057170

/PRODH/MAOB

Focal adhesion 0.020 10 MYLK4/RAC3/MYLPF
/CAV3

TNX/CAPN2
/PDFRA/CAV1
/COL4A6/CAV2

Adipocytokine signaling
pathway 0.021 5 PRKAB1/PRKAB2 ACSL1/ACACB/CD36

Vascular smooth muscle
contraction 0.030 7 PLA2G4B/RAMP1/MYLK4 PLA2G4A/ITPR3

/KCNMB2/MYH10

Liver

ECM-receptor interaction 7.8 × 10−6 6 COL1A1/COL1A2/COL6A3
/ITGA8/COL6A1/THBS1

Focal adhesion 9.87 × 10−5 7
COL1A1/COL1A2/COL6A3
/ITGA8/IGF1R/COL6A1

/THBS1
TGF-β signaling pathway 0.017 3 FST/THBS1/DCN

Metabolism of xenobiotics by
cytochrome P450 0.019 2 LOC100859645/CYP1B1

Cell adhesion molecules 0.039 3 NECTIN3/SIGLEC1/ITGA8
Notch signaling pathway 0.042 2 MAML1/RBPJ
Glycerolipid metabolism 0.049 2 LPIN1 GPAM

DEGs No. represents the number of DEGs in the enriched KEGG pathway in line S compared with line D. The
up-regulated and down-regulated DEGs between line S and line D in each pathway were listed.

3.2.2. Muscle Tissues

A total of 193 up-regulated genes and 195 down-regulated genes were identified in
the thigh muscle, but only 21 up-regulated genes and 10 down-regulated genes were found
in breast muscle (Figure 3d,e, Supplementary Table S3). The expression of genes related
to muscle development, such as MYH1D, MSTN, MYH10, MYLPF, MYLK4, MYL1, and
MYBPC1, were altered in muscle tissues. There were 12 DEGs both in breast muscle and
thigh muscle, such as MYBPC1, UBB, MHCIY, SLC25A30, RSRP1, DDX59, and DDIT4.
The 388 DEGs of the thigh muscle were enriched significantly to 22 GO terms and 7
KEGG pathways (Figures 4c and 5c). The PPAR signaling pathway had a high rich factor
and showed the most significant differences, including GK2, ACOX2, APOA1, ACSL1,
FABP3, and CD36. Focal adhesion and vascular smooth muscle contraction comprised the
largest number of DEGs (Table 2). In addition, the functions of DEGs were also related to
metabolism, such as drug metabolism-Cytochrome P450, arginine and proline metabolism,
and the adipocytokine signaling pathway. Due to the fewer number of DEGs in breast
muscle, we did not find significantly enriched KEGG pathway or GO terms.

3.2.3. Liver Tissue

In the liver, there were 70 up-regulated and 30 down-regulated DEGs, which were
mainly related to the cellular community (focal adhesion), signaling molecules and interac-
tions (ECM-receptor interaction, cell adhesion molecules), and signal transduction (TGF-β
signaling pathway, Notch signaling pathway) in liver (Figures 3f and 5d, Supplementary
Table S3). Almost all the genes enriched in these pathways were up-regulated in liver in
the fast-growing group (Table 2). The ECM-receptor interaction pathway and focal adhe-
sion involved the largest numbers of DEGs, which included COL1A1, COL1A2, COL6A1,
and COL6A3. These four genes were also enriched in several GO terms that included
an extracellular matrix structural constituent (GO:0005201), a protein heterotrimerization
(GO:0070208), a cellular response to amino acid stimulus (GO:0071230), and cell adhesion
(GO:0007155) (Figure 4d, Supplementary Table S4). Interestingly, the focal adhesion was a
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common pathway between the liver and thigh muscles. Among enrichment pathways of
liver, glycerolipid metabolism and metabolism of xenobiotics by cytochrome P450 were
related to metabolism.

3.3. Interaction Network between DEGs

To clearly discover hub genes related to growth traits in a complex regulatory network,
gene interactions were explored using the String database, and we constructed protein
interaction networks in different tissues. DEGs in the hypothalamus failed to form regula-
tory networks because of a weak association in this study. Based on DEGs in the pituitary,
the protein interaction network in the pituitary suggested that POSTN, HSPA2, HSPA5,
DNAJB13, AHSA2, and DNAJA1 occupied the most critical locations (Figure 6a).
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Only MYBPC1, SMPX, MYH1D, and AMPD1 were involved in the formation of the
regulatory network in a few DEGs in breast muscle (Figure 6b). These genes were related
to metabolic pathways and muscle contraction. In thigh muscle, abundant DEGs showed
more complex regulatory networks, in which UBB, CAV3, TLR4, HSP90AB1, H6PD, ACTA1,
and several genes that were expressed peculiarly in myosin (i.e., MYH10, MYL1, and
MYBPC1) were hub genes (Figure 6c).

In the regulatory network in the liver, the hub genes (i.e., DSN, ITGA8, THBS1, COL1A1,
COL6A3, and COL1A2) were engaged in ECM-receptor interaction, focal adhesion, and the
TGF-β signaling pathway (Figure 6d, Table 2). These pathways were up-regulated, which
indicated there was increased metabolic activity in the liver during rapid growth.
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3.4. Validation of RNA-seq

Nine DEGs were selected randomly to verify the accuracy of RNA-seq by the qRT-PCR
method. The qRT-PCR analysis indicated decreased expression of EDA2R, ACSL1, CD36,
PITX2, FHL2, and FABP3 genes and increased expression of DNAJB5, DUSP1, and DDX59
genes in the fast-growing line S of chickens, which was consistent with transcriptome
results (Figure 7).
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4. Discussion

Traditionally, the long growth period of indigenous breeds contributes to low profits in
the poultry industry. In this study, distinct phenotypic differences were observed between
these two lines. The body weight of the fast-growing line S after four generations of
selective breeding increased 14.25% (215 g) on average compared with the slow-growing
line D. Under identical feed conditions, commercial chickens showed a higher myofiber
area and a decreased amount of breast muscle [17]. In the present study, myofiber area and
density between the two lines in breast muscle exhibited no significant difference. High
amounts of myofiber improved the weight of skeletal muscle, and it also enhanced body
weight [18]. In addition, our results showed that the myofiber area of the breast muscle was
significantly lower than that of the thigh muscle from both lines, which was consistent with
studies of fast-growing Ross 308 broilers and slow-growing Xueshan chickens [18]. Growth
rate not only affects muscle fiber density and size, but also affects meat quality, such as meat
color and drop loss [19]. In our previous study, we found that the lightness, yellowness,
and drip loss were elevated in breast and thigh muscles from Guangxi Partridge line S
chickens, and pH and shear force were decreased in muscles from line S chickens [20].
Here, we speculated that weight differences caused by artificial selection led to a greater
influence on thigh muscle, which was consistent with a higher number of DEGs and more
distinct phenotypic differences in the thigh muscle.

We used transcriptome analysis of various tissues to explore the biological mechanisms
of artificial selective pressure for growth rate in broilers. In summary, 51, 210, 31, 388, and
100 DEGs were found in hypothalamus, pituitary, breast muscle, thigh muscle, and liver,
respectively. The results from nine DEGs detected by qRT-PCR were consistent with
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RNA-Seq, which proved the reliability of transcriptome sequencing results. Based on
functional analysis and pathway analysis, there were differences in cell proliferation and
differentiation, muscle development, metabolic processes, and signal transduction after
artificial selection for growth rate.

4.1. Hypothalamus and Pituitary

TNFRSF18, TNFRSF8, TNFRSF1B, and LEPR genes were identified in the hypotha-
lamus and they came in cytokine–cytokine receptor interaction signaling pathways. The
TNF receptor superfamily (TNFRSF) is the receptor of the TNF superfamily (TNFSF) of
cytokine-like molecules. The interactions of TNFSF ligands and TNFRSF receptors medi-
ated signaling that was involved in survival, proliferation, and differentiation [21]. The
TNF-α triggered different key steps in the insulin signaling pathway and then altered in-
sulin sensitivity, which was important for regulation of feed intake [22,23]. Previous studies
have suggested that the cytokine-cytokine receptor interaction signaling pathway played a
role in upstream regulatory pathways of PPAR signaling pathways in lipid metabolism [24].

In this study, three DEGs (i.e., HMGCS1, ACSL6, and PLTP) and six DEGs (i.e., GK2,
ACOX2, APOA1, ACSL1, FABP3, and CD36) that were found in the pituitary and thigh
muscle, respectively, were involved in the PPAR signaling pathway, which functions in lipid
metabolism, regulation of muscle fiber type, and energy utilization [25–27]. PPAR signaling
is a key signaling pathway for muscle growth and regeneration, and it is dependent on
activation of the PI3K-Akt-mTOR signaling axis to exert functions [28].

Growth and development of creatures are regulated by several hormones secreted
by the hypothalamus and the pituitary. However, no significant change in the expression
levels of hormones and their associated receptor genes were detected in the hypothalamus
and pituitary except for FST, TSHB, and LEPR. Follistatin (FST) promoted muscle fiber
formation and regulated muscle mass by inhibiting the binding activity of myostatin and
its receptor, which determined increased expression in breast muscle in fast-growing exotic
broilers [29–31]. Thyrotropin subunit β isoform X1 (TSHB) regulated seasonal reproductive
behavior in birds; compared with Red Junglefowl, the level of TSHB was higher in the
pituitary of White Leghorn chickens, which indicated a contribution to domesticated
traits [32]. The LEPR gene encoded the leptin receptor, which functioned as a crucial
regulator of food intake and body weight by regulating insulin sensitivity through the
JAK2 and STAT3 pathways [33–36]. Polymorphisms of the LEPR gene were associated
with backfat thickness, intramuscular fat content and growth in pigs, and feed efficiency
in chickens [37,38]. Significant alteration of these hormone receptors and pathways in the
hypothalamus and the pituitary may clarify the growth difference between the two lines
by regulating feed intake, insulin sensitivity, downstream muscle growth, and metabolic
signaling pathways.

4.2. Skeletal Muscle

Several pathways for thigh muscle in the selected bred line S were associated with lipid
metabolism, such as the adipocytokine signaling pathway, the PPAR signaling pathway, and
glycerolipid metabolism, which included CD36, PRKAB1, PRKAB2, FABP3, and others. The
membrane fatty acid transporter CD36 is known for its role in metabolism and oxidation of
fatty acids. The expression of CD36 was enhanced to improve fatty acid transport when
muscle oxidation capacity was increased [39]. PRKAB1 and PRKAB2 encoded the β1 and γ2
regulatory subunit of activated protein kinase (AMPK). These two genes were associated
significantly with feed intake, feed conversion ratio, and body weight [40].

As expected, most of the genes critical for myogenesis were upregulated in line S
with increased growth rates, such as MHCIY, MYBPC1, and MYH1D in breast muscle, and
MHCIY, MYLPF, MYLK4, MYL1, and ACTA1 in thigh muscle. Nevertheless, there were also
genes like MYH10, MYH1D, and MYBPC1 with lower expression levels in thigh muscle of
line S. These genes were also highly connected in the protein interaction network.
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Myofibers can be divided into oxidative (type I and IIA) and glycolytic fibers (type IIB)
in chickens. Oxidative fibers and glycolytic fibers exhibit different contractility, glycolytic
metabolism and oxidative metabolism based on mitochondrial oxidative phosphoryla-
tion [41]. In addition, the ratio of oxidative (type IIA) fibers and glycolytic fibers showed
a temporal-dependent pattern and impact on pork quality [42,43]. The down-regulated
MYL1, which is a fast muscle fiber maker [44], and the up-regulated slow-type isoform
MYBPC1, indicated that the proportion of glycolic myofibers was increased in thigh muscle
of line S chickens. This is consistent with a previous study that the size and types of my-
ofibers between meat-type and egg-type chickens were different, and selection for growth
promoted radial hypertrophy of type II muscle fibers [45]. In general, we hypothesized that
selective pressure transformed myofiber types by changes in related genes and resulted
further in weight variation in the fast-growing line S. In total, lipid metabolism and muscle
development explained the increased growth rate and hypertrophy of muscle fiber in the
selected line.

There are several other candidate genes associated with production traits. RNA-Seq
showed down-regulated expression of PITX1 and PITX2 in thigh muscle tissue of line
S. Paired-like homeodomain transcription factor 2 (PITX2) and paired-like homeodomain tran-
scription factor 1 (PITX1) are important transcription factors, which were highly expressed
in skeletal muscle and modulate skeletal muscle development and organ morphogene-
sis [46–48]. Multiple studies have shown that PITX2 was correlated significantly with the
growth traits and meat quality of chickens, pigs, cattle, sheep, and other animals [49–54].
Mice with over-expressed PITX1 exhibited decreased body weight, muscle mass, muscle
strength, and atrophic muscle fibers [55]. However, the causal variants of PITX1 generated
the feathered leg trait in chickens and pigeons without impairment of growth perfor-
mance [56,57]. AMP deaminase 1 isoform X1 (AMPD1) that was expressed specifically in
skeletal muscle, was up-regulated during muscle development [58]. The AMPD1 gene
was associated with meat production and growth through backfat thickness, body weight,
and inosine monophosphate acid concentrations [59–61]. According to our results, up-
regulated AMPD1 in breast muscle of line S indicated increased activity related to muscle
development. These genes are involved in variations in lines as regulators of body weight
and control of growth performance.

4.3. Liver

In liver, fast-growing line S focused on specific signaling pathways. Signaling molecules
and interactions (i.e., ECM-receptor interaction, cell adhesion molecules), cellular
community—eukaryotes (focal adhesion), and signal transduction (i.e., TGF-β signaling
pathway, notch signaling pathway) suggested that the speedy development was affected
by the integration of complex pathways. Focal adhesion, which connects the extracellular
matrix and cytoskeleton, was an important site for the signal transduction pathway in
various biological processes [62]. ECM-receptor interaction and focal adhesion were the
most enriched pathways in three chicken breeds with different growth rates [4], which
was consistent with this study. COL1A1, COL1A2, COL6A1, and COL6A3 that encode
collagen α chain are involved in ECM-receptor interaction and focal adhesion. Mutations
in these four genes were associated with myopathy and osteogenesis imperfecta [63,64].
Secreted protein acidic and cysteine rich (SPARC), thrombospondin 1 (THBS1), and decorin (DCN),
which occupied the core of the regulatory network, are extracellular matrix-related genes.
SPARC and DCN were associated with insulin resistance and obesity [65,66]. Secretion of
SPARC by adipose tissue was increased by insulin and the adipokine leptin [65]. THBS1
bound to many transforming growth factors and cell surface receptors to regulate cellular
adhesion, platelet aggregation, angiogenesis, and hepatic steatosis [67]. As a potential
mediator of insulin resistance, THBS1 reflected the complex phenotype between obesity
and metabolic syndrome or diabetes in humans [66]. DCN that was involved in cell growth
and angiogenesis inhibited tumor progression and fibrosis [68].
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Interestingly, almost all the genes enriched in these pathways were upregulated in
the liver along with increased growth, which indicated a significant improvement in liver
metabolic function in the fast-growing line S. Increased activity of signaling molecular
pathways and cell community in liver affects the interactions of multiple complex pathways.
This suggests appropriate changes in signaling pathways and metabolic function are
required to accommodate improved growth performance.

5. Conclusions

The growth rate of Guangxi Partridge chickens has been improved profoundly after
four generations of selective breeding for growth velocity. Transcriptome analysis was
adopted to explore developmental mechanisms of growth and functional features of each
tissue between two lines with different growth rates. Reduced LEPR expression in the
hypothalamus and the pituitary reduced the inhibitory effect on food intake and weight
gain through leptin signaling pathways and many neuroendocrine processes. The cytokine-
cytokine receptor interaction signaling pathway in the hypothalamus, which regulated
insulin sensitivity, varied the uptake and utilization of fatty acids though the PPAR signaling
pathway, the adipocytokine signaling pathway, and glycerolipid metabolism. Genes that
were related to myogenesis, such as MHCIY, MYBPC1, and MYL1, suggested that the
muscle fiber type and muscle development was transformed in muscle tissue. Cellular
community-related activities and pathways were improved in the liver. Collectively, our
results determined the developmental dynamics in several tissues between the two lines
and provide new insight into mechanisms of breeding.
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