
Research Article
Quorum Sensing Activity of Mesorhizobium sp. F7 Isolated from
Potable Water

Pei-Ling Yong and Kok-Gan Chan

Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya,
50603 Kuala Lumpur, Malaysia

Correspondence should be addressed to Kok-Gan Chan; kokgan@um.edu.my

Received 19 April 2014; Revised 11 July 2014; Accepted 21 July 2014; Published 6 August 2014

Academic Editor: Christian Staehelin

Copyright © 2014 P.-L. Yong and K.-G. Chan. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene
phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile
of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS)
which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-
oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL).These findingswill open the perspective to study the function of theseAHLs
in plant-microbe interactions.

1. Introduction

Bacterial cell-cell communication, also termed quorum sens-
ing (QS), occurs when the cell density has reached a thre-
shold level that could regulate gene expressions via sig-
nalling molecules [1, 2]. Acyl-homoserine lactones (AHLs)
molecules which are responsible for QS activity are synthe-
sized by AHL synthase (LuxI homologue) whereby AHL will
bind to its cognate receptor (LuxR homologue) to form a
AHL-LuxR complexwhich in turnmodulates a battery ofQS-
mediated gene expression [3, 4]. Upon sensing the AHLs, the
Proteobacteria population works in synchrony to generate
a significant impact on the bacterial physiological activities
including bioluminescence, antibiotic production, plasmid
conjugal transfer, and synthesis of exoenzyme virulence
factors in plant and animal pathogens [5, 6]. Structurally,
AHL consists of a conserved homoserine lactone moiety and
the acyl chain length that ranges from 4 to 18 carbons [7].

Bacteria are commonly known to perform intra- or inter-
species communication with the help of AHL. For example, a
study on the interaction between Serratia liquefaciens MG1
and Solanum lycopersicum (tomato) gave first indications
that AHL molecules of rhizosphere bacteria stimulate plant
defense responses [8].

Rhizobia which include the genera Rhizobium, Sinorhi-
zobium,Mesorhizobium, Azorhizobium, and Bradyrhizobium
exhibit nitrogen fixing properties in root nodules of legumes
which can only be achieved when bacteria carry large self-
transmissible genetic elements, either plasmids or integrating
conjugative elements that include symbiotic genes [9]. Plant
growth is often limited by the availability of nitrogen, and,
hence, plant-rhizobia interactions are particularly important
for sustainable and environment-friendly crop production
without the use of nitrogen fertilizers [10].

A key mechanism in the symbiotic process is the involve-
ment of QS [11]. Signaling and communication between
the host and rhizobia are required for successful symbiotic
interactions [12].The various functions regulated by AHLs of
Rhizobium and Sinorhizobium range from exopolysaccharide
production [13], rhizosphere-related gene expression [14],
and the conjugal transfer of pSym plasmids [15]. QS is also
an important mechanism in other plant growth-promoting
rhizobacteria [16].

AHLs have been identified in various rhizobial strains
(Table 1). For example, a marine Mesorhizobium sp. was iso-
lated that produced novel long-chain N-acyl-L-homoserine
lactones, namely, 5-cis-3-oxo-C12-HSL and 5-cis-C12-HSL. It
was shown that both these compounds were able to restore
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Table 1: AHL production in rhizobia.

AHL Representative organisms

3-oxo-C8-HSL Rhizobium sp. strain NGR234, Rhizobium leguminosarum, Sinorhizobium meliloti, and Rhizobium etli CFN42 [15, 17–21]
3-OH-C8-HSL R. leguminosarum, S. meliloti, and R. etli CFN42 [17, 19, 22]
C8-HSL R. leguminosarum and S. meliloti [14, 17, 21–24]
3-OH-C14-HSL R. leguminosarum [25]
C16-HSL S. meliloti [19]

protease and pyoverdine production of an AHL-deficient
Pseudomonas aeruginosa PAO1 lasI rhlI double mutant, sug-
gesting the AHLs could be used for intergenus signaling [26].
In other previous studies, when C4-HSL, C6-HSL, 3-oxo-
C6-HSL, and 3-oxo-C8-HSL are applied to the plant, these
AHLs promoted the growth of Arabidopsis [27–29] whereas
3-oxo-C10-HSL induced the formation of adventitious roots
in mung beans [30]. On the other hand, 3-oxo-C14-HSL and
3-OH-C14-HSL induced resistance in Arabidopsis and barley
plants towards biotrophic and hemibiotrophic pathogens
[31].

In another study on Rhizobium sp. strain NGR234, it was
found that the production of 3-oxo-C8-HSL led to activation
of the transcriptional regulator TraR which significantly
decreased the growth rate of NGR234 [15]. Moreover, it was
shown that the regulatory gene TraI of Rhizobium etliCFN42
controls synthesis of 3-oxo-C8-HSL and conjugative plasmid
transfer [17].

Here, we have identified the AHLs of Mesorhizobium sp.
F7 which was isolated from potable water. We showed that
this strain produces two AHLs, 3-oxo-C8-HSL and 3-oxo-
C10-HSL.

2. Experimental Section

2.1. Sample Collection and Processing. A water sample was
collected from domestic filtered water with nonwoven fabric
and powdered activated carbon features installed in Petaling
Jaya, Selangor (Malaysia). The tap was left open to flow for a
fewminutes before the samplewas collected in a sterile plastic
tube.The water sample was processed within an hour of sam-
ple collection. An aliquot of the water sample (100 𝜇L) was
plated on Difco Reasoner’s 2A agar (0.5 g/L proteose; 0.5 g/L
casamino acids; 0.5 g/L yeast extract; 0.5 g/L dextrose; 0.5 g/L
soluble starch; 0.3 g/L dipotassium phosphate; 0.05 g/L mag-
nesium sulfate; 0.3 g/L sodium pyruvate) and incubated
at 37∘C under aerobic growth condition for 3 days. The
observable different morphologies of the bacteria colonies
were isolated and screened for AHL production using cross-
streaking with Chromobacterium violaceum CV026 [32].

2.2. Isolation and Characterization of Isolate F7. Thebacterial
isolate F7 was found to exhibit QS properties among all
isolates through anAHL biosensor screen (Chromobacterium
violaceum CV026). The genomic DNA was extracted using
a MasterPureTM DNA Purification Kit (EPICENTRE Inc.,
Madison, WI, USA). The isolate F7 was later characterized

by analyzing its 16S rRNA gene. The 16S rRNA was PCR
amplified using 27F forward primer (5󸀠-AGAGTTTGA-
TCMTGGCTCAG-3󸀠), 515F forward primer (5󸀠-GTGCCA-
GCMGCCGCGGTAA-3󸀠), and 1525R reverse primer (5󸀠-
AAGGAGGTGWTCCARCC-3󸀠) using a PCRmix (Promega
Kit, Madison, WI, USA). The PCR amplification that was
carried out consists of an initial denaturation at 94∘C for
3min, followed by 30 repeated cycles at 94∘C for 30 s of
denaturing, 60∘C for 30 s of annealing, and 72∘C for 1min
30 s of extension, and a final extension of 72∘C for 7min.
Product sequence alignment was done using GenBank Blastn
database and phylogenetic analysis was done usingmolecular
evolutionary genetic analysis (MEGA) version 5.2 [33].

2.3. AHL Extraction. A single pure colony of isolate F7 was
cultured overnight in R2 broth [34] buffered to pH 6.5, with
3-(N-morpholino) propanesulfonic acid (MOPS, 50mM, pH
6.5) at 37∘C with shaking (220 rpm). The supernatant was
extracted twice with 100mL of acidified (0.1% v/v glacial
acetic acid) ethyl acetate [35].The AHL extract was dried and
stored at −20∘C prior to further analysis.

2.4. Measurement of Bioluminescence. Preliminary screening
of AHLs production by isolate F7 was done using an AHL
biosensor (Escherichia coli [pSB401]).E. coli [pSB401] harbors
lux from the pSB401 plasmid which will produce biolumines-
cence activitywhen exogenous short chainAHLs are supplied
[36]. Cell density bioluminescence measurements were done
using an Infinite M200 luminometer-spectrophotometer
(Tecan, Männedorf, Switzerland). To every well of a 96-
well optical bottom microtitre plate, an aliquot of 200𝜇L
diluted (1 : 100) E. coli [pSB401] overnight culture in LB
broth supplemented with tetracycline (20𝜇g/mL) and 1 𝜇L
extracted AHL were added [37]. Acetonitrile and synthetic
3-oxo-C6-HSL (250 pg/𝜇L) were used as the negative and
positive standards, respectively. Results were indicated as
relative light units/optical density (RLU/OD

495 nm) against
incubation time (hour) [38].

2.5. Identification of AHL by High Resolution Tandem Liq-
uid Chromatography Quadrupole Mass Spectrometry (LC-
MS/MS). LC-MS/MS was performed using Agilent 6490
TripleQuadrupole LC/MS system (Agilent Technologies Inc.,
Santa Clara, CA, USA) and all experimental conditions were
performed essentially as reported previously. The settings for
the Agilent Mass Hunter software for MS spectra analysis
were applied as described [39, 40].
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Figure 1: Phylogenetic tree of isolate F7.
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Figure 2: Detection of short chain AHLs production byMesorhizobium sp.

3. Results and Discussion

3.1. Identification of a Bacterial Isolate from Potable Water.
Isolate F7 was identified by analyzing its 16S rRNA gene
nucleotide sequence [41–43]. A phylogenetic tree was con-
structed using Mega 5.2 software to align it with other rRNA
sequences obtained fromGenBank. A total of 988 unambigu-
ously aligned nucleotides were analysed using the Neighbor-
Joining method. The percentage of replicate trees in which
the associated taxa clustered together in the bootstrap test
is shown next to the branches [42]. The bar represents evo-
lutionary distance as 0.002 change per nucleotide. Based on
the phylogenetic tree obtained from the 16S rRNA sequencing
(Figure 1), F7 was identified asMesorhizobium sp.

3.2. Production of AHL by Mesorhizobium sp. F7. Isolate F7
was screened for its production of short chainAHLmolecules
by using luminometer-spectrophotometer, where the activa-
tion of bioluminescence of the biosensor E. coli [pSB401]
was observed (Figure 2). Bioluminescence measurement was
done for 24 h, 37∘C. Cells were grown in the presence of
AHL extracted from culture supernatant of Mesorhizobium
sp. and synthetic 3-oxo-C6-HSL and acetonitrile were used
as positive and negative controls, respectively.

Data are presented as means of ± SEM values of triplicate
experiments.

To identify the AHLs, triple quadrupole LC/MS analysis
was used. The MS results of the material from culture super-
natants of Mesorhizobium sp. F7 are presented in Figure 3.
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Figure 3: Mass spectrometry analysis of 3-oxo-C8-HSL: 𝑚/𝑧 value 242.000; retention time: 2.702min; abundance: 8394.42 and abundance
%: 100, and (b) 3-oxo-C10-HSL:𝑚/𝑧 value: 270.200; retention time: 5.369min; abundance: 3689.5 and abundance %: 100.

The data provide evidence for the presence of both short
and long chain AHLmolecules, namely, 3-oxo-C8-HSL (𝑚/𝑧
242.0000) and 3-oxo-C10-HSL (𝑚/𝑧 270.0000).

It was shown in other reports that the biological activity of
AHLs applied to plants and the plant response is dependent
on the length of lipid chains of AHLs. For instance, 3-oxo-
C10-HSL was shown to be capable of inducing adventitious
roots in mung bean [30] whereas 3-oxo-C8-HSL was active
on Arabidopsis seedlings where it affected expression of 53
proteins related to plant primary metabolism, energy status,
cytoskeleton, and defense [44]. Hence, we speculate that the
AHLs produced by Mesorhizobium sp. F7 possess similar
functions. Future experiments are required to test whether
rhizobial strains producing specific AHLs can be used as bio-
control bacteria to stimulate plant defense reactions against
plant pathogens.
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rum-sensing systems in Sinorhizobiummeliloti,” Journal of Bac-
teriology, vol. 184, no. 13, pp. 3466–3475, 2002.

[20] K. R. Piper, S. Beck Von Bodman, and S. K. Farrand, “Conjuga-
tion factor of Agrobacterium tumefaciens regulates Ti plasmid
transfer by autoinduction,” Nature, vol. 362, no. 6419, pp. 448–
450, 1993.

[21] A. Wilkinson, V. Danino, F. Wisniewski-Dyé, J. K. Lithgow,
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