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ABSTRACT
A broad range of organisms, from prokaryotes to higher animals, have the ability to sense and utilize Earth’s
geomagnetic field—a behavior known as magnetoreception. Although our knowledge of the physiological
mechanisms of magnetoreception has increased substantially over recent decades, the origin of this
behavior remains a fundamental question in evolutionary biology. Despite this, there is growing evidence
that magnetic ironmineral biosynthesis by prokaryotes may represent the earliest form of biogenic magnetic
sensors on Earth. Here, we integrate new data frommicrobiology, geology and nanotechnology, and
propose that initial biomineralization of intracellular iron nanoparticles in early life evolved as a mechanism
for mitigating the toxicity of reactive oxygen species (ROS), as ultraviolet radiation and free-iron-generated
ROS would have been a major environmental challenge for life on early Earth.This iron-based system could
have later been co-opted as a magnetic sensor for magnetoreception in microorganisms, suggesting an
origin of microbial magnetoreception as the result of the evolutionary process of exaptation.
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INTRODUCTION
Earth’smagnetosphere protects the surface environ-
ment from solar wind and cosmic radiation, and has,
therefore, been an essential factor in the persistence
of life on Earth. It has also provided a natural global
positioning system that various organisms have
exploited for navigation andmigration via the genet-
ically controlled biomineralization of ferrimagnetic
iron minerals [1–3]. This iron-based magnetore-
ception has been identified in microorganisms
(prokaryotes and some protists) and diverse an-
imals from fish to mammals, suggesting that it
was a primal sensory system of all living systems
[4–12]. However, the origin and early evolution
of magnetoreception remain major enigmas. It has
been proposed thatmagnetoreception evolved from
a pre-existing trait (i.e. biomineralization) through
the process of exaptation [13], while, more recently,
a non-genetically controlled photoferrotrophy-
driven hypothesis has been proposed [14]. How
and why biogenic magnetic sensors first evolved
remain matters of debate, and resolving these ques-
tions is important for understanding the origin and
evolution of magnetoreception not only in prokary-
otes, but also in eukaryotes. Here, we integrate new

data from microbiology, geology and nanotechnol-
ogy that support an exaptation model for microbial
magnetoreception (also known as magnetotaxis)
from an initial iron-based system for scavenging
intracellular free radicals generated by ultraviolet
radiation (UVR) and/or ferrous iron on early Earth.

THE FIRST MAGNETORECEPTIVE
ORGANISMS ON EARTH
One of the most extensively studied magnetic-
sensing organisms are magnetotactic bacteria
(MTB)—a group of diverse prokaryotes that
synthesize intracellular chain-arranged, nano-sized,
membrane-bounded magnetic crystals of mag-
netite (Fe3O4) and/or greigite (Fe3S4) called
magnetosomes [2]. Magnetosome chains are the
magnetic sensors in MTB, which act as an internal
compass needle and cause cells to align passively
along the local geomagnetic field (Fig. 1). MTB
are the most primitive magnetic-sensing organisms
known thus far, with no current evidence of this
ability in viruses or the Archaea. In addition to
the MTB, magnetosome-like structures have been
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Figure 1. A magnetotactic bacterium (∼2.2μm in length) with a single chain of Fe3O4

magnetosomes (brown inclusions). A flagellum is inserted schematically on the right
side of the cell.Magnetosomes impart a permanentmagnetic dipolemoment to the cell
and act as an internal compass needle, causing it to align passively along geomagnetic
field lines as it swims.

discovered in eukaryotic algae, protozoans and
vertebrates [6,7], which led Vali and Kirschvink
[15] to propose that the first eukaryotes may have
inherited the ability to biomineralizemagnetosomes
from a magnetotactic alphaproteobacterium during
the endosymbiotic development of mitochondria,
with subsequent gene transfer to the nucleus.

MTB were discovered independently by Salva-
tore Bellini and Richard P. Blakemore in 1963 and
1974, respectively [4,16]. These bacteria have a
global distribution in aquatic environments from
marine to freshwater ecosystems [17]. In addition,
they have been shown to be important in the global
biogeochemical cycling of Fe as well as other ele-
ments, such as S, N, C and P [18–21]. In some envi-
ronments, magnetosomes from MTB are preserved
in sediments or rocks as fossils, referred to as mag-
netofossils [22,23]. Magnetofossils are important
contributions to the remanentmagnetization of sed-
iments and have been suggested as biomarkers for
reconstructingpaleoenvironmental conditions [24].
Magnetofossil records trace an evolutionary history
ofMTB to theCretaceous and, with less certainty, to
the Precambrian around∼1.9 Ga [25].

Until a few years ago, all MTB were only as-
signed to one of two major bacterial phyla: the
Proteobacteria or the Nitrospirae [26]. Use of
cultivation-independent approaches (such as 16S
rRNA gene-targeting analyses, metagenomics and
single-cell genomics) has led to the discovery of
previously unidentifiedMTB lineages, which greatly
expands our knowledge of their diversity. MTB
have a patchy phylogenetic distribution and are
now known to lie within at least five bacterial phyla,
including Proteobacteria, Nitrospirae, Planctomycetes
and the candidate phyla of Latescibacteria and

Omnitrophica, which suggests that the traits of
magnetotaxis and magnetosome biomineralization
occur widely in the domain Bacteria [17,27–29].

Molecular, genetic and genomic advances in
MTB have led to the identification of a large gene
cluster (referred to as a magnetosome gene clus-
ter or MGC) containing a group of genes involved
in magnetosome biomineralization and in construc-
tion of the magnetosome chain [30–35]. Because
of their essential roles in magnetotaxis, comparative
and phylogenetic analyses of MGCs from different
MTB taxonomies can shed light on the origin and
evolution of microbial magnetoreception in bacte-
ria. Recent expansion of MGCs has enabled the re-
construction of the evolutionary history of MTB,
which suggests a monophyletic origin of magne-
totaxis from a single common ancestor [33,36,37]
prior to or near the divergence between theNitrospi-
rae andProteobacteria phyla during themid-Archean
Eon [38] or maybe even earlier, in the last com-
mon ancestor of the Proteobacteria,Nitrospirae,Om-
nitrophica, Latescibacteria and Planctomycetes phyla
(Fig. 2) [35]. Bacterial magnetotaxis, therefore, ap-
pears to be a primal physiological process and the
first example of magnetoreception and the first ex-
ample of controlled biomineralization on Earth.

THE FUNCTION OF MAGNETOSOMES IN
EXTANT MTB
Magnetotaxis is clearly the main function of magne-
tosomes in extant MTB. The presence of these iron
nanoparticles imparts amagnetic dipolemoment on
MTB cells and enables the cells to orient passively,
which then allows them to swim actively along the
geomagnetic field direction. In general, MTB also
appear to have a ‘polarity’—a preference to swim
in a particular direction under oxic conditions; that
is, they swim to the magnetic north in the north-
ern hemisphere and to the magnetic south in the
southern hemisphere [2], although several types of
MTB have the opposite polarity in each hemisphere
[39,40]. In conjunction with other tactic responses,
such as aerotaxis [41], phototaxis [42], chemotaxis
[43] or redox taxis [43], magnetotaxis allows MTB
to more efficiently locate and maintain positions in
their preferred less-oxygenated microhabitats near
the oxic-anoxic transition zone in aquatic environ-
ments.

It has been estimated that, for a cell of a Mag-
netospirillum species, a magnetosome chain of 20
Fe3O4 crystals would provide a sufficient magnetic
dipole moment for magnetotaxis [44]. We note,
however, that as few as three to five magnetosomes
per cell appear to be enough to provide a strong
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Figure 2. Proposed scenarios for the evolution of magnetotaxis in bacteria at or above
the class or phylum taxonomic levels [35]. The last common ancestor of magnetotac-
tic bacteria (MTB) was either (a) magnetite-producing or (b) a bacterium containing an
unknown magnetosome type. Both scenarios suggest a monophyletic origin of mag-
netosome gene clusters (MGCs) from a single common ancestor that existed early in
Earth history. Vertical inheritance followed by multiple independent gene losses is a
major force that drove the evolution of magnetotaxis in bacteria at or above the class
or phylum levels [35,36], while, within lower-level ranks, the evolutionary history of
magnetotaxis appears to be much more complicated (e.g. [81–83]).

magnetic dipole for orientation in some uncultured
environmental MTB (Fig. 3). Some MTB, includ-
ing ‘CandidatusMagnetobacterium bavaricum’ [45]
and ‘Candidatus Magnetobacterium casensis’ [46]
from the Nitrospirae phylum, synthesize hundreds
of magnetosomes in a single cell—far greater than
would be needed for magnetotaxis.The redundancy
or ‘overproduction’ of magnetic particles suggests
that magnetosomes in MTB may have other func-
tions in addition to magnetotaxis.

Several possible functions have been suggested
for magnetosomes, such as iron storage and seques-
tration, electrochemical batteries, gravity sensors
or providing locally strong magnetic fields for

enhancing and stabilizing magnetochemical
reaction pathways involving free-radical pairs
[15,25,47,48]. All of these, however, await confir-
mation by experimental studies. Recently, however,
it has been shown experimentally that Fe3O4 mag-
netosomes in some MTB exhibit peroxidase-like
activity that can eliminate intracellular levels of
reactive oxygen species (ROS) [49]. Moreover, this
activity can be further enhanced under irradiation
by visible light [50].These findings indicate strongly
the potential functions of magnetosome nanoparti-
cles in the detoxification of ROS or toxic free iron.

AN ORIGIN OF PROKARYOTIC
MAGNETOTAXIS THROUGH EXAPTATION
Exaptation—an evolutionary process by which a
biological entity is co-opted for a new role that is
unrelated to its initial function [51]—was likely
central in the evolution of magnetotaxis. Accumu-
lating evidence indicates that microbial life was
present at least since the Archean [52–54] and,
as noted above, MTB appear to have originated
in the mid-Archean Eon [38]. During the early
to late Archean, the primordial atmosphere was
anoxic, with ≤10−5 of the present atmospheric
level of molecular O2 [55,56]. Due to the lack of
an effective ozone layer on early Earth, harmful
ultraviolet radiation (UVR)was considerably higher
than in the present day and would have exerted
significant environmental selection pressure on
microorganisms in the surface and shallow-water
conditions [57]. High UVR levels are detrimental
to living microorganisms by either directly causing
lesions on native DNA molecules or indirectly
through the accumulation of ROS inside cells.

Archeanoceanswere predominantly anoxic, with
abundant dissolved ferrous iron (>30μm) supplied
from mid-ocean ridges, hydrothermal vents and
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Figure 3. Transmission electron microscope images of uncultured environmental magnetotactic bacteria with (a) three, (b)
four and (c) five magnetosome particles per cell (white arrows point to each magnetosome), which indicates that three to
five magnetosomes may provide a sufficient magnetic dipole moment for magnetotaxis in these bacteria.
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Figure 4. Exaptation model of microbial magnetoreception on early Earth. (a) Reactive
oxygen species (ROS) were a major challenge to which ancient life had to adapt. ROS
would have been generated and enhanced through ultraviolet radiation (UVR) (yellow),
accumulating free Fe(II) inside cells (purple) and/ormineral-induced formation (orange).
(b) The ancestral role of intracellular iron-oxide nanoparticles (initial magnetosomes)
formed through ancient biomineralization processes was to help early life cope with
oxidative stress because of their antioxidant enzyme-like activities and reducing intra-
cellular free iron. (c) Initial magnetosomes were later co-opted to serve an additional
new role of magnetoreception as a mineral magnetic sensor. (d) Modification of mag-
netosomes by natural selection, such as the increase in magnetosome particles and
formation of a chain arrangement, would impart a greater magnetic dipole moment to
the cell, leading to much more efficient magnetotaxis.

sediment diagenesis [58]. Ferrous iron likely could
diffuse passively through the outermembrane of pri-
mordial organisms and would have stimulated toxic
intracellular ROS levels through the Fenton reac-
tion [59]. Furthermore, ROS might have also been
present in aqueous, atmospheric and rock environ-
ments onearlyEarthbecauseof the formationof rad-
ical species onmineral surfaces inducedbyUVR, im-
pact shocks and mechanical grinding [60,61]. ROS
accumulation could damage genetic material, dete-
riorate proteins, cause lipid peroxidation and disturb
cellular homeostasis [62]; therefore, dealing with
ROS was a major survival challenge for early life on
Earth (Fig. 4a).

Extant organisms have evolved various antioxi-
dant systems to detoxify ROS, such as superoxide
dismutases, peroxiredoxins and catalases in aerobes
and superoxide reductases in anaerobes and mi-
croaerophiles [63]. The appearance of appreciable
O2 concentrations would have led to significant
oxidative stress, so it is generally accepted thatmajor
antioxidant defense systems evolved prior to the
Great Oxygenation Event (GOE), which marked
a permanent molecular O2 rise in the atmosphere
between 2.4 and 2.1 billion years ago [64]. An-
tioxidant defense systems then radiated massively
after the GOE [65]. It remains unclear whether life
evolved primordial antioxidant enzymes at or prior
to the mid-Archean Eon, although some studies

suggest that the last universal common ancestor
might have possessed pathways to remove ROS
[63,66].

Discovery of intrinsic peroxidase- and catalase-
like activities of iron-oxide nanoparticles (IONPs,
including Fe3O4) [67–69] and of peroxidase-like
properties of magnetosomes [49,50] leads us to
propose that some ancient life forms might have
relied on the intracellular biomineralization of
IONPs (initial magnetosomes) as antioxidants to
cope with ROS stress on early Earth. IONPs have
been found to have pH-dependent dual enzyme-like
activities in intracellular microenvironments—that
is, they catalyse H2O2 to generate hydroxyl radicals
under acidic conditions through peroxidase-like
activities and catalyse H2O2 to H2O and O2 at
neutral and basic pH through catalase-like activities
[69]. The median pH of the cytoplasm, periplasm
and lumen of themagnetosome vesicle are generally
neutral in Magnetospirillum magneticum strain
AMB-1 cells [70], while the cytoplasmic pH of
some uncultured MTB from acidic environments
is also close to neutral [29], which indicates that
Fe3O4 magnetosomes may also have catalase-like
activity in vivo. Compared to traditional antioxidant
enzymes, IONPs have enhanced enzyme-like stabil-
ity under extreme conditions such as a wide range
of temperatures (4–90◦C) and pH (1–12) [71],
which could enable them to maintain antioxidant
function in harsh environments.

Microorganisms on early Earth with the ability
to mitigate ROS stress would have a competitive
advantage. Here, we argue that iron nanoparticle
formation (initial magnetosomes) in early primal
life had the function of mitigating intracellular ROS
toxicity, through their intrinsic antioxidant enzyme-
like activities and reducing intracellular toxic free
iron (Fig. 4b). With increasing magnetosome num-
bers, it appears that magnetosomes were co-opted
to provide the cell with a magnetic dipole moment
for orientation along the geomagnetic field—a for-
mation that was likely established 3–4 billion years
ago (Fig. 4c). This primal magnetosensitive struc-
ture, which reduces a 3D search to an optimized 1D
search along geomagnetic field lines, appears to have
further protected ancient life from lethal UVR by
allowing efficient directed swimming to deeper wa-
ter with less O2 at or near the oxic-anoxic transition
zone either in thewater column, the sediment–water
interface or deeper in the sediment. For this to occur,
natural selection would favor the biomineralization
of high-coercivity single-domain magnetic nanopar-
ticles arranged as a chain with dipoles aligned in the
same direction to maximize the net magnetic dipole
moment for the individual cell to optimize magnetic
orientation and navigation (Fig. 4d).



476 Natl Sci Rev, 2020, Vol. 7, No. 2 REVIEW

FUTURE PROSPECTS
An interesting yet unanswered question is: what
was the mineral phase of the first magnetic sensor?
According to our model, the first magnetosomes
should have had antioxidant activities for scaveng-
ing intracellular ROS. A growing number of iron
nanoparticles, such as Fe3O4, Fe2O3 and FeS, have
been shown to exhibit enzyme-like activity [72]. It
has been suggested that Fe3O4 might have been
the mineral present in the first magnetosomes [37]
(Fig. 2a). Alternately, the last common ancestor
of MTB could have synthesized an unknown iron-
containing biomineral with enzyme-like activity that
later, during evolution, perhaps through intracellu-
lar changes in enzymatic activity or redox, resulted
in the generation of Fe3O4 and Fe3S4 particles [35]
(Fig. 2b). Identificationof this firstmineralmagnetic
sensor remains to be elucidated and is an area of ac-
tive investigation. The search for putative magneto-
fossils in older rocks and the reconstructionof ances-
tralMGCproteins both have the potential to answer
this question.

The exaptation model of magnetotaxis imposes
an expected evolutionary sequence ofmagnetosome
genes. That is, genes that are involved in magneto-
some biosynthesis should have originated earlier
than those for magnetosome positioning and crystal
size, and for the number of magnetosomes per cell.
Genetic studies of MGCs reveal eight (mamIELM-
NOBQ) and six (mamELMOQB) magnetosome
genes that are essential for Fe3O4 magnetosome
biosynthesis in Magnetospirillum magneticum strain
AMB-1 and M. gryphiswaldense strain MSR-1, re-
spectively [31,73]. Homologues of these genes have
been identified in MGCs of other MTB, thereby
emphasizing their important roles in magnetosome
biomineralization. Additional genomic, phyloge-
netic and evolutionary analyses are clearly necessary
to investigate whether these essential genes evolved
earlier than those that control magnetosome chain
construction (e.g. mamK [74] or mamJ [75]),
magnetosome crystal size (mms6, mmsF, etc.
[31,73]) and the number of magnetosomes per
cell. Moreover, studies of the linear organization
of magnetosomes and formation of magnetosome
membrane vesicles may also shed light on the
evolution of the cytoskeleton and vacuole formation
in both prokaryotes and eukaryotes [15,76].

It is also clear that further research is required
to characterize systematically any additional mag-
netosome functions beside magnetotaxis in extant
MTB. For example, determining whether magne-
tosome crystals play a role in storing cellular iron,
or as an electrochemical battery or gravity sensor,
or for promoting magnetochemistry awaits further

study. We propose here that Fe3O4 magnetosome
crystals act as a type of iron-oxide nanozyme [69,71]
in MTB with neutral intracellular pH by exhibit-
ing catalase-like activity in addition to peroxidase-
like activity, although further experimental evidence
is required to support this hypothesis. Lastly, why
some MTB biomineralize Fe3S4 magnetosomes as
opposed to Fe3O4 remains unclear, especially con-
sidering the generally less perfect chain alignment
and poorer crystallinity of Fe3S4 magnetosomes
compared with those of Fe3O4 magnetosomes [77].
Chemically synthesized Fe3S4 nanoparticles have
also been shown to have peroxidase-like activ-
ity [78]. Thus, any further studies, such as those
noted above, should also include Fe3S4-producing
MTB.

In space environments, UVR is one of the
most significant hazards to living organisms. There-
fore, the inferred adaptation of MTB to such
high-radiation environments makes them potential
model organisms in astrobiology research and may
provide an opportunity for studies on the responses
of organisms exposed to the near-space and low-
Earth-orbit space environments. Such studies could
in turn help to better understand the origin and func-
tions of magnetosomes.

MTB are recognized as potentially significant
contributors to present-day global iron cycling
[19,79]. Recent discovery of an Archean origin of
these magnetosensitive microorganisms further
suggests that they may have contributed to biogeo-
chemical cycling of iron throughout Earth’s history.
We suggest that the ROS-detoxification function
of magnetosomes and magnetotaxis capability
provided competitive advantages, which might
have helped ancient MTB to survive in diverse
aquatic environments on early Earth. Considering
their uptake of large amounts of environmental
iron and intracellular iron biomineralization, MTB
likely contributed to iron cycling on early Earth,
which further raises the question of whether these
microorganisms may have played as-yet-unknown
roles in the deposition of banded iron formations
that are distributed widely on the remnants of an-
cient cratons [80]. Future geochemical exploration
and magnetic characterization of both extant mag-
netosomes and magnetofossils will undoubtedly
provide new insights into this poorly understood,
yet geologically interesting, question.

CONCLUSIONS
The presence of precise biochemically controlled
biomineralization of ferrimagnetic minerals in two
domains of life provides strong evidence of Earth’s
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magnetic biosphere. However, the initial origin and
subsequent evolutionary history of magnetorecep-
tion have not been investigated to any significant
degree. We posit that ancient magnetoreception in
prokaryotes might have originated via an exaptation
process from pre-existing intracellular iron nanopar-
ticles that initially decreased the toxicity of ROS in
early life forms. Thus, magnetosome particles in an-
cient life served a detoxification role and were later
co-opted formicrobialmagnetoreception ormagne-
totaxis. This exaptation origin of magnetotaxis pro-
vides a conceptual model for study of the origin
and evolution ofmagnetoreception, aswell as poten-
tially providing a genetic template for other biomin-
eralization systems and mechanisms. With the ever-
increasing genomic data from both cultivated and
uncultivatedMTB as well as advancement of molec-
ular, genetic, chemical and evolutionary technolo-
gies, we anticipate great progress in understand-
ing microbial magnetoreception in the near future.
Shedding further light on the evolutionary origin of
this system will also provide additional constraints
on the paleoenvironments under which it evolved as
well as on the development of magnetoreception in
higher organisms.
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