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Abstract 

Background:  The accurate annotation of genes in newly sequenced genomes remains a challenge. Although 
sophisticated comparative pipelines are available, computationally derived gene models are often less than perfect. 
This is particularly true when multiple similar paralogs are present. The issue is aggravated further when genomes 
are assembled only at a preliminary draft level to contigs or short scaffolds. However, these genomes deliver valuable 
information for studying gene families. High accuracy models of protein coding genes are needed in particular for 
phylogenetics and for the analysis of gene family histories.

Results:  We present a pipeline, ExonMatchSolver, that is designed to help the user to produce and curate high 
quality models of the protein-coding part of genes. The tool in particular tackles the problem of identifying those 
coding exon groups that belong to the same paralogous genes in a fragmented genome assembly. This paralog-to-
contig assignment problem is shown to be NP-complete. It is phrased and solved as an Integer Linear Programming 
problem.

Conclusions:  The ExonMatchSolver-pipeline can be employed to build highly accurate models of protein 
coding genes even when spanning several genomic fragments. This sets the stage for a better understanding of the 
evolutionary history within particular gene families which possess a large number of paralogs and in which frequent 
gene duplication events occurred.
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Background
Accurate multiple sequence alignments are required as 
input for a wide variety of different computational analy-
sis techniques in phylogenetics, molecular evolution and 
comparative genomics. In this contribution we will pri-
marily be concerned with protein coding regions. Tests 
for inter-residue co-evolution [1] and correlation of con-
servation with protein structure [2] allow for identifica-
tion of functional motifs and elements. Protein interfaces 
and interaction partners can be predicted considering 
inter-protein co-evolution [1]. These approaches can be 

used to improve protein structure prediction. Sequence 
alignments also form the basis for evaluating changes in 
positive or purifying selection pressures [3] over evolu-
tionary time scales.

Many large protein families, such as transcription 
factors, growth factors, proteins involved in signaling 
pathways and membrane proteins, include paralogous 
members that share highly similar sequence elements. 
Detailed phylogenies of these protein families — usually 
referred to as gene trees — are utilized to reveal rapid 
gene loss and pseudogenization, frequent gene dupli-
cation and abundant gene conversion events [4]. The 
reconstruction of accurate gene trees for protein fami-
lies, however, has turned out to be one of the most recal-
citrant problems in computational biology. This has of 
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course multiple causes. One key issue, which is the main 
motivation for this contribution, is the availability and 
quality of the input sequence data.

The protein sequences used to reconstruct large-scale 
gene families are usually extracted from public protein 
databases (such as Swiss-Prot [5], NCBI-RefSeq [6]) 
or from genome annotations (in particular Ensembl [7] 
or the NCBI genome database [6]). Despite the best 
efforts of the biocurators’ community and continuing 
improvements, these data sources contain high levels of 
errors and inaccuracies [8] that are virtually unavoidable 
given the volume of data that must be processed to create 
them. The annotation of a newly sequenced genome is 
typically achieved by combining ab initio and similarity-
based gene prediction methods such as those employed 
in the NCBI eukaryotic genome annotation-pipeline [9]. 
The first group of ab initio gene prediction tools relies 
on Markov chain models and position-weight matri-
ces for construction of gene models (e.g., geneid [10]). 
The second class is trained on complementary DNA 
(cDNA) or RNA sequencing (RNA-Seq) data available 
for the species of interest to obtain probabilities to build 
(generalized) hidden Markov Models (AUGUSTUS [11], 
GENSCAN [12]). Similarity-based methods benefit from 
available cDNA, expressed sequence tag (EST) or protein 
data from the same species (producing a cis-alignment) 
or from a closely related species (producing a trans-align-
ment) [13]. Key similarity-based methods in this context 
are spliced alignment algorithms; these align proteins or 
cDNA/EST data to a short genomic locus (ProSplign 
[9], Prot_map [14], GeneWise [15]) or to the whole 
genome (exonerate -m est2genome [16], Genom-
eThreader [17]) while allowing for insertions in the 
target sequence (corresponding to introns) and consider-
ing splice-site patterns.

Although many steps within various annotation pipe-
lines have been optimized, some even for decades, they 
still may make mistakes such as over- and under-predict-
ing small introns and exons. Even extensive EST or RNA-
Seq data sets may be incomplete. Both false positive and 
false negative predictions are propagated by the compar-
ative algorithms and can only be rectified, in part, by the 
diligent work of human curators.

One particular difficulty is that most available genomes 
are not finished, i.e., the corresponding genome assem-
blies consist of many, often short contigs and scaffolds, 
and genes span over more than one of these genomic 
units. Although genome quality is improving and long-
read techniques [18] are becoming available to a broader 
community, the issue is likely to persist in the near future. 
Within the Genbank database, 31.7  % of all eukaryotic 
genomes and 11.8 % of the animal genomes are at present 
assembled only to contig-level [19] and even many of the 

genomes assembled to chromosomes still contain highly 
fragmented parts.

Standard gene prediction tools and pipelines usu-
ally have difficulties with fragmented assemblies. The 
Ensembl pipeline, for instance, rejects matches cover-
ing less than 25 % of the query protein [20]. In the SGP2 
framework [21], ab initio gene prediction (geneid) 
and similarity search (tblastx) are combined. SGP2 
assumes that hits on different fragments originate from 
a non-assembled shotgun genome. SGP2 will summa-
rize these hits to one gene prediction by re-scoring of 
the high-scoring segment pairs. Thus, different, highly 
similar paralogs tend to be merged into a single gene pre-
diction. The combined mapping/alignment tool GMAP 
[22], which was originally intended to uncover chimeric 
ESTs, maps cDNA/ESTs to multiple genomic loci. This 
method theoretically allows for annotation of genes in a 
fragmented genome, although to our knowledge appli-
cation of GMAP has been limited to cis-alignments [22]. 
The Scipio system [23] was developed originally for 
cis-alignments of proteins and cDNAs and later has been 
extended to trans-alignments [24]. It proceeds stepwise: 
(1) blat alignment, (2) gap closing in the query sequence 
using a Needleman-Wunsch alignment, (3) assembling 
of the blat hits, and (4) intron border refinement [24]. 
Recent refinements to accommodate the needs of par-
ticular query genes are described in [25]. The problem 
of assembling genes from multiple genomic fragments 
becomes particularly difficult in cases where multiple 
close paralogs are present. A frequent error is the con-
struction of chimeric gene models that thread through 
fragments belonging to different paralogs, see e.g., [26]. 
We addressed this particular issue here by describing an 
algorithm that identifies the optimal assignment of cod-
ing exons to genomic fragments. In contrast to existing 
methods, which find, separately for each query paralog, 
the best match(es) in the genome, we solve here a formal 
assignment problem that identifies the collectively best 
match of an entire group of paralogous genes to a set of 
genomic loci.

The naming of genes in public resources adds another 
level of complication, and another potential source of 
error for the user, as nomenclature conventions are 
restricted to individual species or small groups of species. 
The HUGO Gene Nomenclature Committee is working 
to establish a coherent naming scheme for the genes in 
vertebrate genomes, aiming at a nomenclature that actu-
ally reflects homology as much as possible [27]. In prac-
tice the retrieval of family members relies either on using 
databases of homologs such as Ensembl Compara [28] 
and HomoloGene [6], or on the use of similarity-based 
sequence search tools such as blast [29]. The use of 
public homology databases unavoidably is limited to the 
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data included by its curators and restricted to the data 
sources, i.e., genome annotations, that have been selected 
for inclusion. Recently completed, still poorly annotated 
genomes are often not yet included.

A detailed exploration of gene families can improve 
existing annotations and known homologies as 
retrieved from public data resources. It is unavoidable 
in practice to expend substantial efforts into data cura-
tion to complete that data set with respect to missing 
genes and to correct individual gene models. Here we 
present a tool that is designed to assist in the initial 
data curation step. Specifically, we aim to help the user 
to improve gene models regarding exon-intron struc-
ture, to compile complete sequences from poor, frag-
mented assemblies and to avoid ambiguities in paralog 
group assignments.

Methods
Pipeline overview
The conceptual translation of the coding portion of an 
individual exon, a translated coding exon (TCE) for short, 
is treated as elementary building block. To account for 
gain and loss of exons we envision a hypothetical “ances-
tor” as an ordered list of TCEs from which each of the 
observed extant protein sequences can be derived by 
deletion of TCEs. An exon in an extant sequence there-
fore may be represented by two or more TCEs. This is 
the case when a homologous sequence in the same or 
another species is interrupted by one or more introns. 
The maximal number of paralogs to be identified in the 
target genome is either derived from the input or can be 
specified by the user. The ExonMatchSolver-pipeline 
(EMS-pipeline) implements a work-flow comprising 
four main steps: (1) the search of protein sequences or 
protein-models specific for paralogs and individual TCEs 
against a complete target genome, (2) the paralog-to-
contig assignment formulated as an Integer Linear Pro-
gramming (ILP) problem, (3) a refined search for exons 
missing after step 2 relative to the input gene models, 
and (4) the assembly of fragmented hits and the proposi-
tion of gene annotations. The formulation of the ILP is 
the core of the EMS-pipeline and will be referred to as 
ExonMatchSolver in the following. The EMS-pipeline 
produces both a predicted protein sequence for each 
paralog, and an assignment of each predicted paralog to 
a paralogous group. The EMS-pipeline accommodates 
several types of input (see subsection "Implementation 
and usage"). If paralog-specific and individual-TCE align-
ment-files are provided, hidden Markov Models (hMM) 
are built (0a) and used as queries. Otherwise, homolo-
gous TCE groups across paralogs within the query 
genome can be identified in an additional pre-process-
ing step (0b). The overall organization of the underlying 

workflow is summarized in Fig. 1. A detailed schematic is 
provided as Additional file 1.

Exon assembly as an assignment problem
The key difficulty is the creation of a complete and 
accurate gene model of the coding sequence on frag-
mented genome assemblies. Our starting point is a set 
{Q1, . . . ,QN } of N paralogous query proteins. For each 
query protein Qj we are given a decomposition into its 
TCEs (qj1, q

j
2, . . . , q

j
mj ). Furthermore, we are given a set 

{X1,X2, . . . ,Xn} of contigs and a similarity score θijk 
measuring how well TCE qjk of paralog j matches to con-
tig i. Figure 2 illustrates the problem setup.

We use the term contig here to refer to a genomic locus 
harboring at most one gene of interest. If the contigs in 
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Fig. 1  The EMS-pipeline explicitly solves the paralog-to-contig 
assignment problem. Sequence-matches to individual TCEs are 
collected in a step-wise procedure applying either tblastn (from 
single sequences of individual TCEs) or hmmsearch (starting from 
a sequence alignment for each TCE). Depending on the input, pre-
processing steps (0a) or (0b) are performed before similarity search. 
The colored boxes represent TCEs. The pre-processing steps, which are 
performed separately for all individual TCEs of all paralogs, are exem-
plified here for one paralog encoded by three exons. For a detailed 
description of the individual steps, we refer to the "Methods" section. 
AA amino acid sequence, hMMs hidden Markov Models, ILP integer 
linear programming problem, TCE translated coding exon
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the genome assembly are very long, they may have to be 
subdivided so that each target sequence contains only a 
single locus of interest e.g., by creation of a new, artificial 
contig that was not contained in the original assembly. 
Furthermore, all contigs without significant matches are 
removed before solving the paralog-to-contig assignment 
problem.

The assumption that each TCE can be derived from a 
hypothetical “ancestor” by deletion of TCEs covers all 
gene families in which the gene structure was not subject 
to permutations of exons. For instance, if an exon was 
split in one lineage by insertion of an extra intron, this 
extra intron boundary can be traced back to the “ances-
tor” and inserted within all its descendants. TCEs then 
have to be artificially split at this boundary. After this 
preparatory step (which is left to the user in the current 
implementation), the TCE blocks (in the following simply 
called TCEs for brevity) are numbered consistently, in the 
sense that homologous TCEs have the same number and 
mj = m becomes independent of the paralog. Missing 
(deleted) TCEs simply remain unmatched.

The quality of a match between query TCE qjk to a 
genomic match i in contig Xi is measured by the bitscore 
θijk computed by either tblastn or hmmsearch [30, 
31]. To remove spurious hits, we first employ an E value 
filter. Secondly, TCE-hits that are found alone on one 
contig without any accompanying hits are subjected to a 
length-normalization and a bitscore-filtering. For unde-
sirable assignments, we set θijk = 0.

The paralog-to-contig assignment problem is a com-
bination of a matching problem [32] and an assignment 
problem [33]. It can be phrased formally as follows:

Paralog-to-contig assignment problem (PCAP)

Instance: A set Q of n queries (“paralogs”), each of 
which comprises a non-empty list of TCEs denoted 
(j, k) with 1 ≤ j ≤ n and 1 ≤ k ≤ mj; a set T of N tar-
gets (“contigs”), each comprising a list of sites (i, h) with 
1 ≤ i ≤ N  and 1 ≤ h ≤ Mi; scores σi,h;j,k measuring the 
similarity of query TCE (j, k) with target site (i, h).
Solution: A bipartite matching M of query TCEs (j, k) 
and target sites (i, h) so that

1.	 each target i is assigned to at most one query 
j, i.e., (j, k) : (i, h) ∈ M and (j′, k ′) : (i, h′) ∈ M 
implies j′ = j, and

2.	 if (j, k) : (i, h) ∈ M then there is 
(j, k ′) : (i, h′) ∈ M for every TCE k ′ of the query 
j for which there is a site h′ on the same target i 
with σi,h′;j,k ′ > 0.

The target sites are interpreted as (parts of ) exons so that 
in instances of practical interest to us, each TCE and each 
site can be assigned a type τ so that σi,h;j,k > 0 if and only 
if τ (i, h) = τ (j, k).

Objective function:

Since we assume for practical applications to biologi-
cal data, that each exon type appears at most once 
on each target i, we can suppress the index h and set 

(1)
f (M) =

∑

(j,k):(i,h)∈M

σi,h;j,k → max!

Fig. 2  Illustration of the paralog-to-contig assignment problem. In this hypothetical example, each of the three paralogous genes has 11 coding 
exons which are homologous to the respective exon of the other paralogs (numbers 1–11). The paralogs are distributed over 11 contigs of different 
sizes, which are denoted by letters. TCE-hits on the 11 contigs are colored according to the query paralog Qi that scored best (yellow query paralog  
Q1, red query paralog Q2, blue query paralog Q3). The lower part of the figure shows the assignment identified by the EMS-pipeline. Note, that exon 
5 of paralog 1 is inserted into contig a that carries exons 2–4 and 6. Putative missing (or deleted) exons are shown as dotted boxes. TCE translated 
coding exon
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θijk := σi,h;j,k if there is (i, h) with τ (i, h) = τ (j, k) and 
θijk := −∞ otherwise.

We first show that PCAP is a difficult combinatorial 
optimization problem:

Theorem  1  The decision problem version of PCAP is 
NP-complete.

Proof  We prove the NP-completeness of PCAP by 
reduction from the graph 3-coloring problem, which is 
known to be NP-complete [34].

Consider an arbitrary graph G = (V ,E) and an asso-
ciated PCAP with n = 3 queries and m = |E| TCEs on 
each query. For each i ∈ V  we create one target, with 
Mi = |

{

i′ : [i, i′] ∈ E
}

| sites. We assign a “type” τ ∈ N 
to each query TCE and target site, and set σi,h;j,k = 1 if 
and only if τ (i, h) = τ (j, k) and σi,h;j,k = −∞ otherwise, 
i.e., query TCEs can only match with target sites of the 
same type. We assume that there are |E| distinct types, 
each associated with a single edge in G. A target i con-
tains a site of type τ, if and only if the respective vertex 
is incident to the corresponding edge. Two targets i and 
i′ therefore share a site of the same type if and only if 
[i, i′] ∈ E. The three queries are constructed as identical 
lists, each containing TCEs of all |E| types. Therefore, any 
independent set of targets matches to each query, while 
no query can match two adjacent targets. A solution of 
the PCAP constructed in this manner, in which every 
target is assigned to one of the three queries, implies a 
3-coloring of G. Conversely, if a 3-coloring of G exists, it 
provides a solution of the PCAP.

Finally, it is easy to verify that the PCAP constructed 
from G has polynomial size: There are |V| targets, each 
of which has not more than |E| edges, i.e., there are not 
more than |V | |E| target sites and exactly 3|E| query 
TCEs, i.e., the size of the underlying matching problem 
lives on a graph with O(|V |3) vertices.

Thus PCAP cannot be easier than graph 3-coloring, 
which is NP-complete. � �

Since Theorem 1 precludes the existence of an efficient 
solution (unless P=NP), we solve PCAP by means of 
Integer Linear Programming (ILP). To this end, we have 
to convert the formal specification of PCAP above into a 
set of linear constraints. We use the simplified notation 
for the similarity scoring in terms of θijk.

Solving the paralog‑to‑contig assignment problem
To formulate the PCAP as an ILP, we consider the 
binary variables Cij with Cij = 1, if and only if par-
alog Qj is assigned to contig Xi, and Cij = 0 otherwise. 
Additionally, we introduce the binary variables Eijk, 
with Eijk = 1, if and only if TCE qjk from paralog Qj is 

assigned to contig Xi, and Eijk = 0 otherwise. While the 
variables Cij represent the associations between paral-
ogs and contigs, Eijk represent the associations between 
the TCEs (of a certain paralog) and the contigs. We then 
look for an assignment that maximizes the total similar-
ity score:

with θijk being the bitscore of the respective hit, and 
µij = |{k|∃j′ : θij′k > 0}| being the number of (groups 
of homologous) TCE-hits found on contig Xi, i.e., those 
where for at least one paralog Qj′ θij′k > 0. In addition to 
θijk, which favors matches with a high similarity score, we 
introduced the factor µij to prefer assignments with mul-
tiple TCE-hits found on the same contig.

The assignment is subjected to a series of constraints. 
First, each TCE qjk is assigned at most once, and the same 
contig Xi does not carry more than one paralog Qj.

Second, a contig Xi is not assigned to paralog Qj, if no 
TCE-hit qjk from paralog Qj was found on this contig.

Third, contig Xi is assigned to paralog Qj, if and only if at 
least one TCE qjk is assigned to that contig, i.e., Cij = 1 if 
and only if ∃k s.t. Eijk = 1.

with m being the number of groups of homologous 
TCEs. Finally, if contig Xi is assigned to paralog Qj, then 
all respective TCEs, which are found on this contig, are 
assigned to it, i.e., if Cij = 1 then ∀k s.t. ∃j′ for which 
θij′k > 0, it holds that Eijk = 1. Otherwise, if ∀j′ θij′k ≤ 0, 
then Eijk = 0.

(2)max

n
∑

i=1

N
∑

j=1

m
∑

k=1

µijθijkEijk

(3)∀j, k :

n
∑

i=1

Eijk ≤ 1 and ∀i :

N
∑

j=1

Cij ≤ 1

(4)∀i, j s.t. � ∃k|θijk > 0 : Cij = 0

(5)∀i, j :

m
∑

k=1

Eijk − Cij ≥ 0

(6)∀i, j :

m
∑

k=1

Eijk −mCij ≤ 0

(7)
∀i, j : µijCij −

∑

k|θijk>0

Eijk ≤ 0

(8)

n
∑

i=1

N
∑

j=1

∑

k|∀j′:θij′k≤0

Eijk = 0
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This simple ILP determines an optimal assignment Cij of 
paralog Qj to contig Xi, which can now be used to deter-
mine the sequences of paralogs. In these gene models, 
however, there still may be small or divergent exons miss-
ing, for which no significant hits were obtained.

Post‑processing
To alleviate this limitation of the initial similarity search, 
two additional search steps are preformed: (1) Local 
tblastn searches limited to only those contigs, where 
hits were identified for at least one TCE-model may iden-
tify additional candidate TCEs, (2) Spliced alignments of 
the query sequence on un-assembled contigs are used 
to increase the sensitivity. In contrast to local tblastn 
and hmmsearch, spliced alignment tools such as 
ProSplign align the full-length protein query sequence 
to a genomic sequence fragment. This makes it possible 
to detect short TCEs that do not yield significant scores 
in genome-wide searches.

Upon compiling the final gene models, three cases 
appear. (i) In the simplest and ideal case, a paralog is 
located on a single contig with all TCEs fully covered 
and identified. No other assembly steps are required. (ii) 
The paralog is distributed over multiple contigs such that 
every contig contains a sequence of consecutive TCE-hits 
in the correct order. In this case, the different fragments 
can be concatenated unambiguously, accounting for the 
TCE order and the strandedness of the fragments. (iii) 
The TCE-hits identified on a contig are ordered correctly 
but they are not consecutive. For example, X1 might carry 
TCEs p ... q and r ... s, but q + 1...r − 1 are located on 
X2 . This occurs if the genome assembly is erroneous or 
if the two “contigs” are actually (pieces of ) two scaffolds 
that interleave (e.g., Fig. 2, contigs a and h). To account 
for these cases, we attempt to insert X2 in the appropriate 
place of X1. The hypothesis of how two or more contigs 
have to be interleaved is entirely determined by the order 
of the exons on the query gene, and is therefore unique. 
If the contig contains stretches of Ns (indicating missing 
sequence at the scaffold level), the contig parts are inter-
leaved there. Otherwise, the sequence is inserted at an 
arbitrary locus for the preservation of the correct exon 
order. A spliced alignment tool is then run again on the 
merged contigs to refine the gene model.

Implementation and usage
The EMS-pipeline can be run in three general modes 
depending on the information available as input (see 
Additional file  1). As the minimal input, the protein 
sequences of all paralogs of interest from a well anno-
tated species and the complete target genome must be 
provided as fasta files. In “fasta-mode”, homologous TCE 
groups are identified by a tblastn of the query protein 

against the query genome (Fig. 1, step 0b). To reduce false 
assignments of TCEs to homologous groups, we compute 
a background distribution of pairwise similarity scores 
from the matches of a query TCE against all other TCEs 
of the same paralog. This information is used to deter-
mine a cut-off value θ̂j corresponding to a user-defined 
z-score to remove likely promiscuous matches between 
non-homologous TCEs. In order to further reduce the 
false assignments of short TCEs to homologous groups 
of putative lengthy TCEs, TCEs with lengths below a 
length cutoff are excluded. This step may require manual 
inspection if the analysis shows that originally annotated 
exons are split in some of the family members. Then the 
assignment of TCEs given as input to step 1 may need to 
be adjusted.

The “alignment-mode” can be used when the exon-
intron structure of the paralogs is already known and the 
user has access to well-annotated sequences from several 
species. Input protein alignments are converted to hMMs 
applying the HMMER3 suite [31] and are then used to scan 
the conceptually translated target genome (Fig.  1, step 
0a). This improves both specificity and sensitivity of the 
tool. It can be used iteratively to improve results from a 
first set of searches starting from a single query.

Alternatively, the user can provide information on 
TCE-homology of the query protein sequences in “cus-
tom-mode” to include as many homologous TCE groups 
as possible.

Exact exon-intron structure of the query sequences in 
the target genome and in the query genome, if neces-
sary, are inferred by means of a spliced alignment tool, 
by default ProSplign [9]. Alternatively, exonerate 
[16] can be used, which is faster but less sensitive [24]. In 
cases in which very long introns are predicted, the EMS-
pipeline switches to exonerate automatically.

The ILP solver can be used to obtain alternative, sub-
optimal assignments. This is particularly useful to judge 
the reliability of the solution.

After completion of the first assignment by the Exon-
MatchSolver, the TCE-search is refined by running 
hmmsearch and tblastn with more sensitive settings 
as described above. The majority of TCE-hits for one 
paralog is usually assigned to one contig. A spliced align-
ment tool is used to align the query sequences to these 
contigs. The list of hits is augmented with these hits and 
the final paralog-to-contig assignment is computed.

Different contigs assigned to the same paralog are 
then merged/assembled. In some cases, contigs are 
interleaved. If so, the sequence of a single coding exon 
is inserted into the genomic area between the closest 
TCE-hits on the main fragment. If this region contains 
stretches of three or more consecutive Ns, the sequence 
is inserted in one of these regions. Large blocks of Ns 
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are substituted by the insert-sequence. If the contig has 
no N-blocks in the appropriate region, the coding exon 
is inserted together with flanking Ns. The resulting 
edited “scaffolds” are again compared against the query 
sequences via a spliced alignment.

The resulting protein models as well as the input pro-
tein sequences are finally turned over to the Scipio 
gene annotation pipeline. Gene annotation proposed by 
tblastn, exonerate, ProSplign as well as Scipio 
should be compared by the user to infer paralog assign-
ment and gene structure. The assignment list created by 
the ExonMatchSolver and the list of any remaining, 
questionable, single coding exons is available for manual 
evaluation.

Assessment of the ExonMatchSolver’s performance 
by simulations
In order to estimate performance and running time of the 
core step, we tested the ExonMatchSolver on simu-
lated data. Protein sequence evolution is simulated with 
ALF [35] for two hypothetical species (query and tar-
get) allowing for insertions, deletions, substitutions and 
duplications in a randomly generated protein sequence 
(branch length, n = 50, indel-rate = 0.0005, standard 
settings otherwise). This first step implements the evolu-
tion of one ancestor protein sequence to a fixed number 
of paralogs with an average of 2.5 % indels per sequence. 
The simulated protein sequences are divided into homol-
ogous pieces according to exon lengths sampled from a 
data set of human protein coding genes originating from 
Ensembl (Lozada-Chavéz I., in preparation). These 
exons are simulated to evolve independently (branch 
length, n = 20, about 1  % indels per sequence) without 
allowing for duplications in a second step representing 
recent evolutionary changes. Exons of the single paralogs 
are distributed to different units (representing genomic 
fragments) with varying fragmentation levels. The frag-
mentation level is calculated as the average number of 
exons per fragment. Scoring of the query protein or TCEs 
against the target TCEs is performed with blastp (E 
value < 0.0001).

Performance of the ExonMatchSolver is assessed 
in comparison with a “greedy” method. We consider the 
assignment of a paralog to a unit greedy, if it is solely 
determined by the identity of the unit which retrieved 
the best bitscore with the respective full length query 
paralog. Accuracy and running time of the ExonMatch-
Solver and the greedy method both depend on the 
individual random protein sequences that were simulated 
as well as on the exon sizes that are sampled from the 
exon length data set. To be able to directly compare these 
results, estimation of accuracy and running time are per-
formed on the same set of simulated protein sequences. 

For the accuracy estimation, fragmentation is repeated 
1000 times for each fragmentation level with a fixed 
number of paralogs (8) and exons (12). The running time 
of the ExonMatchSolver is estimated for different 
numbers of exons and paralogs and a fixed fragmentation 
level (7.7 exons per fragment on average). The estimated 
user time is averaged for 20 different fragmentations on 
the same simulated data. Resident Set Size (rss) is used as 
an estimate of memory.

Results
Performance on simulated data
Accuracy of the ExonMatchSolver was estimated 
on simulated data and compared to the greedy meth-
od’s accuracy on the same data set. For the simulated 
sequences of eight paralogs with 12 exons, the Exon-
MatchSolver solved the paralog-to-contig assignment 
more accurately than the greedy method if paralogs were 
fragmented across several units. Accuracy of the Exon-
MatchSolver was as good as that of the greedy method 
for non-fragmented paralogs (Fig. 3a). As expected, accu-
racy of both methods decreased with higher fragmenta-
tion of the genome, indicated by a lower number of exons 
per fragment. While the accuracy of the greedy method 
dropped by more than 90 % from 1 to 0.08, the accuracy 
of the ExonMatchSolver solution did not fall below 
0.91 even for the highest fragmentation levels. Thus, the 
ExonMatchSolver clearly outperformed the greedy 
method in assignment of paralogs to the correct units, 
which equalize contigs in non-simulated data. 

In some simulations, the maximal accuracy of the 
ExonMatchSolver might be slightly lower than the 
accuracy of the greedy method at high fragmentation lev-
els. This can be attributed to false negative hits represent-
ing short or very divergent exons that are not retrieved 
by the ExonMatchSolver. In the greedy comparison 
such false negatives do not occur because there, contigs 
are queried with the full-length protein. Although such 
false negative hits are in part retrieved in the post-pro-
cessing step of the EMS-pipeline (as seen for the show 
case examples below), this step was not included in the 
performance tests for the ExonMatchSolver.

The running time of the ExonMatchSolver was 
in the range of a few seconds to minutes in dependence 
on the number of exons and paralogs (Fig. 3b, see Addi-
tional file 1). Instances with 100 exons and 100 paralogs, 
the largest number of exons and paralogs tested, were 
an exception to this rule as they required about 2.5 h of 
running time and 228 GB of memory on average (see 
Additional file  1). For more moderate numbers of 70 
exons and up to 20 paralogs, running time was below one 
minute while at most 3.5 GB of memory was required. 
The running time and memory increased to more than 
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15  min and 35.4 GB, respectively, when exceeding 50 
exons and 70 paralogs. The ExonMatchSolver thus 
solved even instances with extremely high numbers of 
paralogs and exons in feasible time. For most biologically 
relevant instances, memory requirements do not exceed 
the resources provided by a contemporary notebook.

Performance on real data ‑ two showcase examples
We selected two difficult examples, latrophilin receptors 
and arrestins to demonstrate the usefulness of the full 
EMS-pipeline on real data. Small differences in the exon-
intron structure of the input paralogs are handled as if all 
paralogs derive from an ancestor that contains all coding 
exons.

Arrestins
Arrestins are signaling and scaffolding molecules best 
known for their interaction with G-protein Coupled 
Receptors (GPCRs). Four paralogs are encoded by 15–16 
exons in humans (Homo sapiens), SAG, ARRB1, ARRB2 
and ARR3. All arrestin genes except ARRB1 are dupli-
cated in zebrafish as a result of the fish-specific whole 

genome duplication (FSGD) event [36]. The genes span 
a length of up to 82 kbp. Overall, the exon-intron struc-
ture is conserved except for two intron losses in zebrafish 
ARRB2b and ARR3a. There are two micro-exons, exons 
1 and 15, with less than 15 nucleotides (nt) in length. 
These are particularly challenging to infer. We aimed to 
predict the seven arrestin paralogs in pufferfish (Takifugu 
rubripes, Ensembl FUGU 4.0) with the EMS-pipeline 
in “custom-mode” starting from protein sequences in 
zebrafish. If no experimentally verified entries were 
available in genbank (NP_001153294.1, AAH76177.1, 
AAI52656.1, NP_957418.1), the annotations were 
extracted from Ensembl, Zv9. The last exon of SAGb 
was identified by an additional tblastn-search with 
SAGa as query. In the following, values for the number 
of contigs, to which paralogs were assigned, refer to the 
final output of the EMS-pipeline after spliced alignment 
of the assembled loci. TCEs were considered as found 
even if they were only partially identified. In the same 
sense, extensions of TCEs by the spliced alignment tools 
and additional alignment hits on the same fragment 
were not considered as false positives. For the arrestins, 

Fig. 3  Accuracy and running time of the ExonMatchSolver on simulated data. a Dependence of the accuracy on the fragmentation level in 
comparison with a greedy approach. Eight paralogs, each possessing 12 exons, were simulated in two species using ALF with branch length n = 50 
for generation of paralogs and branch length n = 20 for evolution of single exons. Fragmentation of exons across units was simulated 1000 times 
for each fragmentation level. b Dependence of the running time on paralog and exon number. Color changes of contour lines from yellow to dark 
blue indicate an increase in running time. Contour lines are labeled with the log10 of the running time. Different numbers of paralogs (4, 6, 8, 10, 20, 
40, 70, 100) and exons (1, 3, 5, 7, 10, 12, 20, 50, 70, 100) were simulated using ALF with parameters specified in the ”Methods” section and 7.7 exons 
per fragment on average. Running time was estimated as the mean of the user time of 20 runs with different fragmentation levels of the same 
simulated sequence data
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the EMS-pipeline identified all expected seven arrestin 
paralogs situated on nine different contigs (see Fig.  4a 
and Additional file  1). Five paralogs were (nearly) com-
pletely encoded on one contig each, while only parts of 
the other two, SAGb and ARRB1, were sequenced. SAGb 
and ARRB1 were fragmented covering two genomic units 
each.

For comparison, we ran Scipio, which identified 
four different arrestin loci with cross-species default 
options suggesting the loss of three paralogs relative to 
zebrafish. Considering the best scoring results for each 
query, Scipio assigned two different arrestin paralogs 
to scaffold_525, while three other paralogs were assigned 
to scaffold_352. No hits were suggested for ARR3b. Run-
ning Scipio with optimized options for arrestin genes 
allowed for an increased assembly size and increased sen-
sitivity for detection of small exons. Therefore, seven dif-
ferent loci were proposed among the alternative results 
(see Additional file 1 for a phylogenetic tree of all alter-
native Scipio annotations). This is in accordance with 
the results proposed by the EMS-pipeline. Four out of 
the seven paralogs were correctly identified by Scipio, 
while the other three matched loci already assigned to 
a paralogous group. In other words, none of the contigs 
harboring SAGb, ARRB1, and ARRB2b appeared as a best 
scoring result in the Scipio predictions. In this exam-
ple, the EMS-pipeline with ProSplign as spliced align-
ment component correctly identified two coding exons 
that remained undetected by Scipio. The short coding 
exon 1 of ARR3a (eight nt) could be annotated manu-
ally with the help of a local blastn search using the 
nucleotide sequence of the corresponding zebrafish exon 
as query. It was missed by both the EMS/ProSplign- 
pipeline and by Scipio.

Latrophilins
The latrophilins (ADGRL1, ADGRL2 and ADGRL3) 
belong to the family of adhesion GPCRs and are encoded 
by 22–26 exons spanning a total length of up to 210 kbp 
in zebrafish [37]. A recent phylogenetic study proposed 
the duplication of ADGRL1 and ADGRL2 in zebrafish 
resulting in a greatly shortened N-terminus [38]. The 
five paralogous family members have a highly simi-
lar exon-intron structure in zebrafish thus fitting well 
with the application scenario of the EMS-pipeline. In 
ADGRL1a and ADGRL1b, exon 5 is split into three 
independent exons in comparison to the other paralogs, 
resulting in 25 homologous exon groups. We aimed to 
annotate ADGRL1, ADGRL2 and ADGRL3 and possi-
ble additional paralogs in cod (Gadus morhua, Ensembl 
gadMor1), which shares the FSGD with zebrafish. As 
a starting point, we chose the annotation of latrophi-
lin paralogs in the well assembled genome of zebrafish 

(Ensembl GPRCz10). To obtain a trustworthy query, 
these were manually curated adding small, missing exons 
identified by tblastn with human latrophilins as que-
ries. During curation, an additional paralog, ADGRL1b, 
was identified. The starting data set thus comprised six 
latrophilin paralogs, all of which were also identified in 
cod with the EMS-pipeline.

Presumably due to missing data, in total, the sequence 
of five different single TCEs was missing for all latro-
philin paralogs in zebrafish in total. As a byproduct, the 
ExonMatchSolver will keep TCE-hits even if the frag-
ment is scored with a different paralog-model of the same 
TCE only. This results in detection of coding exons that 
might either be missing from the query paralog or rep-
resent a pseudogenic exon (marked by asterisk, Fig. 4b).

The EMS-pipeline identified all six paralogs existing 
in zebrafish situated on 14 different fragments in cod. In 
contrast, Scipio [39] placed the latrophilin paralogs 
onto five different contigs or scaffolds in cod when run 
under cross-species default options (see Fig. 4b and also 
Additional file  1). Considering the best scoring results 
only, the tool proposed the existence of three different 
latrophilin loci. At these loci, Scipio proposed each of 
the recently duplicated paralog-pairs shared the exact 
same coordinates on one fragment. If instead, the user 
inspected the alternative results for each paralog, Scip-
io’s next-best scoring fragments did not necessarily cor-
relate with the correct contigs that were found by the 
EMS-pipeline. This was the case for exon 1 of ADGRL1a 
and ADGRL3b, which could be identified as false nega-
tive hits by manual inspection. The EMS-pipeline instead 
suggested eight different contigs to be interleaved with 
four of the main fragments. Eight of these nine TCE-hits, 
proposed in the final output, likely represent true exons 
that were situated on short fragments remaining from 
an incomplete genome assembly. In the available anno-
tation of cod, no further genes were annotated on these 
fragments, supporting the correct paralog-to-contig 
assignment.

The ninth hit corresponds to exon 23 of the gene 
CELSR1b encoding part of a secretin-like domain 
thus representing a false positive hit of the EMS-pipe-
line. Exons 15–20 of the latrophilin genes code for this 
domain, common to the whole class of adhesion GPCRs. 
Inspection of the initial tblastn-hitlist retrieved sev-
eral high scoring hits of more distant paralogs (e.g., 
ADGRL4, ADGRE5, and unnamed genes with GPCR-
domains) that all possess this domain.

The use of exonerate as a spliced alignment 
tool caused the EMS-pipeline to miss the short exon 
4 in all latrophilin paralogs (15 nt), the short exon 
24 in ADGRL3a (18 nt), and the diverse exon 1 of 
ADGRL2a that were identified by Scipio in the 
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alternative propositions. We therefore recommend to use 
ProSplign with the EMS-pipeline whenever sufficient 
computational resources are available. Furthermore, 
the results of Scipio that are additionally returned by 
the EMS-pipeline can provide further improvement but 
require manual inspection.

Interestingly, in both, cod and zebrafish ADGRL2b 
and ADGRL1b, the exon-intron structure and overall 
protein length were conserved relative to ADGRL2a and 
ADGRL1a. This contradicts the proposed truncation of 
these two genes reported in [38] and emphasizes the need 
to manually curate database annotation carefully consid-
ering differences in gene structure of paralogous genes.

Discussion
Applying a decomposition of proteins into translated 
coding exons and separation of homologs into their par-
alogous groups allows the EMS-pipeline to build models 
for individual paralog-specific translated coding exons 
(TCEs). Combining the strengths of different well-estab-
lished methods and tools (ProSplign, exonerate, 
tblastn, HMMER and Scipio) that translate between 
the level of protein and genomic sequence, and novel 
algorithmic approaches (the automated paralog-to-contig 
assignment), the EMS-pipeline provides a comprehensive 
and flexible toolbox for manual, high-quality curation of 
gene annotations. The heart of the pipeline is the ILP for-
mulation of the paralog-to-contig assignment problem 
referred to as ExonMatchSolver, which is NP-com-
plete. The ExonMatchSolver solves the assignment 
problem within seconds or minutes for most biologically 
relevant numbers of paralogs and exons in simulations. 
Even for high numbers of paralogs, which might occur in 
polyploid species such as the octaploid sugar cane [40], 
the running time does not exceed one hour for up to 70 
exons. However, genes with more than 70 exons are rare 
for human and most other animals [41].

The EMS-pipeline helps to overcome many of the 
critical problems arising from highly fragmented draft 
genome assemblies as demonstrated with simulated 
data as well as with two real life examples. The only pro-
gram that has been targeted to solve a similar problem, 

to our knowledge, is Scipio [23]. As suggested by one 
reviewer, one could alternatively use a maximum weight 
bipartite matching to identify the correct assignment of 
paralogous groups from alternative Scipio solutions or 
built a phylogenetic tree of all alternative Scipio anno-
tations together with the query paralog sequences. As in 
our example such phylogenetic trees are not always very 
straightforward to interpret and may also require exten-
sive manual inspection for identification of the correct 
paraolg-to-contig assignment (Additional file 1). The sit-
uation becomes particularly difficult in cases such as the 
latrophilin example, where Scipio returned chimeric 
gene models composed of TCEs from different paralogs. 
The EMS-pipeline is designed to specifically fill this gap 
for detailed exploration of the evolution of a specific gene 
family of interest. The explicit use of exon-intron struc-
tures and the exon-centric computation of protein simi-
larities furthermore improves the accuracy of paralog 
identification.

Given the diverse sources of errors and exceptional 
cases, we have not attempted to construct a fully auto-
matic pipeline, but rather a tool to assist in manual data 
curation. As a similarity-based method, it depends heav-
ily on the availability of high quality protein sequences 
(or alignments) as input queries. Erroneous exon annota-
tions or splice site predictions leading to erroneous trans-
lated coding sequences in the input unavoidably will be 
carried over to the results and cannot easily be identified 
by automatic means.

At present, there are no databases that simultane-
ously provide both, paralogy information and accurate 
information on exon-intron structure. The Exon-Intron 
database (EID) [42] and SpliceDB [43] do not pro-
vide information on paralogs; Ensembl Compara on 
the other hand, does not provide homology information 
for individual exons. The lack of a gold standard makes it 
unfeasible to quantitatively benchmark the EMS-pipeline 
on real data. Therefore, we demonstrated the superior 
accuracy of the ExonMatchSolver in comparison with 
a greedy method on simulated data. On real data, we had 
to rely on a few difficult use cases for which a detailed 
manual curation was possible.

(See figure on previous page.) 
Fig. 4  Illustration of the paralog-to-contig assignment for arrestin paralogs in pufferfish (a) and latrophilin paralogs in cod (b). All known zebrafish 
paralogs of the respective families were used as queries. Homologous coding exons that were detected by the EMS-pipeline and Scipio, resp., 
are shown as black open boxes on their respective contigs (grey boxes). Putatively missing (or deleted) coding exons are denoted by dotted boxes. 
False positive TCE-hits that were included in the ExonMatchSolver-solution, but not annotated by the spliced alignment tool are indicated by 
light green boxes. False positives appearing in the final output of either tool are indicated by brown boxes. The solution of the EMS-pipeline consider-
ing all of its stages is highlighted by broad blue paths in the back of the exons. Scipio’s best scoring proposition for each query is illustrated as 
colored dots and paths. In addition, true positive TCEs that were detected by the ExonMatchSolver, but not by the spliced alignment tool, are 
marked with an asterisk (*). Note that Scipio with cross-species default options did not propose any hit for ARR3b. GS genescaffold, c contig, s 
scaffold, TCE translated coding exon
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In its present state, the EMS-pipeline has several limi-
tations. Most importantly, we assume a largely conserved 
exon-intron structure of the paralogs, a situation that is 
very often encountered for vertebrate genes. Nonethe-
less, the exon-intron structure of distant relatives may 
differ strongly. Largely distinct gene structures can also 
be accommodated by treating the respective genes as 
separate paralogous groups. However, cases of recogniz-
able structural similarity together with changing variabil-
ity might be difficult to handle. Furthermore, we assume 
that a fairly complete collection of paralogs is used as an 
input. The paralog-to-contig assignment step may yield 
incorrect results if the a priori estimate of the number 
of paralogs is incorrect (as in the latrophilin example). In 
particular, this may lead to the inclusion of more distant, 
spurious solutions or result in fragmented gene models. 
In these cases, a manual inspection of the results thus 
appears unavoidable. We therefore have designed the 
EMS-pipeline to streamline and simplify the process of 
manual post-processing that is required for most frag-
mented genes.

We plan several improvements in future releases of the 
EMS-pipeline in response to exceptional cases that we 
have encountered in practical tests so far: The number of 
paralogs in a genome can presumably be estimated by a 
more careful analysis of the spectrum of similarity scores. 
This should help to largely prevent the inclusion of false 
positives to “compensate” for lineage-specific gene losses 
and would be useful also when studying gene families 
with many levels of paralogy, i.e., large numbers of nested 
gene duplications. It may also be possible to improve the 
accuracy of the initial, score-based assignments of cod-
ing exons to paralogs by using reciprocal best hit heuris-
tics rather than relying on the bitscores θijk of the query 
matches alone.

Conclusion
Besides Scipio [23], the EMS-pipeline is, to our knowl-
edge, the only toolkit that can deal with the fragmenta-
tion of genes across different contigs in a systematic 
manner. Nevertheless, consideration of paralogs that 
are fragmented across different genomic units and their 
exon-intron structure is necessary to build high quality 
gene models for detailed phylogenetic and evolutionary 
analyses. As shown in the examples above, Scipio has 
substantial difficulties in distinguishing between close 
paralogs. A closer inspection of erroneous Scipio 
predictions indicates that these are often the result of 
incorrect or missing combinations of gene fragments. It 
therefore seems to be important to explicitly consider and 
solve the paralog-to-contig assignment problem instead 
of just selecting best scoring fragments. In particular in 
the presence of incomplete data, simple protein-level 

similarity scores are often insufficient to correctly assign 
partial or even complete protein sequences to the correct 
paralogous group. Treating this issue as an assignment 
problem as realized in the EMS pipeline, largely alleviates 
this particular difficulty of genome annotation.

Additional file

Additional file 1. Detailed illustration of the EMS-pipeline. Extended 
schematic on steps, user-options and input-modes of the EMS-pipeline. 
The starting points for the three different modes of the EMS-pipeline 
are illustrated by red, yellow and green dots as are the different input 
files required for the respective mode. User options are given on the 
left and right side in yellow. See legend for further explanation. hMM 
hidden Markov Model, TCE translated coding exon, WGD whole genome 
duplication.

Additional file 2. Phylogenetic tree of arrestin annotations from Scipio. 
Phylogenetic tree of arrestins as annotated by Scipio in pufferfish together 
with query orthologs from zebrafish. Scipio was run in sensitive mode 
(modified options: max_assemble_size = 50000, min_score = 0.1, 
exhaust_align_size = 50000, region_size = 90000). The alignment and 
neighbor joining-tree on protein level were built with Clustal Omega 
1.2.1 (Sievers et al. 2011 [1]) on all columns of the alignment (A) and on 
all columns that did not contain any gaps (B). The alternative solutions of 
Scipio on the same genomic unit may slightly differ in dependence on 
the query paralog it was retrieved with (indicated by first part of the node 
label). The zebrafish paralogs are denoted as SAGa,b, ARRB1, ARRB2a,b 
and ARR3a,b. The solution proposed by the EMS-pipeline is highlighted 
in green. ARRB1 is situated on scaffold_2476_scaffold_8066. Due to long 
branch attraction, missing data and sequence divergence, zebrafish and 
pufferfish orthologs do not always form monophyletic groups. This makes 
inference of paralog-to-contig assignments based on the phylogenetic 
tree difficult. The trees were edited and displayed with Dendroscope 2.6.1 
(Huson et al. 2007 [2])

Additional file 3. Memory and time requirements of the ExonMatch-
Solver on simulated data. The raw data is provided as Addtional_file3.xlsx. 
Raw data on memory and time assessment of the ExonMatchSolver on 
simulated data. The memory and time requirements of the ExonMatch-
Solver were measured for different numbers of exons (1, 3, 5, 7, 10, 12, 50, 
70, 100) and paralogs (4, 6, 8 10, 20. 40, 70, 100) on data simulated with 
ALF. Memory was estimated as Resident Set Size. Memory and running 
time were sampled for each combination of paralogs and exons for 20 
independent runs of fragmentation and averaged.

Additional file 4. Table of paralog-to-contig assignments of arrestins in 
pufferfish. Performance of Scipio and the EMS-pipeline in prediction of 
arrestin genes in pufferfish. The pufferfish genome FUGU 4.0 (Ensembl) 
was queried with zebrafish protein sequences (NP_001153294.1, 
AAH76177.1, AAI52656.1, NP_957418.1 and annotations from Ensembl 
Zv9). Scipio was run with “cross-species default options” (min_iden-
tity = 60, max_move_exon = 6, blat_score = 15, blat_identity = 54, 
multiple_results, region_size = 10000, exhaust_align_size = 15000, results 
given in bold) and in a more sensitive mode (modified options: max_
assemble_size = 50000, min_score = 0.1, exhaust_align_size = 50000, 
region_size = 90000). The sensitive Scipio-mode included all hits of the 
cross-species default options. If scores deviated, these are separated by 
“/”. As Scipio was run with the multiple_results-option, several hits are 
occasionally returned; these are indicated by a number in brackets in 
the paralog-column. The EMS-pipeline was run in “custom-mode” with 
ProSplign as spliced alignment tool. TCE-numbering refers to the homolo-
gous TCE-groups. Hits were considered even if they were partial only. fp 
false positive, s scaffold.

Additional file 5. Table of paralog-to-contig assignments of latrophilins 
in cod. Performance of Scipio and the EMS-pipeline in prediction of lat-
rophilin genes in cod. The cod genome gadMor1 (Ensembl) was queried 
with zebrafish protein sequences (Ensembl GPRCz10). Scipio was run with 
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