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Abstract: There is much interest in effective copper chelators to correct copper dyshomeostasis in
neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression
in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal
domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three
metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed.
It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies
and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in
a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance
to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained
AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about
10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding
motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

Keywords: copper transporter 1 metal-binding extracellular domain cloning; copper/silver chelation;
Escherichia coli filamentous growth; secondary silver nanoparticles formation

1. Introduction

Copper is a structural and catalytic cofactor of vitally essential enzymes [1,2]. Also, it controls
activity of ubiquitous and specific transcription factors (e.g., HIF1, p53, Sp1) [3–5], participates in
cell signaling, cell cycle control, and apoptosis [6–11], and it is required for neovascularization [12].
At the same time, copper is a potentially toxic agent, so its ions can initiate Fenton type reactions and
produce reactive oxygen species that provoke oxidative stress increasing the risk of development of
severe cardiovascular, neurodegenerative, and neoplastic diseases [13,14]. Furthermore, in patients
with disorders associated with hepatic copper accumulation, zinc in the DNA-binding domain of the
nuclear hormone receptors is replaced by copper; and as a result, the specific binding of hormone
receptors to their cis-elements is disrupted [15]. In cells and extracellular spaces of multicellular
organisms, copper is bound in coordination spheres of cuproenzymes [13], copper transporting [16]
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or depositing proteins [17]. It can be released when the structure of these proteins is damaged [18].
Therefore, copper chelators are considered as a promising therapeutic agent to scavenge free copper
ions in the extra- and intracellular spaces [11,19–22].

The central member of a safe copper transport into eukaryotic cells is the highly-conserved protein
copper transporter 1 (CTR1), which belongs to the family of high affinity Cu(I) transporters [23].
CTR1 is localized in the cell membrane and functions as a homotrimer of 35 kDa glycoprotein
subunits. The subunit contains an N-terminal extracellular (ecto)domain (NdCTR1), a transmembrane
domain including 3 α-helical motifs, and a short cytosolic C-terminal domain with a copper binding
His-Cys-His-motif. The NdCTR1 is N- and O-glycosylated and contains 66 amino acid residues
(in humans), which form a set of three unique metal-binding motifs: His/Met-, His-, and Met-enriched
(Swiss-Prot: Q8K211.1). According to the concept of hard and soft acids and bases (Pearson’s hard
and soft acid-base (HSAB) principle) they have different presumptive affinity for Cu(II) and Cu(I) [24].
Motifs 1 and 2 are presumably more affine to Cu(II), while motif 3 should be more affine to Cu(I) [25].
CTR1 was shown to bind abiogenic silver ions [26] and cisplatin (a widely used antitumor drug) [27]
to transport them into the cells. Ag(I) is isoelectronic to Cu(I) so it is efficiently bound by Cu(I)
transporters and carriers; however, it cannot be oxidized in aqueous media, and when included instead
of copper to cuproenzymes, it disrupts their structure and catalytic activity [28]. This may be a basis
for the use of silver to retard the growth of tumors that require increased amounts of copper [29,30].

The central position of CTR1 as the major pathway for cellular copper uptake in the intestinal
epithelium, hepatic and non-hepatic tissue, and particularly tumor cells, as well as its competence to
transfer silver and cisplatin, attract considerable attention to the properties of its N-terminal domain.
The kinetics of copper, silver and cisplatin binding to metal-binding motifs from NdCTR1 has been
studied. Their role as well as the importance of single amino acid residues for copper and cisplatin
transport has been evaluated [31–33]. However, currently there are no data on NdCTR1 properties as
chelator for copper, silver or cisplatin in conditions that model the situation in vivo.

In this work, the ectodomain of human CTR1 (hNdCTR1) was cloned into an expression vector in
Escherichia coli cells, and the influence of recombinant protein on the sensitivity of E. coli cells to silver
and copper ions was investigated. The realization that NdCTR1 can chelate copper has prompted the
development of copper-specific chelator.

2. Materials and Methods

2.1. E. coli Strain and Growth Conditions

The study was performed on E. coli cells of strain BL21 (DE3) (Stratagene, San Diego, CA, USA)
with the genotype E. coli B F- dcm ompT hsdS(rB- mB-) gal λ(DE3). The cells were grown aerobically
in liquid or agar nutrient medium based on bovine serum hydrolysate (Samson-Med, St. Petersburg,
Russia) at 37 ◦C. Antibiotic (ampicillin, Sigma, Schnelldorf, Germany) was used at the concentration
100 mg/L.

2.2. Cloning of N-Terminal Extracellular Domain of hCTR1

The total RNA fraction was extracted from cultured HepG2 cells and used as a template
for cDNA synthesis. A 198 bp fragment of the SLC31A1 gene, corresponding to hNdCTR1,
was amplified by PCR from the cDNA, using forward and reverse primers (Synthol, Moscow,
Russia): 5,cagggatccgatcattcccaccatatggggatg3, and 5,cagctcgagtccagctgtattgatcacca3. The purified
fragment (GeneJET PCR Purification Kit, Thermo Scientific, Waltham, MA, USA) was then digested
with the restriction enzymes BamH I and Xho I (New England Biolabs, Hitchi, UK) and cloned
into glutathione-S-transferase (GST) gene fusion plasmid vector pGEX-4T-1 (Amersham Biosciences,
Little Chalfont, UK); the resulting plasmid was named pNdCTR1. E. coli strain BL21 (DE3)/pNdCTR1
was obtained by chemical transformation (TransformAid™, Thermo Scientific) of the bacteria. Plasmids
were isolated using the alkaline method with GeneJET Plasmid Miniprep Kit (Thermo Scientific).
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Correctness of the DNA insertion was verified by restriction analysis and direct sequencing. Sequencing
was carried out in a MegaBACE 1000 automated sequencer (Molecular Dynamics, Sunnyvale, CA,
USA) using a BigDye terminator v1.1 cycle sequencing kit (Applied Biosystems, Warrington, UK).
Fusion protein synthesis was induced by isopropyl-β-D-thiogalactoside (IPTG, Sigma, St. Louis, MO,
USA). The optimum of IPTG concentration (0.5 mM) and induction time (3.5 h) were determined
based on the amount of the target protein in the crude cell extract as determined by PAGE analysis.
The protein bands were visualized by Coomassie G250. A commercial mix of proteins with molecular
mass from 14 to 200 kDa (Termo Scientific) was used as markers.

2.3. Polyacrylamide Gel Electrophoresis, Immunoblotting, and Immunoprecipitation

SDS-PAGE, protein transfer to nitrocellulose membrane (Amersham) and visualization of
immunoreactive products were carried out as described earlier [28]. To identify the recombinant protein,
antibodies to CTR1 were used. The antibodies were obtained to a chemically synthesized 15-mer peptide
corresponding to the second metal-binding domain of hNdCTR1 (P15: 17TMQPSHHHPTTSASH31).
The synthesized peptide was conjugated with hemocyanin isolated from red king crab (Paralithodes
camtschaticus), and the complex was used for immunization of the rabbits. To test the specificity
of the obtained antibodies, conjugates of p15 with succinylated bovine serum albumin (BSA) were
applied [34]. The antibodies to P15/hemocyanin interacted with modified BSA/P15 and P15 displaced
them from the immunocomplex; also, they detected the polypeptide corresponding to mono and
trimer of CTR1 on the plasma membrane of murine hepatocytes.

Immunoprecipitation was performed in aliquots of the cell lysate; protein concentration in the
samples was equalized by OD280. The antiserum (600 µL) to CTR1 was added to the same volume of
the cell lysate and incubated overnight under continuous mixing at 4 ◦C. Next, 30 µL of goat anti-rabbit
IgG (Abcam) were added to the mixture and incubated for 4 h at room temperature. The precipitate
was collected by centrifugation and dissolved in pure nitric acid. Silver concentration was measured
in both the lysate (100%) and the immunoprecipitate, the quantity (%) of silver bound to hNdCTR1
was calculated.

2.4. Treatment of Cells with CuSO4 or AgNO3

E. coli cells were cultured overnight (E. coli strain expressing the GST-NdCTR1 fusion protein
or the parent GST protein), washed with water and diluted 1:20 in a solution containing CuSO4 or
AgNO3 in various concentrations. Control cell samples were incubated in water. After the treatment,
the cells were titrated by 10-fold dilution method to assess cell survival by colony forming units (CFU)
on agar plates. Colonies were counted after 24 h incubation at 37 ◦C and results were expressed using
logarithmic notation, where the value shown is the base 10 logarithm of the concentration [35].

2.5. Disruption and Fractionation of Bacterial Cells

Cells were washed with water, resuspended and treated with lysozyme (1 mg/mL, Serva,
Heidelberg, Germany) for 30 min at room temperature. Next, the cells were disrupted by ultrasound
(UZDN-2T, 44 kHz, twelve 30 s cycles with 60 s intervals for cooling) in an ice bath. The soluble
cytoplasmic fraction was separated by centrifugation (15,000× g, 10 min, 4 ◦C) and used for
chromatographic and immunoprecipitation studies. The samples were equalized by OD280.

2.6. Gel-Filtration Chromatography

Bacterial cytosol samples were fractioned by gel-filtration on a Sephacryl S-200 column
equilibrated with 20 mM Tris-HCl, 100 mM NaCl buffer, pH 7.6. Detection of the biological material
was carried out by spectrophotometry at 280 nm. The void volume of the column was estimated using
blue dextran (Sigma). The fractions (~1.5 mL) were collected; GST activity and silver concentration
were measured in each fraction. The column was calibrated with blue dextran, electrophoretically
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pure human ceruloplasmin, 132 kDa (A610/280 = 0.054), isolated by two-stage chromatography [36],
BSA, 70 kDa (Sigma), and horse cytochrome C, 13 kDa (Serva).

2.7. GST Activity Determination

GST activity was measured with glutathione (Serva) and 1-chloro-2,4-dinitrobenzene (Sigma)
according to the Sigma protocol (https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/
Sigma/Bulletin/cs0410bul.pdf). The change in absorbance at 340 nm was recorded automatically at
a room temperature and the GST activity was expressed in terms of change in absorbance per 1 min.

2.8. Transmission Electron Microscopy Analysis of Cells

E. coli cells were cultured overnight, diluted 25-fold and incubated in aqueous media containing
3.5 µM AgNO3 for 1 h at 37 ◦C. Conventional lacey carbon films suspended on transmission electron
microscopy (TEM) copper grids were dampened with the bacterial suspensions, dried in air at room
temperature and then studied using Jeol JEM-2100F (accelerating voltage 200 kV, point-to-point
resolution 0.19 nm) equipped with an energy-dispersive X-ray spectrometer (EDX) Oxford Instruments
INCA. Selected area electron diffraction (SAED) patterns were obtained from areas of about 0.1–1 µm
in size using corresponding selective apertures. The characteristic X-ray spectra used for elemental
analysis were acquired by focusing the electron beam to a spot ranging from 1 nm to 1 µm in diameter
depending on the studied object. Note, that the prominent copper peak in the presented EDX spectra
is related to the copper support of TEM specimens.

2.9. Measurement of Silver Concentration

Silver concentration was measured by graphite furnace atomic absorption spectrometry (FAAS)
with electrothermal atomization and Zeeman correction of nonselective absorption on a ZeeNit P650
spectrometer (Analytik Jena, Jena, Germany) with automatic sampling duplication. Bacterial samples
were homogenized in PBS, and dissolved with three volumes of pure concentrated HNO3. The silver
concentration in chromatographic fractions was measured without additional processing.

3. Results

3.1. Cloning of hCTR1 Ectodomain

The DNA fragment, containing 198 bp and corresponding to the full-sized hNdCTR1 was obtained
by PCR with reverse transcription of total RNA fraction of HepG2 cells and cloned in pGEX-4T-1
vector as described in the Methods. The correctness of the cloned NdCTR1 inset was verified by
direct sequencing (Figure 1A). The growth rates of E. coli BL21(DE3) transformed with pGEX-4T-1
or pNdCTR1 cells before and after incubation with IPTG were the same as the growth rate of the
non-transformed strain (Figure 1B). IPTG-induced E. coli cells bearing the parent pGEX-4T-1 plasmid
synthesized a 27.9-kDa polypeptide corresponding to GST (Figure 1C). The BL21 (DE3)/pNdCTR1
E. coli cells synthesized a 34.4-kDa polypeptide, and its molecular weight corresponded well to the
calculated weight of the fusion protein, which included both GST and 66 amino acid residues of
hNdCTR1 (Figure 1C). The maximum production of the fusion protein was observed at 3.5 h after the
induction with 0.5 mM IPTG (Figure 1D). The fusion protein contained a region that was recognized
by anti-CTR1 antibodies (Figure 1E). Thus, the presented data demonstrate successful expression of
the cloned CTR1 ectodomain. After cell disruption, the major part of recombinant protein was found
in the fraction known as inclusion bodies, which could not be solubilized under mild conditions of
2 M urea and 1 mM β-mercaptoethanol (Figure 1F). In the cells transformed with pGEX-4T-1 plasmid,
GST protein after IPTG induction was found in cytosol (major part) and in pellet (minor fraction). So,
fusion protein demonstrated a higher propensity to form the inclusion bodies (Figure 1G).

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/cs0410bul.pdf
https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/cs0410bul.pdf
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Figure 1. Cloning of ectodomain of human copper transporter 1 (hNdCTR1) and analysis of recombinant fusion protein. (A) The correspondence of the cloned 
nucleotide sequence to the region of the human CTR1 gene. (B) The growth rate of the control Escherichia coli strain and strains transformed with plasmids expressing 
either glutathione-S-transferase (GST) or GST-hNdCTR1. Cycles: E. coli BL21(DE3); triangles: E. coli BL21(DE3)/pGEX-4T-1; squares: E. coli BL21(DE3)/pNdCTR1. 
(C) PAG-SDS electrophoresis of crude cellular extracts from E. coli BL21(DE3)/pGEX-4T-1 (lane a) and E. coli BL21(DE3)/pNdCTR1 (lane b) after incubation with 
isopropyl-β-D-thiogalactoside (IPTG) for 3.5 h. (D) PAG-SDS electrophoresis and (E) immunoblotting with antibodies to CTR1 of crude cellular extracts from E. coli 
BL21(DE3)/pNdCTR1 after incubation for 0, 1.5, and 3.5 h. Lanes a, b, c: total protein extract of non-induced culture; lanes d, e, f: total protein extract of IPTG induced 
culture. (F,G) PAG-SDS electrophoretic analysis of subcellular fractions from E. coli cells transformed with pNdCTR1 and pGEX-4T-1, respectively: cell crude extract 
(a), cell lysate after ultrasound treatment (b), soluble fraction of lysate obtained by centrifugation for 15 min at 16,000 g (c). Insoluble fraction of pellet was 3 times 
treated with solution containing 1% Triton X-100, 5 mM DTT and 2 M urea. After each treatment, soluble and insoluble fractions were separated by centrifugation 
for 15 min at 16,000 g. Consecutive pellets: d, f, h, and corresponding to them soluble fractions: e, g. arrows show molecular weights.

Figure 1. Cloning of ectodomain of human copper transporter 1 (hNdCTR1) and analysis of recombinant fusion protein. (A) The correspondence of the cloned
nucleotide sequence to the region of the human CTR1 gene. (B) The growth rate of the control Escherichia coli strain and strains transformed with plasmids expressing
either glutathione-S-transferase (GST) or GST-hNdCTR1. Cycles: E. coli BL21(DE3); triangles: E. coli BL21(DE3)/pGEX-4T-1; squares: E. coli BL21(DE3)/pNdCTR1.
(C) PAG-SDS electrophoresis of crude cellular extracts from E. coli BL21(DE3)/pGEX-4T-1 (lane a) and E. coli BL21(DE3)/pNdCTR1 (lane b) after incubation with
isopropyl-β-D-thiogalactoside (IPTG) for 3.5 h. (D) PAG-SDS electrophoresis and (E) immunoblotting with antibodies to CTR1 of crude cellular extracts from E. coli
BL21(DE3)/pNdCTR1 after incubation for 0, 1.5, and 3.5 h. Lanes a, b, c: total protein extract of non-induced culture; lanes d, e, f: total protein extract of IPTG induced
culture. (F,G) PAG-SDS electrophoretic analysis of subcellular fractions from E. coli cells transformed with pNdCTR1 and pGEX-4T-1, respectively: cell crude extract
(a), cell lysate after ultrasound treatment (b), soluble fraction of lysate obtained by centrifugation for 15 min at 16,000 g (c). Insoluble fraction of pellet was 3 times
treated with solution containing 1% Triton X-100, 5 mM DTT and 2 M urea. After each treatment, soluble and insoluble fractions were separated by centrifugation for
15 min at 16,000 g. Consecutive pellets: d, f, h, and corresponding to them soluble fractions: e, g. arrows show molecular weights.
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3.2. hNdCTR1 Polypeptide Rescues E. coli Cells from the Toxic Action of Copper and Silver Ions

Sensitivity of E. coli cells to toxic effect of copper and silver ions was evaluated by the
conventional method of CFU determination. The experiments were performed in IPTG-induced
BL21(DE3)/pGEX-4T-1 or BL21(DE3)/pNdCTR1 strains. The cells were treated with copper sulfate
or silver nitrate as described in the Methods. The results indicated that copper ions reduced the
number of CFU in the reference strain more efficiently than in the strain producing recombinant
hNdCTR1 (Figure 2). The effect depended on copper concentration (Figure 2A) and time of incubation
(Figure 2B,C).
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Figure 2. (A) Effect of copper ions concentration on E. coli BL21(DE3)/pGEX-4T-1 (black bars) and
E. coli BL21(DE3)/pNdCTR1 (grey bars) after 24 h of treatment. Abscissa: CuSO4 concentration,
mM; ordinate: CFU, lg. (B) Effect of time on survival of E. coli BL21(DE3)/pGEX-4T-1 and E. coli
BL21(DE3)/pNdCTR1 treated with 0.25 mM copper ions (protocol of the experiment). (C) Bar graph
corresponding to the (B) experiment repeated three times. Black bars: E. coli BL21(DE3)/pGEX-4T-1;
grey bars: E. coli BL21(DE3)/pNdCTR1.
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In the same manner hNdCTR1 rescued E. coli cells from toxic effect of silver ions (Figure 3A–D).
Two features of the silver ions action on the survival of bacteria attract attention. First, the effect is
biphasic: the survival of GST-producing cells dropped in 10 min after the beginning of treatment,
then it raised and decreased again at longer periods of treatment. The rescue effect of hNdCTR1
manifested itself at long treatment times (Figure 3D). Second, the rescue effect of hNdCTR1 was
associated with silver accumulation. So, the total concentration of silver was two times higher in cells
producing hNdCTR1-GST than in the cells expressing parent GST (Figure 3E), and the viability of the
former cells was higher (Figure 3B,D).
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Figure 3. (A) Effect of silver ions on E. coli Bl21(DE3)/pGEX-4T-1 and BL21(DE3)/pNdCTR1 after
24 h of treatment (protocol of the experiment). (B) Bar graph corresponding to the (A) experiments
repeated three times. Black bars: E. coli Bl21(DE3)/pGEX-4T-1; grey bars: BL21(DE3)/pNdCTR1.
Abscissa: AgNO3 concentration, µM; ordinate: CFU, lg. (C) Effect of time on survival of E. coli
BL21(DE3)/pGEX-4T-1 and E. coli BL21(DE3)/pNdCTR1 treated with 3.5 µM AgNO3 (protocol of the
experiment). (D) Bar graph corresponding to the (C) experiment treated three times. Black bars: E. coli
Bl21(DE3)/pGEX-4T-1; grey bars: BL21(DE3)/pNdCTR1. Abscissa: time of treatment, h; ordinate:
CFU, lg. (E) Dynamic of Ag accumulation by E. coli BL21(DE3)/pGEX-4T-1 (black bars) and E. coli
BL21(DE3)/pNdCTR1 (grey bars) during incubation in 3.5 µM AgNO3. Abscissa: time, h; ordinate:
CFU, lg.
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3.3. hNdCTR1 Chelates Silver Ions

To investigate the ability of hNdCTR1 to bind metal ions we used silver ions as they are
considerably easier to track, because they are absent in the cells under normal conditions and
transported into the cell and excreted via the same pathways as copper. According to the gel-filtration,
in E. coli cells expressing the parent pGEX-4T-1 plasmid, GST functional homodimers were observed
(Figure 4A).
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In the cells synthesizing the fusion protein (Figure 4B), GST activity was also present in fractions,
corresponding to GST-hNdCTR1 homodimers (~70 kDa). However, the major part of GST activity was
observed in the molecular mass region corresponding to multimers of the fusion protein (more than 110 kDa).
The ability of full-sized hCTR1 subunits to form oligomers was described previously, and it was attributed
to the properties of the transmembrane domain [37]. The data show that the polypeptide moiety of
ectodomain may have its own role in CTR1 oligomerization. It is possible that oligomerization may be
a result of the absence of the carbohydrate chains. Also, it cannot be excluded that hydrophobic region
located behind the Met-rich motif on the C-terminal of the NdCTR1 (see Figure 1A) is responsible for
the oligomerization.

The GST activity of the fusion protein was approximately four times lower than of the parent GST.
Most likely, the tendency of the fusion protein to form oligomers partially blocked the access of the
substrate to GST active center. Silver atoms were found to be associated with both homodimers and
multimers of the fusion protein, but not with GST dimers (Figure 4B). Antibodies to CTR1 precipitated
complexes containing silver ions from cellular lysate. The silver content was three–four times higher
than in the non-specific precipitate (Figure 4B).

3.4. Silver Ions Induced Morphological Changes in E. coli Cells, Which Expressed Fusion Protein

The TEM analysis revealed no morphological changes in the bacterial cells synthesizing GST
(Figure 5A) or GST-hNdCTR1 (Figure 5B).

After AgNO3-treatment, most of the cells synthesizing GST had the unchanged morphology
(Figure 6A), and contained inclusions of silver chloride (Figure 6B). In a single case, silver nanoparticles
(SNP) were observed (Figure 6C,D).
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In the population of the cells synthesizing the fusion protein GST-hNdCTR1, the formation of
AgCl aggregates were found in some cases (Figure 7A,D), but the SNP were observed in most of the
cells (Figure 7B).
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In this cell population, filamentous cells contained SNP with the length exceeding 10 µm
were predominant (Figure 7C). Electron diffraction analysis showed that the resulting nanoparticles
contained both silver chloride and metallic silver (Figure 7E).

4. Discussion

This paper presents data on the specific properties of the extracellular hNdCTR1 inside the
bacterial cells. The full-sized hNdCTR1 was cloned by conventional approaches in E. coli cells as a part
of the GST-fusion protein. This domain’s identity to the human NdCTR1 was confirmed by direct
sequencing of the insertion and by immunological assays (Figure 1). The protein was progressively
synthesized after induction with IPTG and mostly accumulated in inclusion bodies, although some part
of the protein was present in the soluble fraction (Figures 1 and 4). From the inclusion bodies, the fusion
protein could be purified on Ni-Sepharose in one step (Figure S1). Expression of the heterogenous
protein did not affect the bacterial growth rate (Figure 1B) and cell’s morphology (Figure 5B), however,
it saved the bacteria from the toxic effects of copper and silver ions in a dose- and time-dependent
manner (Figures 2 and 3). Rescue of bacteria synthesizing protein with hNdCTR1 from silver ions
occurred in parallel with silver accumulation (Figure 3F).

In the GST producing cells, after treatment of cells with silver ions, the biphasic pattern of the
bacterial viability/time relationship was observed (Figure 3D). E. coli has three homeostatic systems
that sustain low cytoplasmic copper/silver levels. First, CopA is an ATPase that pumps out copper
from the cytoplasm to periplasmic space. Second, CueO is an oxidase that is considered to oxidize
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periplasmic Cu(I) to Cu(II) thus preventing copper from entering the cytoplasm. CopA and CueO are
both induced when the cell is exposed to high copper concentrations. When copper concentrations
become critical, the third system, Cus, which pumps out copper from the periplasm to extracellular
space, is activated [38]. These systems can be used by bacteria to reduce silver toxicity because many
properties of silver and copper ions are similar. In parallel, silver is chelated with high affinity by
the recombinant hNdCTR1 and thus detoxified by sequestration from the copper transport routes.
The probability of direct hNdCTR1 involvement in bacterial copper transport is very low, as cellular
Cu-chaperones contain cysteine-based metal-binding motifs (CXXC) with Ka near 10−18 for Cu/Ag [26],
while NdCTR1 extracellular motifs are completely unrelated to them and do not contain cysteine
residues (Ka near 10−6 for Cu/Ag) [39].

The gel-filtration data (Figure 4A), CTR1 immunoprecipitation studies (Figure 4C) and electron
diffraction analysis (Figure 7) are in good agreement with each other and demonstrate that silver is
chelated by NdCTR1, resulting in the decrease of its toxic effects (Figure 3). The survival is possibly
enhanced by the activation of the stress response, which is manifested by filamentous growth [40] and
the appearance of cells longer than 10 µm (Figure 7C). The presented data firmly show that NdCTR1
chelates the excess of copper and silver ions inside the cells. The cell growth is not retarded, so it
may be suggested that NdCTR1 does not affect normal cellular copper transport and does not extract
copper from the bacterial cuproenzymes.

The ability of hNdCTR1 to chelate metals may be used for practical purposes. Copper dyshomeostasis
is a ubiquitous feature of various neurodegenerative, oncology, and cardiovascular diseases, so biogenic
chelating agents can be considered as promising candidates for the development of new therapeutic
agents [41,42]. NdCTR1 has many favorable properties compared to the chelators used in clinics:
(a) it is an ectodomain of a natural human protein that is highly conserved in mammals, it should not
display much in-species variability, and thus the induction of an immune response would be unlikely;
(b) NdCTR1 is a multifunctional chelator (it can bind Cu(I) and Cu(II), Ag(I), and a series of platinum
compounds) [43,44]; (c) it does not contain cysteine residues, meaning that it is not prone to oxidation
to disulfides in the extracellular space, where no glutathione reducing system is available; therefore,
apo-NdCTR1 can bind copper in the bloodstream and block its transport to tumors; (d) NdCTR1 does
not extract copper from cuproenzymes, as copper chelators do [45].

In our work, we observed a conversion of silver ions to SNP (Figure 7). Recently, in vivo study
in rats showed that ionic silver after single intravenous injection de novo formed secondary SNP,
and the presence of such particles was proven by electron microscopy. However, silver ions were not
bioavailable after oral ingestion [46]. At the same time, chronic diet with ionic silver induced formation
of Ag0-inclusion in rats [28]. It is possible that Ag+ → Ag0 conversion is a common protective
mechanism in prokaryotes and eukaryotes against toxic effect of silver ions.

In summary, recombinant hNdCTR1 exhibited a specific chelating ability and was non-toxic.
Therefore, it can be considered as a prospectively new therapeutic agent for different disorders that are
linked to copper dyshomeostasis.

Supplementary Materials: The following are available online at www.mdpi.com/2218-273X/7/4/78/s1.
Figure S1. GST-NdCTR1 purification on Ni-column. a: initial inclusion bodies fraction; b: molecular weight
marker; c-f: void volume; g,h: elution with pH 6.0; i,j: elution with pH 5.0. Inclusion bodies were isolated by
several washings of insoluble cellular fraction obtained after cell wall disruption with washing buffer (2M Urea,
0.5% Triton X-100, 150 mM NaCl, 5 mM DTT, 20 mM Tris-HCl pH 7.5). Final pellet was solubilized in 6M Gu-HCl,
50 mM Tris-HCl pH 7.5 solution. After solubilization it was loaded on a preequilibrated with binding buffer
(6M Urea, 50 mM Tris-HCl, 0.5 M NaCl, 50 mM NaAc pH 8.0) Ni-IDA-Sepharose IMAC column. Elution was
performed with pH step-gradient (6.0, 5.0, 4.0). Elution buffer: 6 M Urea, 50 mM Tris-HCl, 0.5 M NaCl, 50 mM
NaAc, pH 8.0.
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