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Using a Classifier Fusion Strategy to 
Identify Anti-angiogenic Peptides
Lina Zhang  , Runtao Yang   & Chengjin Zhang

Anti-angiogenic peptides perform distinct physiological functions and potential therapies for 
angiogenesis-related diseases. Accurate identification of anti-angiogenic peptides may provide 
significant clues to understand the essential angiogenic homeostasis within tissues and develop 
antineoplastic therapies. In this study, an ensemble predictor is proposed for anti-angiogenic peptide 
prediction by fusing an individual classifier with the best sensitivity and another individual one with 
the best specificity. We investigate predictive capabilities of various feature spaces with respect to 
the corresponding optimal individual classifiers and ensemble classifiers. The accuracy and Matthew’s 
Correlation Coefficient (MCC) of the ensemble classifier trained by Bi-profile Bayes (BpB) features are 
0.822 and 0.649, respectively, which represents the highest prediction results among the investigated 
prediction models. Discriminative features are obtained from BpB using the Relief algorithm followed 
by the Incremental Feature Selection (IFS) method. The sensitivity, specificity, accuracy, and MCC of the 
ensemble classifier trained by the discriminative features reach up to 0.776, 0.888, 0.832, and 0.668, 
respectively. Experimental results indicate that the proposed method is far superior to the previous 
study for anti-angiogenic peptide prediction.

Angiogenesis is a process of new blood vessel formations1, which involves multiple biological behaviors including 
endothelial cell proliferation, migration, apoptosis, cell-cell and cell-matrix adhesion2. It contributes to vascu-
lar remodeling and maturation3. Angiogenesis is tightly regulated by stimulators and inhibitors4. Appropriate 
balance between stimulators and inhibitors plays a pivotal function in maintaining and regulating angiogenesis, 
which often involves embryonic development, wound healing, menstrual cycle, and hair cycle2. Disruption of 
such an equilibrium is often associated with pathological processes5,6, including heart diseases, stroke, diabetes, 
blindness2, proliferative diabetic retinopathy, and atherosclerosis7. Especially, abundant evidence has indicated 
that imbalanced angiogenesis is involved in cancer progression8,9, due to the fact that the newly formed tumor 
vasculature provides stable blood supply for the growing tumor mass and eventually disseminates tumor cells that 
have escaped from the primary tumor10.

Angiogenesis inhibitors are needed to down-regulate the progression of angiogenesis, which would contribute 
to the development of therapeutic treatments for these angiogenesis-related diseases11. Previous studies have indi-
cated that anti-angiogenic proteins or polypeptides can inhibit the angiogenesis process and have been applied 
in the therapies of cancers and other diseases12. However, most of anti-angiogenic proteins are large and com-
plex, and they would cause some serious side effects9,13. In contrast to proteins and polypeptides, anti-angiogenic 
peptides have advantages for therapeutic application, in terms of their small size, lack of toxicity, lower immune 
reaction to the host system, higher solubility in water, higher stability, receptivity to chemical modification, and 
increased bio-availability2. In addition, they have a better ability to target and penetrate tissues14. Therefore, 
anti-angiogenic peptides have been shown as promising therapies for tumors and other angiogenesis-related 
diseases15–17.

Several anti-angiogenic peptide candidates which are currently in clinical trials are showing promising 
results9,18. For example, YSNS, a cyclized anti-angiogenic peptide, has been demonstrated to inhibit the capillary 
network formation in vivo and limit tumor growth in the small cell lung cancer19. KV11, a 12-mer peptide, has 
an ability to suppress tumor growth and tumor microvasculature in breast cancer xenografts20. Anti-angiogenic 
SPARC peptides have been investigated to inhibit progression of neuroblastoma tumors21. In view of the physio-
logical functions and potential therapeutic purposes in organisms, identification of anti-angiogenic peptides may 
not only contribute to better fundamental understanding of the essential angiogenic homeostasis within tissues22. 
but also have significant implications for development of antineoplastic therapies6.
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There are some computational and experimental methodologies to identify anti-angiogenic pep-
tides. Based on the protein basic local alignment search tool (BLAST), searching the conserved domains of 
angiogenesis-associated proteins existing in the proteome is a common computational method to identify the 
putative anti-angiogenic peptides23. Homology modeling is another computational technique where the struc-
ture of an anti-angiogenic peptide is determined by comparison to a high-resolution structure or structures with 
sequence homology9. However, these two methods have a critical shortcoming that they can’t work when there 
are no homology sequences existing in the proteome. Computational screening via docking is a viable method 
of peptide discovery9. However, its complexity leads to a prohibitively expensive cost. Molecular dynamics (MD) 
is a computational simulation technique to identify the anti-angiogenic peptides, but the high computational 
cost hinders the process of MD9. In addition, experimental identification of anti-angiogenic peptides relies on an 
empirical process4, which is both labor intensive and time consuming22.

Recently, machine learning methods have been potential tools and have achieved promising results for identi-
fying protein attributes. Ettayapuram Ramaprasad AS et al.24 developed a support vector machine (SVM)-based 
predictor to identify anti-angiogenic peptides, using various features extracted from peptide sequences including 
Binary Profile Patterns (BPP), Amino Acid Composition (AAC), and Dipeptide Compositions (DPC). The accu-
racy and Matthew’s Correlation Coefficient (MCC) of the method are 0.748 and 0.500, respectively. The predic-
tion performance is acceptable, but there still exist the following shortcomings. (1) No feature selection technique 
was employed by the predictor proposed in the existing method24, which would lead to dimension disaster and 
poor performance25. Feature selection has the ability to get rid of redundancy information or noise and decrease 
model complexity26. (2) The method24 was based on an individual classifier which could have its own inherent 
defects27. It is generally accepted that the ensemble predictor integrating multiple basic classifiers of diverse learn-
ing policies (or diversely trained) is superior in carrying out statistics, calculation, and characterization analysis 
compared to its base classifiers27. Therefore, ensemble methods have been suggested as the promising measures 
for protein classification problems28.

In view of the above shortcomings, a classifier fusion method as illustrated in Fig. 1 is proposed in this paper 
to promote the ability to predict anti-angiogenic peptides. We investigate predictive capabilities of various feature 
spaces including CTD (Composition, Transition and Distribution), BpB (Bi-profile Bayes), and DFT (Discrete 
Fourier Transform). These features are all related with the properties of the target peptides. To decrease the com-
plexity of computation, the relevance of features and categories is assessed by Relief algorithm, and then IFS 
(Incremental Feature Selection) method is applied to capture a set of important features. Several individual clas-
sifiers are separately adopted to construct anti-angiogenic peptide prediction models. To achieve a better predic-
tion accuracy, the classifier with the best sensitivity and the classifier with the best specificity are selected as the 
base classifiers. The final output of the prediction model is equal to the average probability for a given sample to 

Figure 1. The construction process of the proposed anti-angiogenic peptide prediction model.
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be an anti-angiogenic peptide predicted by the base classifiers. 10-fold cross validation is carried out to verify 
the effectiveness of the prediction model. Simulation results show that the sensitivity, specificity, accuracy, and 
MCC of the proposed method reach up to 0.776, 0.888, 0.832, and 0.668, respectively, higher than those of the 
existing method24. The comparison results indicate that the proposed method is a promising tool for identifying 
anti-angiogenic peptides.

Results and Discussion
Performance of Various Feature Spaces on Different Individual Classifiers. To investigate the opti-
mal individual classifiers for different feature types, we evaluate the impact of various features on the performance 
of multiple individual classifiers. The prediction results of various feature spaces with respect to the correspond-
ing optimal classifiers are given in Table 1. Figure 2 illustrates the receiver operating characteristic (ROC) curves 
of various feature spaces with respect to the corresponding optimal individual classifiers. As listed in Table 1, 
the prediction accuracy of various feature spaces with respect to the corresponding optimal classifiers is in the 
range of 0.636 to 0.804, indicating an ideal prediction effect for anti-angiogenic peptides. As shown in Fig. 2, the 
accuracy, MCC, and area under the ROC curve (AUC) of BpB is 0.804, 0.626, and 0.902, respectively, which rep-
resents the highest prediction results among the various feature spaces. These results demonstrate that statistical 
differences about the position-specific amino acid composition at the N-terminal region and C-terminal region 
are relatively discriminative in anti-angiogenic peptide identification, which is in accordance with research results 
in the previous study24.

In addition, the optimal classifiers for different individual feature types are totally different (i.e., Naïve Bayes 
(NB) for BpB, Radial Basis Function Network (RBFNetwork) for CTD, and Nearest Neighbor Algorithm (NNA) 
for DFT). Except that the optimal classifier for BpB + CTD is identical to that for CTD, the optimal classifiers for 
hybrid feature spaces are totally different from those for their component feature types. These results show that 
an individual classifier is good at dealing with data classification with specific feature distribution. Except for 
BpB + CTD, other hybrid feature spaces have the identical optimal classifier, i.e., Random Forest (RF), demon-
strating that RF is remarkable on managing data classification with complicated structure. In addition, except 

Feature Space Optimal Classifier Sn Sp Acc MCC AUC

BpB NB 0.682 0.925 0.804 0.626 0.902

CTD RBFNetwork 0.551 0.766 0.659 0.325 0.698

DFT NNA 0.692 0.579 0.636 0.273 0.636

BpB + CTD RBFNetwork 0.701 0.804 0.752 0.507 0.806

BpB + DFT RF 0.710 0.850 0.780 0.566 0.843

CTD + DFT RF 0.664 0.682 0.673 0.346 0.699

BpB + CTD + DFT RF 0.673 0.794 0.734 0.471 0.802

Table 1. Prediction performance of various feature spaces with respect to the corresponding optimal individual 
classifiers.

Figure 2. ROC curves of various feature spaces with respect to the corresponding optimal individual classifiers.
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CTD + DFT, the accuracy values of hybrid feature spaces are not better than those of individual feature types. 
These results indicate that much redundant information may exist in hybrid feature spaces, which would deteri-
orate prediction performance in anti-angiogenic peptide prediction.

Performance of Various Feature Spaces on Ensemble Classifiers. To investigate the best ensemble 
classifiers with respect to different feature types, we first examine the prediction performance of various features 
on multiple individual classifiers. Then, the ensemble classifier is determined by combining an individual classifier 
with a better sensitivity and another one with a better specificity. Table 2 shows the prediction results of various 
feature spaces with respect to the corresponding optimal ensemble classifiers. The ROC curves of various feature 
spaces with respect to the corresponding optimal ensemble classifiers are depicted in Fig. 3. From Table 2, for var-
ious feature spaces, the corresponding ensemble classifiers are not identical. However, except CTD, the ensemble 
classifiers for other feature spaces all have an NB classifier, indicating that an NB classifier can predict negative 
samples better than other individual classifiers. For half of different feature spaces, NB + LR (Logistic Regression) 
is the optimal ensemble classifier to identify anti-angiogenic peptides. Therefore, to verify the effectiveness of the 
ensemble method, the individual performance of NB classifier and LR classifier on the feature spaces with which 
the ensemble classifier NB + LR achieves best performance is separately given in Tables 3 and 4.

As shown in Table 3, there is a big difference between Sn and Sp achieved by NB classifier on different feature 
spaces. As shown in Table 4, although LR classifier achieves a much balanced Sn and Sp on different feature 
spaces, the Accs are not satisfactory. Compared with the NB classifier and LR classifier, the ensemble classifier 
NB + LR as given in Table 2 achieves a much better prediction performance on the corresponding feature spaces.

From Tables 1 and 2, hybrid features on the ensemble classifiers do not outperform the corresponding com-
ponent individual feature types due to the redundant information in the hybrid features. The accuracy of BpB 
on the ensemble classifier is improved from 0.804 to 0.822. DFT, BpB + CTD, and BpB + CTD + DFT are all the 
same case with BpB on the corresponding ensemble classifiers. These comparison results reveal that an ensemble 
classifier can effectively improve prediction performance. However, there are exceptions for other feature spaces 
whose performance on the ensemble classier is worse than that on the optimal individual classier. In general, an 

Feature Space Optimal Classifier Sn Sp Acc MCC AUC

BpB NB + LR 0.766 0.879 0.822 0.649 0.870

CTD RBFNetwork + NNA 0.617 0.57 0.593 0.187 0.676

DFT NB + NNA 0.701 0.579 0.64 0.282 0.645

BpB + CTD NB + LR 0.794 0.72 0.757 0.515 0.842

BpB + DFT NB + LR 0.748 0.701 0.724 0.449 0.831

CTD + DFT NB + RF 0.542 0.72 0.631 0.266 0.700

BpB + CTD + DFT NB + LR 0.748 0.738 0.743 0.486 0.838

Table 2. Prediction performance of various feature spaces with respect to the corresponding optimal ensemble 
classifiers.

Figure 3. ROC curves of various feature spaces with respect to the corresponding optimal ensemble classifiers.
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ensemble classifier that integrates multiple basic classifiers of diverse learning policies (or diversely trained) can 
achieve better prediction performance than its component classifiers for protein attribute predictions28. These 
exceptions may be due to lack of diversity in learning policies of the component individual classifiers. The accu-
racy and MCC of the ensemble classifier trained by Bi-profile Bayes (BpB) features are 0.822 and 0.649, respec-
tively, which represents the highest prediction results among the investigated prediction models using various 
feature spaces with different classifiers. In addition, from Fig. 3, BpB with the optimal ensemble classifier of NB 
and LR yields the best AUC of 0.870. Therefore, this study employs BpB with NB + LR to construct the final pre-
diction model.

Feature Selection Results and Corresponding Analysis. The features extracted from the BpB method 
are sorted according to the weights from highest to lowest given by the Relief algorithm. As provided in Table S1, 
the feature with a higher ranking suggests that its ability to identify anti-angiogenic peptides is more powerful. 
Based on the feature ranking, the IFS method is implemented using the ensemble classifier NB + LR. Table S2 
shows the detailed prediction results of the prediction model at each iteration based on 10-fold cross validation. 
As given in Fig. 4, the IFS curve that displays the accuracy of the prediction model at each iteration reaches a peak 
value when the prediction model is built by the first 39 features in Table S1. Thus, the first 39 features in Table S1 
are selected to constitute the optimal feature subset for anti-angiogenic peptide prediction.

Feature Space Classifier Sn Sp Acc MCC AUC

BpB NB 0.682 0.925 0.804 0.626 0.902

BpB + CTD NB 0.626 0.832 0.734 0.478 0.729

BpB + DFT NB 0.570 0.804 0.687 0.384 0.704

BpB + CTD + DFT NB 0.589 0.841 0.715 0.444 0.715

Table 3. The individual performance of NB classifier on different feature spaces.

Feature Space Classifier Sn Sp Acc MCC AUC

BpB LR 0.785 0.748 0.766 0.533 0.766

BpB + CTD LR 0.757 0.720 0.738 0.477 0.782

BpB + DFT LR 0.738 0.682 0.710 0.421 0.710

BpB + CTD + DFT LR 0.748 0.710 0.729 0.458 0.729

Table 4. The individual performance of LR classifier on different feature spaces.

Figure 4. The IFS curve: the accuracy of the prediction model trained by different feature subsets.
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To analyze the effectiveness of the proposed feature selection method, using the ensemble classifier NB + LR, 
the prediction models with and without the proposed feature selection method are separately constructed. As 
shown in Table 5 and Fig. 5, with the optimal feature subset generated by the proposed feature selection method, 
the sensitivity, specificity, accuracy, MCC, and AUC of the prediction model are 0.776, 0.888, 0.832, 0.668, and 
0.872, respectively, better than those of the prediction model using all features. Therefore, the Relief combine 
with IFS is effective to eliminate irrelevant and redundant features existing in the BpB feature space. The final 
anti-angiogenic peptide prediction model will be constructed by the ensemble classifier NB + LR combined with 
the proposed feature selection method.

Performance Comparisons with the Existing Method on Benchmark Dataset. To objectively 
access the prediction ability for anti-angiogenic peptide prediction, performance measures obtained by our 
method and the existing method24 on the same benchmark dataset are compared. The detailed prediction results 
based on 10-fold cross validation are listed in Table 6. As given in Table 6, the proposed method achieves ideal 
results, obviously outperforming the previous study24. More specifically, the specificity, accuracy, and MCC of 
the proposed method are significantly (i.e., approximately 0.150, 0.084, 0.168) higher than those of the existing 
method24. Therefore, the proposed ensemble method is effective in predicting anti-angiogenic peptides, which 
may provide a deeper understanding for the essential angiogenic homeostasis, thereby beneficial to develop anti-
neoplastic therapies.

The outstanding performance of our predictor is mainly attributed to 3 aspects. (1) The BpB features contain 
discriminative information for distinguish anti-angiogenic pepetides from non-anti-angiogenic pepetides. (2) 
The Relief combined with IFS can make a distinct contribution to selecting the optimal features for identifying 
anti-angiogenic pepetides. (3) The ensemble learning method proposed here takes advantage of superiorities of 
individual classifiers with respect to specific data structure and distribution.

For classification problems, numerous studies have demonstrated that an effective way to improve predic-
tion performance is to design an advanced learning algorithm. Based on laplacian regularized sparse subspace 
learning, extreme gradient boosting machine, and ensemble learning, respectively, the computational models 
developed by Chen X et al. achieved superior prediction accuracy for miRNA-disease association29–31. Based 
on ensemble rotation forest learning, Wang L et al. proposed an effective computation method for large-scale 
identification of protein-protein interactions32. Based on ensemble learning, a new sequence-based method pro-
posed by Li JQ et al. shows a good performance for self-interacting protein prediction33. These existing learn-
ing algorithms will inspires us to propose novel machine learning models or other ensemble models to identify 
anti-angiogenic peptides in the future work.

Materials and Methods
Benchmark Dataset. In order to objectively make comparisons with the previous study for anti-angiogenic 
peptide prediction, the benchmark dataset constructed by Ettayapuram Ramaprasad AS et al.24 containing 107 
positive and 107 negative samples is employed to construct the proposed prediction model. None of the peptides 
has 70% sequence identity to any other in the positive samples. For detailed information of the benchmark data-
set, please refer to Table S3.

Feature Extraction. The selection of appropriate protein feature representation methods that can truly 
reflect their intrinsic correlation with the attribute to be predicted is critical to establish a powerful protein attrib-
ute predictor34. Appropriate feature representations make it easier for the classifier to recognize underlying regu-
larities, which is vital to the success of classifier learning35. Generally, one single feature extraction method cannot 
capture enough discriminative information for protein attribute predictions. Multiple features from different 
sources can complement each other in enhancing the discrimination power of a hypothesis. It is an extremely 
difficult task to discover the best combination of features that are distinctively responsible for accurate classifi-
cation as no standard technique is available for it36. In this study, after investigating the sequence properties of 
anti-angiogenic peptides carefully, hybrid features extracted from CTD, BpB, and DFT, which are all correlated 
with the intrinsic properties of these peptides, are adopted for anti-angiogenic peptide identification.

Method Sn Sp Acc MCC AUC

Without feature selection 0.766 0.879 0.822 0.649 0.870

With feature selection 0.776 0.888 0.832 0.668 0.872

Table 5. Prediction results with the proposed feature selection method or not.

Method Sn Sp Acc MCC AUC

Ref.24 0.757 0.738 0.748 0.50 —

This study 0.776 0.888 0.832 0.668 0.872

Table 6. Performance comparisons with the existing method on benchmark dataset.
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Bi-profile Bayes. Statistical differences between positive sample set and negative sample set exist in the frequen-
cies of 20 native amino acids occurred along peptide sequences, i.e. Cys, Pro, Ser, Arg, Trp, Thr and Gly are pre-
dominant in anti-angiogenic peptides while Ala, Asp, Ile, Leu, Val and Phe are not preferred in these peptides24. 
Important single peptides of a protein are usually hidden at its N- or C-terminal region, which is considered as 
a key factor for protein function determination37. As demonstrated in preliminary analysis24, there are statistical 
differences about the position-specific amino acid composition between positive and negative samples at the 
N-terminal region and C-terminal region. Certain residues (Ser, Pro, Trp, Thr, Arg, and Cys) are preferred at 
various positions at the N-terminal region of anti-angiogenic peptides while Ala, Val, Glu, Met, Phe, and Asn are 
prominent at various positions at the N-terminal region of non-anti-angiogenic peptides. For anti-angiogenic 
peptides, Cys, Gly, Asp, Ser, and Arg are prominent at different positions of the C-terminal region while Ala, Leu, 
Trp, Ile, and Val are preferred at distinct positions at the C-terminal region of non-anti-angiogenic peptides. In 
this study, BpB38 is utilized to calculate statistically significant differences in the distribution of amino acid resi-
dues at the N-terminal region and C-terminal region between positive and negative datasets.

Given a peptide segment P = {n1, …, ni, …, nm, c1, …, ci, …, cm} with m amino acids at the N-terminus and 
m amino acids at the C-terminus, where ni is the ith residue at the N-terminus and ci represents the ith residue 
at the C-terminus. After calculating the posterior probabilities of 20 natural amino acids at each position of the 
C-terminus and N-terminus from the benchmark dataset, a peptide sample can be formulated as

… … … …+ + + +P P P P P P P P P P P P( , , , ; , , , ; , , , ; , , , ), (1)N N N
m

C C C
m

N
m

N
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m1 2  denote the posterior probabilities of the corresponding amino acids 
at each position of the N-terminus and C-terminus compared to the positive dataset, respectively.
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m

N
m

N
m1 2 2  and …+ +P P P( , , , )C

m
C
m

C
m1 2 2  represent the posterior probabilities of each 

amino acid at each position of the N-terminus and C-terminus compared to the negative dataset, respectively. The 
length of N-terminus or C-terminus is set as 10, then each sample is converted into a 40-dimensional feature 
vector.

Composition, Transition, and Distribution. Primary analysis based on the amino acid composition and residue 
propensities in the existing method24 reveals that certain residues (Cys, Trp, Ser, Arg, and Pro) are preferred in 
anti-angiogenic peptides24. In addition, research results in39 have demonstrated that anti-angiogenic peptides, for 
the most part, are compositionally similar and they have a relatively high incidence of hydrophobic and cationic 
residues. In view of the essential physicochemical properties of anti-angiogenic peptides mentioned above, 20 
natural amino acids are divided into four groups on the basis of their hydrophobicity and charged character, that 
is the hydrophobic group C1 = {A, F, G, I, L, M, P, V, W}, the polar group C2 = {C, N, Q, S, T, Y}, the positively 
charged group C3 = {H, K, R}, and the negatively charged group C4 = {D, E}40. Based on the four groups, the 
concept of CTD proposed d by Dubchak I et al.41 is introduced to extract information on global composition, 
physicochemical property, and sequence order from peptide sequences.

With a particular property, composition (C) calculates the frequencies of each group in a given peptide, which 
is defined as

Figure 5. ROC curves with the proposed feature selection method or not.
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In a given peptide, transition (T) describes the frequencies of an amino acid with a particular property fol-
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where i, j ∈ {1, 2, 3, 4} represents the corresponding group. Ni,j is the number of the dipeptide containing two 
residues from two different groups.

Distribution (D) expresses the distribution pattern of each group which is measured by the position of the 
first, 25%, 50%, 75%, and 100% of each of the four groups along the sequence, which can be calculated by
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where Ni,1 is the chain length within which the first amino acid of the ith group is located. Ni,2, Ni,3, Ni,4, Ni,5 meas-
ure the chain lengths within which the 25%, 50%, 75%, and 100% of the amino acids of the ith group are located, 
respectively.

Discrete Fourier Transform. Physicochemical properties of amino acids are the most important features for 
protein biochemical reactions, which have a deep influence on protein structure and function forming42. Dings 
RP et al.39 have reported that hydrophobic residues are prone to occur in anti-angiogenic peptides. In addition, a 
protein sequence occasionally shows periodicity of hydrophobicity and hydrophilicity, which can contribute to 
protein attribute predictions43.

In this study, based on the hydrophobicity and hydrophilicity, a peptide sequence is transformed into a numer-
ical feature vector. Then the frequency information reflecting the periodicity is merged into a set of discrete 
components by transferring the coded sequence to its corresponding frequency domain, which reflects the distri-
bution of power contained in a peptide sequence over the frequencies44. Via the transformation, some important 
features hidden in the sequence could be revealed without information loss. This goal can be achieved with the 
help of DFT. DFT45, a transformation approach converting numerical values into frequency domain, reveals peri-
odicities of input data as well as the relative strengths of various periodic components.

The DFT of a given peptide sequence with the length of L is defined as

∑= = … −π

=

−F k H p e k L( ) ( ) , 0, 1, , 1,
(5)n

L

n
nkj L

1

2 /

where F(k) represents the periodicity characteristics of the sequence and the compositional patterns by sinusoidal 
waves with various frequencies. H(pn), n = 0, 1, …, L − 1 denotes physicochemical property values of each amino 
acid of the given peptide sequence.

The DFT power spectrum at frequency k is defined as

= | | = … − .PS k F k k L( ) ( ) , 0, 1, , 1 (6)2

The fourier coefficients partially reflect the sequence order information. Generally, the low-frequency com-
ponents of DFT contain more biological significance than high frequency noisy ones46. Hence the DFT power 
spectrums at low frequencies are chosen as effective features. The minimum length of peptide sequences in the 
benchmark dataset is 10. For the hydrophobicity or hydrophilicity of amino acids, we use 10 low frequency DFT 
power spectrums to represent the sequences.

Feature Selection. Not all the extracted features can contribute to the prediction accuracy. Commonly, 
hybrid features from various sources would bring some redundant or irrelevant features, which may deteriorate 
the generalization ability and the performance of learning algorithms25. To eliminate the redundant features and 
improve prediction performance, it is necessary to develop feature selection techniques to pick out the optimal 
features, which can also contribute to simplifying the classifier and gaining deeper insights into the intrinsic 
properties of protein sequences. To obtain the optimal feature subset, the Relief algorithm combined with IFS 
method is employed in this study.

In order to describe the correlation between class labels and features, Kira K and Rendell LA developed a fea-
ture selection algorithm called Relief in 199247. It runs in low-order polynomial time, and is noise-tolerant to 
feature interactions. With the ability to differentiate the class labels of close samples, Relief is an effective iterative 
algorithm to evaluate the prediction ability of each feature by setting feature weights within the interval [0, 1]48, 
which is represented as

= − ++W W diff Y s NH s
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n
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where Wp
i  and +Wp

i 1 stands for the assigned weights for a given feature p at the ith iteration and the (i + 1)th iter-
ation, respectively. si denotes one of the samples in the dataset numbered i. NH(si), called nearest hit, denotes the 
neighbor samples of si in the sample set Y where the samples have the same class label as si. NM(si), called nearest 
miss, denotes the neighbor samples of si in the sample set S where the samples have the different class labels as si. 
n denotes the number of samples generated randomly. In order to search the nearest neighbor sample, this paper 
uses the formula (8) to calculate the distance of different samples.

In general, the feature weight calculated by the Relief algorithm is positively correlated with the prediction 
ability of the corresponding feature. According to the weights from highest to lowest, the considered features can 
be sorted.

In order to obtain the optimal feature subset, the IFS (Incremental Feature Selection) method, a proverbial 
searching strategies in feature selection, is adopted in this study. Based on the feature ranking, the IFS method 
is implemented in the following steps: First, generate an empty feature subset, and then add the features to the 
feature subset one by one with the weight from highest to lowest. At each iteration, with a new feature added, a 
new feature subset is generated to construct a new prediction model. The feature subset that achieves the highest 
prediction accuracy will be selected as the optimal feature subset.

Machine Learning Method. Random Forest. The random forest (RF) algorithm, proposed by Breiman49, 
is a supervised learning algorithm that has been successfully employed in classification problems50,51 and achieves 
satisfactory performance. It is an ensemble classifier generating a multitude of decision trees, where each decision 
tree is constructed based on the benchmark dataset and produces a classification label. To predict a test sample, 
its feature vector is put into each of the decision trees in the forest, and each tree gives a vote suggesting one class. 
The predicted result of the RF is decided based on the most votes given by all the individual trees52. RF can reduce 
the output variance of individual trees, and thus improves the stability and accuracy of classification. In addition, 
it is relatively robust to noise and outliers49.

Radial Basis Function Network. The radial basis function network (RBFNetwork) is suitable for solving function 
approximation and pattern classification problems due to its faster training procedure and better approximation 
capabilities53. In the classical RBFNetwork, there is an input layer, a hidden layer with a non-linear RBF activation 
function, and a linear output layer54. It uses the k-means clustering to provide the basis functions. The basis func-
tions are usually chosen as Gaussian and the number of hidden units are fixed a priori using some properties of 
input data. RBFNetworks have advantages of strong tolerance to noise and good generalization55.

Naïve Bayes. Naïve bayes (NB) is generally known as a simple probabilistic classifier, which has been success-
fully used in the realm of bioinformatics56,57. The naïve bayes assumes the attribute variables to be independent 
from each other, which can greatly reduce the complexity of the development of the classifier.

Logistic Regression. The crucial limitation of linear regression is that it cannot deal with dependent variables 
that are dichotomous and categorical. Logistic regression (LR) is an effective method to find the best fitting 
model to describe the relationship between the categorical dependent variable and a set of independent numeric 
variables58.

Nearest Neighbor Algorithm. Nearest neighbor algorithm (NNA) is a machine learning technique based on clus-
ter theory. Despite its simplicity, NNA often performs nearly as well as more sophisticated methods. Based on the 
NNA classification principle, a new sample is assigned to the same class as the one in the benchmark dataset that 
is nearest to the query sample59.

Classifier Fusion. Every single learning strategy has its own shortcomings and could not always perform well 
on all datasets60. The classifier fusion emerges as a promising measure to overcome this problem28,61. A fusion of 
classifiers is a collection of multiple basic individual classifiers with diverse learning policies and then aggregates 
the outputs of all independent classifiers to tackle the same classification task62. In general, the outputs of different 
single classifiers tend to be different for a given classification problem. But at the same time they have the ability 
to correct each other’s mistakes. Therefore, the prediction ability of classifier fusion is usually superior to that of 
its component single classifier63. Hansen LK and Salamon P64 has theoretically demonstrated that the classifier 
fusion gives much better performance compared to its base classifiers.

In this study, we evaluate prediction performance of different classifiers including radial basis function net-
work, naïve bayes, logistic regression, nearest neighbor algorithm and random forest, respectively. Then the ulti-
mate result is determined by the average probability of the outputs obtained from one classifier which is good 
at predicting negative class (with a higher specificity) and another one which is good at predicting positive class 
(with a higher sensitivity). WEKA machine learning platform65 is used for implementing all the algorithms and 
the classifier fusion method.

Performance Evaluation. Independent dataset test, jackknife test, and sub-sampling test are the 3 com-
mon methods to measure the performance of a predictor66. For a given prediction problem, the output result 
generated by the jackknife test is unique while the other 2 methods are not67,68. Therefore, the jackknife test can 
obtain a more strict and objective prediction result, which make it extensively applied to verify the performance 
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of prediction models27,69. For the purpose of reducing the complexity of computing, 10-fold cross validation test24, 
one of sub-sampling test, is used to measure the performance of the anti-angiogenic peptide predictors.

Based on the prediction result generated by the 10-fold cross validation test, the following evaluation indexes 
are calculated to compare the proposed method with the existing method.

Sensitivity (Sn) represents the prediction accuracy of anti-angiogenic peptides, which is expressed as:

=
+

S TP
TP FN

,
(9)n

Specificity (Sp) represents the prediction accuracy of non-anti-angiogenic peptides, which is given by:

=
+

S TN
TN FP

,
(10)p

Accuracy (Acc) represents the overall prediction accuracy of all samples in the dataset, which is defined as:

=
+

+ + +
Acc TP TN

TP FP TN FN
,

(11)

Matthew’s correlation coefficient (MCC)70 is another effective measure for performance evaluation and cal-
culated as:

=
∗ − ∗

+ + + +
MCC TP TN FP FN

TP FN TP FP TN FP TN FN( ) ( ) ( ) ( )
,

(12)

where TP, TN, FP, and FN denote number of correctly predicted anti-angiogenic peptides, number of correctly 
predicted non-anti-angiogenic peptides, number of non-anti-angiogenic peptides incorrectly predicted as 
anti-angiogenic peptides, and numer of anti-angiogenic peptides incorrectly predicted as non-anti-angiogenic 
peptides, respectively.

To provide more insight into the prediction performance for anti-angiogenic peptides, the receiver operating 
characteristic (ROC) curve71 is plotted, and the area under the ROC curve (AUC) is calculated. The prediction 
model with a higher AUC value indicates that it achieves a better prediction performance49.

Conclusions
Anti-angiogenic peptides are thought to have physiological functions and excellent therapeutic potential for 
angiogenesis-related diseases. Identification of anti-angiogenic peptides accurately may not only contribute to 
better understanding essential angiogenic homeostasis within tissues, but also provide significant clues to develop 
antineoplastic therapies. To identify anti-angiogenic peptides, an ensemble learning method has been presented 
in this study by fusing an individual classifier with the best sensitivity and another classifier with the best speci-
ficity. To decrease the complexity of computation, the Relief algorithm followed by the IFS method is employed 
to eliminate the redundant features. Based on the benchmark dataset, the accuracy of various feature spaces (i.e., 
BpB, CTD, DFT) with respect to the corresponding optimal individual classifiers lies in the range of 0.636 to 
0.804, indicating discriminative power of features. The accuracy, MCC, and AUC of BpB with an NB classifier are 
0.804, 0.626, and 0.902, respectively, which represents the highest prediction results among the various feature 
spaces, demonstrating that position-specific statistical differences at the N and C-terminal region are suitable to 
identify anti-angiogenic peptides. The accuracy of BpB on the ensemble classifier (i.e., NB + LR) is 0.822, reveal-
ing that an appropriate ensemble classifier can effectively improve prediction performance. In addition, by means 
of the Relief-IFS, the sensitivity, specificity, accuracy, MCC, and AUC of the prediction model are 0.776, 0.888, 
0.832, 0.668, and 0.872, respectively, better than those of the prediction model using all features. Performance 
comparisons with the existing method on the same dataset indicate that the proposed ensemble method is effec-
tive in predicting anti-angiogenic peptides.

References
 1. Sacewicz, I., Wiktorska, M., Wysocki, T. & Niewiarowska, J. Mechanisms of cancer angiogenesis. Postepy Hig. Med. Dosw. 63, 

159–168 (2009).
 2. Sulochana, K. N. & Ge, R. Developing antiangiogenic peptide drugs for angiogenesis-related diseases. Curr. Pharm. Des. 13, 

2074–2086 (2007).
 3. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).
 4. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nature Rev. Drug Discov. 6, 273–286 (2007).
 5. Chuang, I. C. et al. The anti-angiogenic action of 2-deoxyglucose involves attenuation of VEGFR2 signaling and MMP-2 expression 

in HUVECs. Life Sci. 139, 52–61 (2015).
 6. Chiavacci, E. et al. The zebrafish/tumor xenograft angiogenesis assay as a tool for screening anti-angiogenic miRNAs. Cytotechnology. 

67, 969–975 (2015).
 7. Robinet, A. et al. Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through 

upregulation of MT1-MMP. J. Cell. Sci. 118, 343–356 (2005).
 8. Schneider, B. P. & Miller, K. D. Angiogenesis of breast cancer. J. Clin. Oncol. 23, 1782–1790 (2005).
 9. Rosca, E. V. et al. Anti-angiogenic peptides for cancer therapeutics. Curr. Pharm. Biotechnol. 12, 1101–1116 (2011).
 10. Tozer, G. M., Kanthou, C. & Baguley, B. C. Disrupting tumour blood vessels. Nat. Rev. Cancer. 5, 423–435 (2005).
 11. Albini, A., Tosetti, F., Li, V. W., Noonan, D. M. & Li, W. W. Cancer prevention by targeting angiogenesis. Nat. Rev. Clin. Oncol. 9, 

498–509 (2012).
 12. Nakamura, T. & Matsumoto, K. Angiogenesis inhibitors: from laboratory to clinical application. Biochem. Biophys. Res. Commun. 

333, 289–291 (2005).
 13. Wijngaarden, P. V., Coster, D. J. & Williams, K. A. Inhibitors of ocular neovascularization: promises and potential problems. JAMA. 

293, 1509–1513 (2005).



www.nature.com/scientificreports/

1 1SCientifiC RepoRts |  (2018) 8:14062  | DOI:10.1038/s41598-018-32443-w

 14. Ruoslahti, E., Duza, T. & Zhang, L. Vascular homing peptides with cell-penetrating properties. Curr. Pharm. Des. 11, 3655–3660 
(2005).

 15. Sitohy, B., Nagy, J. A. & Dvorak, H. F. Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res. 72, 1909–1914 
(2012).

 16.  Yi, J. M., Bang, O. S. & Kim, N. S. An evaluation of the anti-angiogenic effect of the Korean medicinal formula “Sa-mi-yeon-geon-
tang” in vitro and in ovo. BMC Complement Altern Med. 15 (2015).

 17. Yuan, D. et al. Anti-angiogenic efficacy of 5′-triphosphate siRNA combining VEGF silencing and RIG-I activation in NSCLCs. 
Oncotarget. 6, 29664–29674 (2015).

 18. Manegold, C. et al. Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line 
treatment for patients with advanced non-smallcell lung cancer. Invest. New Drugs. 31, 175–182 (2013).

 19.  Koskimaki, J. E. et al. Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer 
xenograft model. BMC Cancer. 10 (2010).

 20. Yi, Z. F. et al. A novel peptide from human apolipoprotein(a) inhibits angiogenesis and tumor growth by targeting c-Src 
phosphorylation in VEGF-induced human umbilical endothelial cells. Int. J. Cancer. 124, 843–852 (2009).

 21.  Chlenski, A. et al. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors. Mol. Cancer. 9 (2010).
 22. Karagiannis, E. D. & Popel, A. S. A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation 

and migration of endothelial cells. Proc. Natl. Acad. Sci. USA 105, 13775–13780 (2008).
 23.  Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic. Acids Res. 36 (2008).
 24. Ettayapuram Ramaprasad, A. S., Singh, S., Gajendra, P. S. R. & Venkatesan, S. AntiAngioPred: a server for prediction of anti-

angiogenic peptides. PLoS One. 10, e0136990 (2015).
 25. Qian, J., Miao, D. Q., Zhang, Z. H. & Li, W. Hybrid approaches to attribute reduction based on indiscernibility and discernibility 

relation. International Journal of Approximate Reasoning. 52, 212–230 (2011).
 26. Wang, P. & Xiao, X. NRPred-FS: a feature selection based two level predictor for nuclear receptors. J. Proteomics Bioinform. S9 

(2014).
 27. Dehzangi, A., Phon-Amnuaisuk, S. & Dehzangi, O. Enhancing protein fold prediction accuracy by using ensemble of different 

classifiers. Australian Journal of Intelligent Information Processing Systems. 26, 32–40 (2010).
 28. Si, J., Zhang, Z., Lin, B., Schroeder, M. & Huang, B. MetaDBSite: a meta approach to improve protein DNA-binding sites prediction. 

BMC Syst. Biol. 5, S7 (2011).
 29. Chen, X. & Huang, L. LRSSLMDA: laplacian regularized sparse subspace learning for miRNA-disease association prediction. Plos 

Computational Biology. 13, e1005912 (2017).
 30. Chen, X., Huang, L., Xie, D. & Zhao, Q. EGBMMDA: extreme gradient boosting machine for miRNA-disease association prediction. 

Cell Death & Disease. 9, 3 (2018).
 31. Chen, X., Zhou, Z. & Zhao, Y. ELLPMDA: ensemble learning and link prediction for miRNA-disease association prediction. RNA 

Biology. 25, 1–12 (2018).
 32. Wang, L. et al. An ensemble approach for large-scale identification of protein- protein interactions using the alignments of multiple 

sequences. Oncotarget. 8, 5149–5159 (2017).
 33. Li, J. Q., You, Z. H., Li, X., Ming, Z. & Chen, X. PSPEL: in silico prediction of self-interacting proteins from amino acids sequences 

using ensemble learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 14, 1165–1172 (2017).
 34. Chou, K. C. Some remarks on protein attribute prediction and pseudo amino acidcomposition. J. Theor. Biol. 273, 236–247 (2011).
 35. Ali, S., Majid, A. & Khan, A. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human 

breast cancer using physicochemical properties of amino acids. Amino Acids. 46, 977–993 (2014).
 36. Nath, A. & Subbiah, K. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion. Comput. 

Biol. Chem. 59, 101–110 (2015).
 37. Kaundal, R. & Raghava, G. P. RSLpred: an integrative system for predicting subcellular localization of rice proteins combining 

compositional and evolutionary information. Proteomics. 9, 2324–2342 (2009).
 38. Shao, J., Xu, D., Tsai, S. N., Wang, Y. & Ngai, S. M. Computational identification of protein methylation sites through bi-profile Bayes 

feature extraction. PLoS One. 4, e4920 (2009).
 39. Dings, R. P., Nesmelova, I., Griffioen, A. W. & Mayo, K. H. Discovery and development of anti-angiogenic peptides: a structural link. 

Angiogenesis. 6, 83–91 (2003).
 40. Shao, J. et al. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. Biosyst. 8, 

1520–1527 (2012).
 41. Dubchak, I., Muchnik, I., Holbrook, S. R. & Kim, S. H. Prediction of protein folding class using global description of amino acid 

sequence. Proc. Natl. Acad. Sci. USA 92, 8700–8704 (1995).
 42. Hou, T. et al. LAceP: Lysine acetylation site prediction using logistic regression classifiers. PLoS One. 9, e89575 (2014).
 43. Panda, B., Mishra, A. P., Majhi, B. & Rout, M. Prediction of protein structural class by functional link artificial neural network using 

hybrid feature extraction method. SEMCCO (2), Springer, In Bijaya Ketan Panigrahi; Ponnuthurai Nagaratnam Suganthan; Swagatam 
Das & Subhransu Sekhar Dash. 8298, 298–307 (2013).

 44. Sahu, S. S. & Panda, G. A novel feature representation method based on Chou’s pseudo amino acid composition for protein 
structural class prediction. Comput. Biol. Chem. 34, 320–327 (2010).

 45. Hoang, T. et al. A new method to cluster DNA sequences using Fourier power spectrum. J. Theor. Biol. 372, 135–145 (2015).
 46. Zhan, T. L. & Ding, Y. S. Using pseudo amino acid composition and binary-tree support vector machines to predict protein 

structural classes. Amino Acids. 33, 623–629 (2007).
 47. Kira, K. & Rendell, L. A. The feature selection problem: traditional methods and a new algorithm. In Proceedings of the Tenth 

National Conference on Artificial Intelligence, San Jose, CA, USA, 12–16 July, 12–134 (1992).
 48. Sun, Y. Iterative RELIEF for feature weighting: Algorithms, theories, and applications. IEEE Transactions on Pattern Analysis and 

Machine Intelligence. 26, 1035–1051 (2007).
 49. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 50. Li, C., Wang, X. F., Chen, Z., Zhang, Z. & Song, J. Computational characterization of parallel dimeric and trimeric coiled-coils using 

eff ective amino acid indices. Mol. BioSyst. 11, 354–360 (2015).
 51. Li, Y. et al. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and 

functional features. Sci. Rep. 4, 57–65 (2014).
 52. Lou, W. C. et al. Sequence based prediction of dna-binding proteins based on hybrid feature selection using random forest and 

gaussian Naïve Bayes. PLoS One. 9, e86703 (2014).
 53. Samantray, S. R., Dash, P. K. & Panda, G. Fault classification and location using HS-transform and radial basis function neural 

network. Electric Power Syst. Res. 76, 897–905 (2006).
 54. Yuan, L. F. et al. Prediction of the types of ion channel-targeted conotoxins based on radial basis function network. Toxicology in 

Vitro. 27, 852–856 (2013).
 55. Yu, H., Xie, T., Paszczyñski, S. & Wilamowski, B. M. Advantages of radial basis function networks for dynamic system design. IEEE 

Transactions on Industrial Electronics. 58, 5438–5450 (2011).
 56. Murakami, Y. & Mizuguchi, K. Applying the Naïve Bayes classifier with kernel density estimation to the prediction of protein-

protein interaction sites. Bioinformatics. 26, 1841–1848 (2010).



www.nature.com/scientificreports/

1 2SCientifiC RepoRts |  (2018) 8:14062  | DOI:10.1038/s41598-018-32443-w

 57.  Sambo, F., Trifoglio, E., Di Camillo, B., Toffolo, G. M. & Cobelli, C. Bag of Naïve Bayes: biomarker selection and classification from 
genome-wide SNP data. BMC Bioinformatics. 13 (2012).

 58. Peng, C. Y. J., Lee, K. L. & Ingersoll, G. M. An introduction to logistic regression analysis and reporting. The Journal of Educational 
Research. 96, 3–14 (2002).

 59. Hall, P., Park, B. U. & Samworth, R. J. Choice of neighbor order in nearest-neighbor classification. Annals of Statistics. 36, 2135–2152 
(2008).

 60.  Zou, C., Gong, J. & Li, H. An improved sequence based prediction protocol for DNA-binding proteins using SVM and 
comprehensive feature analysis. BMC Bioinformatics. 14 (2013).

 61. Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 33, 1–39 (2010).
 62.  Xu, R. F. et al. enDNA-Prot: Identification of dna-binding proteins by applying ensemble learning. BioMed Res. Int (2014).
 63. Lo, S. L., Chiong, R. & Cornforth, D. Using support vector machine ensembles for target audience classification on Twitter. PLoS 

One. 10, e0122855 (2015).
 64. Hansen, L. K. & Salamon, P. Neural network ensembles. IEEE Transactions on Pattern Analysis & Machine Intelligence. 12, 993–1001 

(1990).
 65. Frank, E., Hall, M., Trigg, L., Holmes, G. & Witten, I. H. Data mining in bioinformatics using Weka. Bioinformatics. 20, 2479–2481 

(2004).
 66. Chou, K. C. & Zhang, C. T. Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol. 30, 275–349 (1995).
 67. Chou, K. C. & Shen, H. B. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various 

organisms. Nature Protocols. 3, 153–162 (2008).
 68. Chou, K. C. & Shen, H. B. Recent progress in protein subcellular location prediction. Crit. Rev. Biochem. Mol. Biol. 370, 1–16 (2007).
 69. Ding, H. et al. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. Biomed Res. 

Int. 2014 (2014).
 70. Ding, H., Feng, P. M., Chen, W. & Lin, H. Identification of bacteriophage virion proteins by the ANOVA feature selection and 

analysis. Mol. Biosyst. 10, 2229–2235 (2014).
 71. Gribskov, M. & Robinson, N. L. Use of receiver operating characteristic(ROC) analysis to evaluate sequence matching. J. Comput. 

Chem. 20, 25–33 (1996).

Acknowledgements
This research is supported by China Postdoctoral Science Foundation (Grant Nos 2017M612270 and 
2018M630778) and National Natural Science Foundation of China (Grant Nos 61473335 and 61533011).

Author Contributions
L.N.Z. conceived and designed the experiments, R.T.Y. and C.J.Z. conducted the experiments, L.N.Z. and R.T.Y. 
analysed the results. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-32443-w.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-32443-w
http://creativecommons.org/licenses/by/4.0/

	Using a Classifier Fusion Strategy to Identify Anti-angiogenic Peptides
	Results and Discussion
	Performance of Various Feature Spaces on Different Individual Classifiers. 
	Performance of Various Feature Spaces on Ensemble Classifiers. 
	Feature Selection Results and Corresponding Analysis. 
	Performance Comparisons with the Existing Method on Benchmark Dataset. 

	Materials and Methods
	Benchmark Dataset. 
	Feature Extraction. 
	Bi-profile Bayes. 
	Composition, Transition, and Distribution. 
	Discrete Fourier Transform. 

	Feature Selection. 
	Machine Learning Method. 
	Random Forest. 
	Radial Basis Function Network. 
	Naïve Bayes. 
	Logistic Regression. 
	Nearest Neighbor Algorithm. 

	Classifier Fusion. 
	Performance Evaluation. 

	Conclusions
	Acknowledgements
	Figure 1 The construction process of the proposed anti-angiogenic peptide prediction model.
	Figure 2 ROC curves of various feature spaces with respect to the corresponding optimal individual classifiers.
	Figure 3 ROC curves of various feature spaces with respect to the corresponding optimal ensemble classifiers.
	Figure 4 The IFS curve: the accuracy of the prediction model trained by different feature subsets.
	Figure 5 ROC curves with the proposed feature selection method or not.
	Table 1 Prediction performance of various feature spaces with respect to the corresponding optimal individual classifiers.
	Table 2 Prediction performance of various feature spaces with respect to the corresponding optimal ensemble classifiers.
	Table 3 The individual performance of NB classifier on different feature spaces.
	Table 4 The individual performance of LR classifier on different feature spaces.
	Table 5 Prediction results with the proposed feature selection method or not.
	Table 6 Performance comparisons with the existing method on benchmark dataset.




