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Abstract

A large number of putative cis-regulatory sequences have been annotated in the human genome, 

but the genes they control remain poorly defined. To bridge this gap, we generate maps of long-

range chromatin interactions centered on 18,943 well-annotated promoters for protein-coding 

genes in 27 human cell/tissue types. We use this information to infer the target genes of 70,329 

candidate regulatory elements, and suggest potential regulatory function for 27,325 non-coding 

sequence variants associated with 2,117 physiological traits and diseases. Integrative analysis of 

these promoter-centered interactome maps reveals widespread enhancer-like promoters involved in 

gene regulation and common molecular pathways underlying distinct groups of human traits and 

diseases.

Genome-Wide Association Studies (GWAS) have identified thousands of genetic variants 

associated with human diseases and phenotypic traits1, but molecular characterization of 

these genetic variants has been challenging because they are mostly non-coding and lack 

clear functional annotation. Recent studies have shown that these non-coding variants are 

frequently marked by chromatin signatures of cis-regulatory elements (cREs), leading to the 

hypothesis that a substantial fraction of variants may act by affecting transcriptional 

regulation2,3. To formally test this hypothesis, it is critical to define the target genes of cREs 

in the human genome. However, inferring target genes of cREs based on linear genomic 

sequences is not straightforward, since cREs can regulate non-adjacent genes over large 

genomic distances4–7. Such long-range regulation can take place because chromatin fibers 

are folded into a higher-order structure in which distant DNA fragments can be juxtaposed 

in space8. Consequently, mapping spatial contacts between DNA has the potential to 

uncover target genes of cREs. To this end, Chromosome Conformation Capture (3C) 

techniques such as 4C-seq, ChIA-PET and Hi-C have been developed to determine 

chromatin interactions in a high-throughput manner9–15. More recently, Hi-C combined with 

targeted capture and sequencing (capture Hi-C) has emerged as a cost-effective method to 

map chromatin interactions for specific regions at high-resolution16–25.

In order to systematically annotate candidate target genes for the cREs in the human 

genome, we performed capture Hi-C experiments (Fig. 1a; Supplementary Fig. 1) to 

interrogate chromatin interactions centered at well-annotated human gene promoters for 

19,462 protein-coding genes (see Methods). We carried out these experiments with 27 

human cell/tissue types including embryonic stem cells, four early embryonic lineages 

(mesendoderm, mesenchymal stem cell, neural progenitor cells, and trophoblast), two 

primary cell lines (fibroblast cells and lymphoblastoid cells), and 20 primary tissue types 

(hippocampus, dorsolateral prefrontal cortex, esophagus, lung, liver, pancreas, small bowel, 

sigmoid colon, thymus, bladder, adrenal gland, aorta, gastric tissue, left heart ventricle, right 

heart ventricle, right heart atrium, ovary, psoas, spleen, and fat) for which reference 

epigenome maps have previously been produced as part of the Epigenome Roadmap project 

(Supplementary Fig. 2a; Supplementary Table 1)26. We designed and synthesized 12 capture 

probes for each promoter, six for each of the nearest HindIII restriction sites upstream and 

downstream of the transcription start site (TSS). Among 16,720 promoter-containing HindIII 

restriction DNA fragments, 14,357 (86%) contain a single promoter, but the 2,363 remaining 

HindIII fragments harbor multiple promoters (Supplementary Fig. 2b; see Methods). The 
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robustness and the coverage of capture probe synthesis were validated by sequencing 

(Supplementary Fig. 2c–f). On average, each capture Hi-C experiment produced 65 million 

unique, on-target paired-end reads, yielding a total of 1.8 billion valid read pairs, ~30% of 

which were between DNA fragments >15 kb apart (Supplementary Table 2).

To identify the long-range chromatin interactions from the capture Hi-C data, two 

normalization steps were introduced. First, the biases in capture efficiency of each promoter 

(Supplementary Fig. 2g, h) were calibrated with the variable “capturability” for each DNA 

fragment, defined as the fraction of total read counts mapped to the region, using a β-spline 

regression model (see Methods). Second, significant chromatin interactions were then 

identified after normalizing against the distance-dependent background signals (9% and 5% 

FDR for promoter-other and promoter-promoter interactions, respectively) (see Methods). 

Focusing on the HindIII fragments over 15 kb away and within 2 Mb of each promoter, we 

determined a total of 892,014 chromatin interactions (431,141 unique interacting pairs) in 

one or more of the 27 human cell/tissue types (Fig. 1b; Supplementary Fig. 3a; 

Supplementary Table 3–5). A total of 18,943 promoter regions were involved in at least one 

significant chromatin interaction in one or more cell/tissue types analyzed in this study. The 

median distance between the interacting DNA pairs was 158 kb, which is within a similar 

range of previously reported chromatin loops and eQTL associations (Supplementary Fig. 

3b; Supplementary Table 6)10,12,13,27. The slight discrepancy between Promoter Capture Hi-

C (pcHi-C) interactions and eQTL associations may be attributed to different experimental 

approaches, but nevertheless, the two methods give complementary information to each 

other. Between 13% and 45% pcHi-C interactions detected in a cell or tissue type were 

unique to that cell/tissue type (Supplementary Fig. 3c). As expected, most of the detected 

chromatin interactions were within Topologically Associating Domains (TADs) defined in 

the corresponding tissue/cell type (Supplementary Fig. 3d, e)28,11.

To demonstrate that pcHi-C could effectively and reproducibly capture long-range chromatin 

interactions as detected by whole-genome in situ Hi-C, we compared the pcHi-C data with 

the in situ Hi-C data obtained from four distinct biosamples, including two cell lines (IMR90 

lung fibroblast cell line and GM12878 lymphoblastoid cell line13) and two primary tissues - 

dorsolateral prefrontal cortex and hippocampus (see Methods). Results of pcHi-C 

experiments accurately recapitulated chromatin loops identified from in situ Hi-C assays in 

all samples, with the area under the receiver operating curve (ROC) ranging between 0.84 

and 0.91 (Supplementary Fig. 4a–e) (see Methods). Additionally, we found high 

reproducibility of pcHi-C chromatin interactions between two biological replicates (average 

ROC score = 0.85; the average Spearman’s rank correlation between replicates = 0.4; 

Supplementary Fig. 4f–j; Supplementary Table 7; see Methods), and between two 

independent studies (Supplementary Fig. 4k). The observation that interactions identified in 

both replicates exhibited the strongest interaction signals, while interactions identified in one 

replicate were moderately strong but moderately weak in the other replicate (Supplementary 

Fig. 4l–m), suggests that the interactions that are specific to one replicate may be due to 

under-sampling of the other replicate.

The chromatin interactome maps allowed us to assign candidate target genes for 70,329 

putative cREs, defined based on H3K27ac signals in each tissue/cell type profiled 
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previously26, for 17,295 promoters. Each promoter was putatively assigned to 25 cREs on 

average (Supplementary Fig. 5a), while 45% of cREs were assigned to one candidate target 

gene (Supplementary Fig. 5b), similar to the previous observation with DNase I 

hypersensitivity analysis across diverse human cell types29. We took advantage of the 

existing chromatin datasets collected for the same tissue/cell types26, and examined the 

relationship of the chromatin states between the cREs and the target promoters (see 

Methods). As expected, the fragments that extensively interact with multiple promoters were 

often found at active chromatin regions, such as TF binding clusters or super-enhancer 

regions (Supplementary Fig. 5c–i; Supplementary Table 8–10; see Methods)30. Furthermore, 

integrative analysis with ChromHMM model revealed that active promoters interact three 

times more frequently with DNA fragments harboring active enhancers than the bivalent 

promoters (Fig. 1c). On the other hand, the bivalent promoters interact five times more 

frequently with genomic regions associated with Polycomb Repressor Complexes than the 

active promoters (Fig. 1c). Further analysis based on a refined 50-chromatin-state 

ChromHMM model for 5 cell lines also supports our conclusion (Supplementary Fig. 6).

Three lines of evidence support that the above promoter-centered chromatin interactions 

contain information on regulatory interactions at each promoter in the corresponding cell/

tissue types. First, we compared the chromatin interactions at promoters with regulatory 

relationships inferred from expression quantitative trait loci (eQTL) in 14 matched tissue-

types that were recently reported by the GTEx consortium (see Methods) (Fig. 2a; 

Supplementary Fig. 7a–c)27. For each tissue and cell type, the previously reported eQTLs 

were highly enriched in the chromatin interactions identified in the corresponding tissue, 

with enrichment up to five-fold (ovary) (Supplementary Fig. 7d,e). A total of 42,627 eQTL 

associations were detected by P-O pcHi-C chromatin interactions, while only 21,362 were 

expected by random chance after controlling for linear genomic distances (Supplementary 

Table 11 and 12). Second, there is significant correlation between activities of cis-regulatory 

sequences and the assigned candidate target gene expression across multiple tissues and cell 

types, consistent with the purported regulatory relationships. Specifically, the levels of 

H3K27ac in these cREs were significantly correlated with both the promoter H3K27ac 

levels (Supplementary Fig. 8a) and transcription levels of the predicted target genes 

(Supplementary Fig. 8b) across these tissues/cell types. For example, POU3F3 gene 

expression (second column in Fig. 2b) was highly correlated with H3K27ac signals in the 

distal cRE (first column in Fig. 2b) connected by a tissue-specific chromatin interaction (last 

column in Fig. 2b). Lastly, cell/tissue-specific cRE-promoter pairs connected by pcHi-C 

interactions are significantly associated with active cREs and genes that are specific to the 

same cell/tissue types. For example, hippocampus-specific cRE-promoter chromatin 

interactions are significantly associated with active cREs (Fig. 2c) and highly expressed 

genes, albeit modestly, (Supplementary Fig. 8c) in hippocampus. Significant associations of 

cell/tissue-specific pcHi-C interactions in active cREs and highly expressed genes are found 

in other cell/tissue types as well (Fig. 2d–f; see Methods). The above results, taken together, 

strongly suggest that the predicted cRE-promoter pairs could uncover regulatory 

relationships between the cRE and target genes in diverse tissues and cell types.

Widespread promoter-promoter (P-P) interactions have been reported in cultured 

mammalian cells and a few primary tissues21,31. The promoter-centered interaction maps 
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obtained from 27 diverse tissues and cell types allowed us to test whether this is a general 

phenomenon. Indeed, consistent with previous reports, a significant fraction of the 

chromatin interactions was found between two promoters (9%, n = 79,989, Fisher’s Exact 

test P value < 2.2 × 10−16, Supplementary Fig. 9a). The physical proximity of these 

promoters is accompanied by a strikingly high correlation in chromatin modification state 

between the pair of promoters across diverse cell/tissue types (Fig. 3a, b). Previously, several 

promoter loci have been shown to function as enhancers to regulate distal genes32–35. In 

support of the functional significance of enhancer-like promoters identified in the current 

study, 6,127 eQTLs match P-P interaction pairs, while only 2,722 eQTLs were expected by 

random chance (Fig. 3c; Supplementary Fig. 9b–d; Supplementary Table 13 and 14; see 

Methods). For instance, strong chromatin interactions were found between the DACT3 and 

AP2S1 gene promoter regions, and one significant eQTL, rs78730097 (NC_000019) for 

DACT3 gene was located in the AP2S1 promoter in the dorsolateral prefrontal cortex 

(Supplementary Fig. 10a). Notably, this eQTL does not show any meaningful genetic 

association with the adjacent downstream gene (AP2S1) or nearby genes, but is exclusively 

associated with DACT3 (Supplementary Fig. 10b), suggesting regulatory potential of the 

AP2S1 promoter region in distal DACT3 gene regulation. To validate the function of 

enhancer-like promoters, we deleted 2 core promoter regions, where the downstream gene is 

not expressed but the promoter region shows active chromatin marks, using CRISPR-

mediated system (Supplementary Fig. 10c, d; Supplementary Table 15; see Methods). 

Deletion of the ARIH2OS core promoter resulted in marked down-regulation of the distal 

target gene (FDR adjusted P value = 0.02), NCKIPSD, identified by long-range chromatin 

interactions (Fig. 3d) with no significant or moderate effect on nearby genes (Supplementary 

Fig. 10e). Importantly, sgRNA-induced mutations in selected eQTLs proximal to 

transcriptional start sites demonstrated significant down-regulation effect on distal target 

genes but no significant effect on nearby gene expression in H1-hESC (Fig. 3e; 

Supplementary Fig. 10f; Supplementary Table 16; see Methods). Our results strongly 

suggest genome-wide presence of enhancer-like promoters in the human genome and 

provide additional insight into their potential function in distal gene regulation.

The above promoter-centered chromatin interaction maps allowed us to infer the target genes 

of sequences harboring disease-associated variants and understand the molecular basis of 

human disease. We focused on 42,633 putative disease/trait-associated genetic variants from 

a recent public repository of GWAS catalog1. Consistent with previous reports2,36, a 

significant portion of SNPs (30%, Fisher’s Exact test P value < 2.2 × 10−16) were found in 

putative cREs, emphasizing the importance of target gene identification of cREs in 

functional interpretation of disease associated genetic variants. Since the causal SNPs are 

unknown in most cases, we also included SNPs that lie outside the previously defined cREs 

for further analysis. In total, we were able to assign target genes for 27,325 SNPs in the list. 

On average, each SNP was assigned to between 1 and 3 candidate target genes in each cell/

tissue type, with the caveat that the precise number of target genes could potentially be 

affected by the modest resolution of our promoter capture strategy and the heterogeneity of 

tissue samples (Supplementary Fig. 11a; Supplementary Table 17; see Methods). The above 

maps therefore provided many more predictions of disease-associated genes than using the 

nearest neighbor gene predictions alone (one example is provided for the Parkinson’s 
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disease in Supplementary Fig. 11b, c), with only about 8% of the putative target genes 

inferred from our promoter-centered chromatin interaction maps were found to be the closest 

gene to the sequence variant (Supplementary Fig. 11d). To evaluate the validity of target 

predictions based on the promoter-centered chromatin interaction maps, we focused on 7 

GWAS variants that overlap with previously annotated cREs and eQTLs in the human 

lymphoblastoid cell line GM12878. We introduced deletions to these elements in GM12878 

cells using CRISPR-Cas9 genome editing tools and examined the expression of predicted 

target genes using RT-qPCR in the mutant cells and controls. For 5 of the 7 tested cREs, 

genetic perturbation led to down regulation of the predicted distal target genes (Fig. 4a; 

Supplementary Fig. 11e–f; Supplementary Table 18; see Methods). This result supports the 

target gene predictions based on the pcHi-C interactions.

Many diseases and traits could be linked to common molecular pathways, and the 

identification of these shared molecular pathways can be beneficial in understanding disease 

pathogenesis and developing treatment. To uncover the common molecular pathways 

underlying different diseases and physiological traits, we first determined the diseases/traits 

that share a significant number of common target genes predicted from their respective 

GWAS-associated SNPs. We grouped 687 traits and diseases into 40 clusters (Fig. 4b; 

Supplementary Fig. 12a–c; Supplementary Table 19; see Methods). Many physiological 

traits with known connections are found to be clustered together. For examples, C5 clusters 

oxygen transport related traits together, C6 groups together traits related to renal functions, 

and C20 includes vascular function associated traits (Fig. 4b). The above grouping is made 

possible thanks to the promoter-centered chromatin interactome maps, because the 

similarities among related traits observed in Fig. 4b were much less evident when we used 

either GWAS SNPs or nearest genes of the GWAS SNPs to compute the similarities as 

control experiments (Fig. 4c, d, Supplementary Fig. 12d). Our result suggests the power of 

target gene identification of GWAS variants to uncover trait-trait associations.

To further understand the common molecular pathways affected in various human diseases, 

we carried out gene ontology (GO) analysis for the predicted target genes of the GWAS 

SNPs within each cluster (Supplementary Table 20; see Methods). The enriched GO 

biological processes suggest potential shared molecular pathways for disease and trait types 

in each cluster (Fig. 4e, Supplementary Fig. 12e, Supplementary Table 21), including 

unexpected connections between specific traits. For example, C39 exposes a link between 

the susceptibility to infectious and autoimmune diseases and the risk of chemotherapeutic 

toxicity by carboplatin and cisplatin. In support of such link, a putative target gene 

associated with the response to carboplatin and cisplatin is ABCF1, which is involved in 

inflammatory response37. While speculative, the shared molecular pathways uncovered by 

our analyses may provide new leads for investigation of the molecular basis of complex 

traits and disease phenotypes.

In summary, we have generated promoter-centered chromatin interactome maps across 

diverse human cell/tissue types. Our analysis covers a broad range of human tissue types and 

provides prediction of target genes for over 70,000 putative cis-regulatory elements and 

27,000 GWAS SNP variants. This resource enables a systematic approach to understanding 

the molecular pathways dysregulated in distinct diseases and traits21. In future studies, 
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delineation of disease-specific chromatin interactions with clinical samples by comparing 

our reference chromatin interaction maps could greatly improve the functional interpretation 

of many disease- and trait-associated genetic variants.

It should be noted that the current study only surveys a limited number of human tissues and 

cell types, and assigned target genes for a small fraction of the putative cis-regulatory 

elements annotated in the human genome. Furthermore, the heterogeneous nature of the 

tissue samples used in this study prevents us from accessing the cell types in which the 

identified chromatin interactions occur, except for a few cell lines. Nevertheless, this 

resource lays the ground for further understanding of human disease pathogenesis and 

development of new treatment strategies.

Methods

Human tissue samples

Esophagus, lung, liver, pancreas, small bowel, sigmoid colon, thymus, bladder, adrenal 

gland, aorta, gastric, left heart ventricle, right heart ventricle, right heart atrium, ovary, 

psoas, spleen, and fat tissues were obtained from deceased donors at the time of organ 

procurement at Barnes-Jewish Hospital (St. Louis, USA) as described in our previous 

study26. The same tissue types from different donors were combined together during 

downstream data analysis. Human dorsolateral prefrontal cortex (DLPFC rep1) and 

hippocampus (HC rep1) tissues were obtained from the National Institute of Child Health 

and Human Development (NICHD) Brain Bank for Developmental Disorders. These two 

samples were from a healthy 31-year-old male donor. Ethics approval was obtained from the 

University Health Network and The Hospital for Sick Children for the use of these tissues. 

Another set of human dorsolateral prefrontal cortex (DLPFC rep2) and hippocampus (HC 

rep2) tissues were obtained from the Shiley-Marcos Alzheimer’s Disease Research Center 

(ADRC). These two samples were from a healthy 80-year-old female donor. Institutional 

Review Board (IRB) approval was obtained from KAIST for the use of these tissues.

Hi-C library on human tissue samples and early embryonic cell types

Human tissue samples were flash frozen and pulverized prior to formaldehyde cross-linking. 

Fibroblasts (IMR90) and lymphoblastoid cell lines (GM12878 and GM19240) were cultured 

and 5 million cells were formaldehyde cross-linked for each Hi-C library. Hi-C was then 

conducted on the samples as previously described, using HindIII for Hi-C library 

preparation38. Previously constructed Hi-C libraries11 were used for human ES cells (H1) 

and early embryonic cell types including mesendoderm, mesenchymal stem cell, neural 

progenitor cells, and trophoblast-like cells.

Generation of capture RNA probes

In order to perform Promoter Capture Hi-C, we computationally designed RNA probes that 

capture promoter regions of previously annotated human protein coding genes. Capture 

regions were selected for 19,462 well-annotated protein coding gene promoters across 22 

autosomes and X chromosome according to GENCODE v19 annotation with confidence 

level 1 and 2. The annotation confidence level 1 and 2 comprise of genes that are accurately 
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annotated with sufficient validation and manual annotation by combining the manual gene 

annotation from the Human and Vertebrate Analysis and Annotation (HAVANA) group, 

automatic gene annotation from Ensembl, and validating by CAGE. Due to the variability of 

capture efficiency, 19,328 promoter regions (99%) were captured in this study. Among them, 

18,943 promoter regions were involved in pcHi-C interactions in one or more cell/tissue 

types analyzed in this study. For each transcription start site, the two nearest left hand- and 

right hand-side HindIII restriction sites were selected. Six capture oligonucleotide sequences 

were designed to be of 120 nucleotide (nt) length and to have 30 nt tiling overhang. 

Oligonucleotides were designed ± 300 bp upstream and downstream of each restriction site. 

As two restriction sites were chosen for each transcription start site, a total of 12 capture 

oligonucleotides were designed to target each promoter region. Capture sequences that 

overlap with directly adjacent HindIII restriction sites were removed. GC contents of 94% 

capture sequences ranged from 25% to 65%. Some promoters shared the same HindIII 

fragment with at least one other, while 14,357 HindIII fragments (86%) were uniquely 

assigned to one promoter. The effect of the DNA fragments harboring multiple promoters on 

the quality of our analytical findings is modest because only 15% of pcHi-C interactions 

emanated from the promoter sharing DNA fragments, and eliminating these fragments 

results in no significant changes in our conclusion for both eQTL enrichment test and gene 

set enrichment analysis. Further, strong correlation of GWAS trait associations remains even 

after excluding unresolvable promoters. In total, our capture oligonucleotide design 

generated 280,445 unique probe sequences including randomly selected capture regions (i.e. 

gene deserts). Single-stranded DNA oligonucleotides were then synthesized by 

CustomArray Inc. Single-stranded DNA oligonucleotides contained universal forward and 

reverse primer sequences (total length 31 nt), whereby the forward priming sequence 

contained a truncated SP6 recognition sequence that was completed by the overhanging 

forward primer during PCR amplification of the oligonucleotides. After PCR, double-

stranded DNA was converted into biotinylated RNA probes through in vitro transcription 

with the SP6 Megascript kit and in the presence of a biotinylated UTP.

Promoter Capture Hi-C library construction

Promoter Capture Hi-C library was constructed by performing target-enrichment protocol 

(enriching target promoter-centered proximity ligation fragments from Hi-C library using 

capture RNA probes). Briefly, we incubated 500 ng Hi-C library for 24 h at 65 °C in a 

humidified hybridization chamber with 2.5 μg human Cot-1 DNA (Life Technologies), 2.5 

μg salmon sperm DNA (Life Technologies), and p5/p7 blocking oligonucleotides with 

hybridization buffer mix (10× SSPE, 10 mM EDTA, 10× Denhardts solution, and 0.26% 

SDS) and 500 ng RNA probes. RNA:DNA hybrids were enriched using 50 μl T1 

streptavidin beads (Invitrogen) through 30 min incubation at room temperature (RT). Next, 

bead-bound hybrids were washed through a 15 min incubation in wash buffer1 (1× SSC and 

0.1% SDS) with frequent vortexing, and then washed three times with 500 μl of pre-warmed 

(65 °C) wash buffer2 (0.1× SSC and 0.1% SDS), then finally resuspended in nuclease-free 

water. The resulting capture Hi-C libraries were amplified while bound to T1 beads, and 

purified using AMPure XP beads, followed by sequencing.
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Promoter Capture Hi-C library sequencing, read alignment, and off-target read filtering

Promoter Capture Hi-C library sequencing procedures were carried out according to 

Illumina HiSeq2500 or HiSeq4000 protocols with minor modifications (Illumina, San 

Diego, CA). Read pairs from Promoter Capture Hi-C library were independently mapped to 

human genome hg19 using BWA-mem and manually paired with in house script. 

Unmapped, non-uniquely mapped, and PCR duplicate reads were removed. Trans-

chromosomal read pairs and putative self-ligated products (< 15 kb read pairs) were also 

removed. Off-target reads were removed when both read pairs did not match the capture 

probe sequences. The resulting on-target rates in Promoter Capture Hi-C library ranged from 

17% to 44% after removing PCR duplicate reads.

Promoter Capture Hi-C normalization

Interaction frequencies obtained from Promoter Capture Hi-C were normalized in terms of 

DNA fragment resolution restricted by HindIII. We defined DNA fragments that spanned 

each HindIII restriction site. The start and the end of DNA fragments were defined by taking 

the midpoint of adjacent upstream and downstream restriction sites, respectively. We merged 

adjacent DNA fragments if the total length of the DNA fragments was less than 3 kb. As a 

result, 510,045 DNA fragments were defined with a median length of 4.8 kb. After that, we 

calculated raw interaction frequencies at DNA fragment resolution and performed 

normalization to remove experimental biases caused by intrinsic DNA sequence biases (GC 

contents, mappability, and effective fragment lengths), RNA probe synthesis efficiency bias, 

and RNA probe hybridization efficiency bias. Highly variable RNA probe synthesis 

efficiency would greatly complicate the control of experimental bias. However, if the 

efficiency bias was reproducible, the bias can be computationally removed. To prove such 

bias reproducibility, we performed RNA-seq with two sets of RNA probes that were 

synthesized independently. The RNA-seq results can quantitatively measure the amount of 

synthesized RNA probes, which is an indicator of the probe synthesis efficiency. We 

observed highly reproducible RNA-seq results (Pearson Correlation Coefficient = 0.98), 

indicating reproducible probe synthesis efficiency. To address the high complexity of 

different types of experimental biases, we defined a new term named “Capturability”, which 

refers to the probability of the region being captured. We assumed that “Capturability” 

represents all combined experimental biases and can be estimated by the total number of 

capture reads spanning a given DNA fragment divided by the total number of captured reads 

in cis. We found that “Capturability” in each DNA fragment is highly reproducible across 

samples with 0.95 Pearson correlation coefficient between samples on average. Therefore, 

we defined universal “Capturability” as the summation of all “Capturability” defined in each 

sample and normalized raw interaction frequencies by considering “Capturability” of two 

DNA fragments. During normalization, we processed promoter-promoter interactions and 

promoter-other interactions independently because promoter regions tend to show very high 

“Capturability” as our capture probes were designed to target promoter regions. Also, we 

only considered promoter-centered long-range interactions over 15 kb and within 2 Mb from 

TSS of each gene. We denoted Yij to represent the raw interaction frequency between DNA 

fragment i and j and Ci to represent “Capturability” defined in DNA fragment i. We assumed 

Yij to follow a negative binomial distribution with mean μ and variance μ + αμ2. Here, α > 0 

is a parameter to measure the magnitude of over-dispersion. We then fitted a negative 
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binomial regression model as follows: log uij = β0 + β1BS(Ci) + β2BS(Cj), where uij is an 

expected interaction frequency between DNA fragment i and j with coverage Ci and Cj and 

defined the residual Rij = Yij/exp β0 + β1BS Ci + β2BS C j  as a normalized interaction 

frequency between DNA fragments i and j. BS represents a basis vector obtained from B-

spline regression, which applied to a vector of values of input variable, C, during negative 

binomial regression model fitting for robustness and memory efficient calculation.

Identification of P-P and P-O pcHi-C long-range chromatin interactions

To identify significant pcHi-C chromatin interactions, we removed distance dependent 

background signals from normalized interaction frequencies. Here, we assumed that 

normalized interaction frequency Rij follows a negative binomial distribution with mean μ 

and variance μ + αμ2. Similar to the interaction frequency normalization step above, we 

calculated the expected interaction frequency at a given distance by fitting it to a negative 

binomial regression model with basis vectors obtained from B-spline regression of distance 

between two DNA fragments. We denoted Ed to represent the expected interaction frequency 

at a given distance d calculated from a negative binomial regression model. Distance 

dependent background signals were removed by taking signal to background ratio as 

follows: (Rij + avg(R)) / (Ed + avg(R)), where d indicates distance between DNA fragment i 
and j. We confirm that the average of normalized interaction frequencies against distance 

dependent background signals are close to one in all distance, indicating the successful 

elimination of distance dependent background signals using our method. Next, using 

‘fitDistr’ function in propagate R package we found that 3-parmeter Weibull distribution 

well follows the values of normalized interaction frequencies. Thus, we modeled 

background distribution of distance normalized interaction frequencies with 3-parmeter 

Weibull distribution. Based on this, significant long-range chromatin interactions are defined 

when observed interaction frequencies show lower than 0.01 P value thresholds by fitting 

distance background removed interaction frequencies with 3-parameter Weibull distribution. 

To eliminate false pcHi-C interactions caused by experimental noise, we applied the criteria 

of minimum raw interaction frequencies (having more than 5 raw interaction frequencies), 

which is chosen by investigating reproducibility between two independently prepared 

replicates using lymphoblastoid and mesenchymal stem cell. Note that as the interaction 

frequencies in pcHi-C are mostly zeros or close to zero, the distribution of P values does not 

follow the uniform distribution, violating the basic assumption of FDR calculation, which 

assumes that the null distribution follows uniform (0,1) distribution. Thus, we simulated 

normalized interaction frequencies that follow 3-parameter Weibull distribution in a sample 

specific manner, and computed the estimated FDR through multiple permutations. The 

estimated FDR through multiple permutation (n = 1,000) for P-O and P-P pcHi-C 

interactions is 9% and 5% on average, respectively.

in situ Hi-C experiments and validation of pcHi-C long-range chromatin interactions

The visual inspection of normalized interaction frequencies between IMR90 Promoter 

Capture Hi-C and high resolution IMR90 Hi-C showed high consistency based on manual 

inspection despite pcHi-C having only 10% sequencing depth compared to high resolution 

Hi-C (Supplementary Fig. 4a). Next, we compared the identified pcHi-C interactions with 
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“loops” defined from IMR90, GM12878, dorsolateral prefrontal cortex, and hippocampus 

tissues using in situ Hi-C experiments (Supplementary Fig. 4b–e). Although there is a huge 

discrepancy between the number of in situ Hi-C loops and pcHi-C interactions, we may 

consider ‘loops’ are a subset of high confident long-range chromatin interactions that 

involve ‘loop’ domains but cannot cover all promoter-mediated long-range chromatin 

interactions. Loops of IMR90 and GM12878 in situ Hi-C result were obtained from previous 

publication13. Loops of dorsolateral prefrontal cortex and hippocampus were identified 

using HiCCUPS, distributed with Juicer v1.7.613. The loops were called from Knight-Ruiz 

normalized 5 kb, 10 kb, and 25 kb resolution data, as these parameters were suggested for a 

medium resolution Hi-C map by the authors of HiCCUPS. As a result, 7,722 and 8,040 

loops were identified from dorsolateral prefrontal cortex and hippocampus, respectively. We 

compared the identified pcHi-C long-range chromatin interactions to loops of in situ Hi-C 

data and measured the reproducibility in terms of ROC curve (receiver operating 

characteristic curve), a plot of the true positive rate against the false positive rate at various 

threshold settings. Here, we set loops as true interactions. We ranked all tested pcHi-C DNA 

fragment pairs in terms of P values and then calculated the fraction of true positive and false 

positive to draw ROC curve. We only considered “loops” emanating from promoter-

containing DNA fragments defined in our Promoter Capture Hi-C result. Each point on the 

ROC curve indicates the true and false positive rate for each 1,000 false positive interactions. 

The area under the ROC curve is defined as an ROC score and an ROC score of 1 indicates 

that the rank of DNA fragment pairs matched by loops are always higher than all other 

tested DNA fragment pairs according to pcHi-C interaction P values.

Reproducibility of pcHi-C chromatin interactions between biological replicates

The reproducibility of pcHi-C chromatin interactions between biological replicates (two 

different donors for tissues and two independently cultured cells for cell lines) was measured 

in terms of ROC curve (Supplementary Fig. 4f). Here, we set pcHi-C interactions identified 

in one replicate as true interactions. For the other replicate, we ranked all tested DNA 

fragment pairs in terms of P values and then calculated the fraction of true positive and false 

positive to draw ROC curve. The area under the ROC curve is defined as an ROC score and 

an ROC score of 1 indicates that the rank of all pcHi-C interactions identified in one 

replicate is always higher than all other tested DNA fragment pairs in another replicate. Due 

to different sequencing depths in each replicate, we first defined true interaction sets with 

one replicate that identified fewer number of pcHi-C interactions than the other replicate, 

then tested how these true interactions were well detected in the other replicate. Both P-P 

and P-O interactions were combined together for calculating ROC scores. Each dot in ROC 

curve indicates the true positive rate at the corresponding false positive rate with increment 

of 1% of false positive rate. We tested biological replicates in the following 12 tissue/cell 

types: aorta (AO2/AO3, ROC score = 0.79), lung (LG1/LG2, ROC score = 0.80), small 

bowel (SB1/SB2, ROC score = 0.83), spleen (SX1/SX3, ROC score = 0.80), dorsolateral 

prefrontal cortex (FC_rep1/FC_rep2, ROC score = 0.92), left ventricle (LV1/LV3, ROC 

score = 0.85), mesenchymal stem cell (MSC_rep1/MSC_rep2, ROC Score = 0.99), 

hippocampus (HC_rep1/HC_rep2, ROC score = 0.81), gastric (GA2/GA3, ROC score = 

0.91), lymphoblastoid cell lines (GM12878/GM19240, ROC score = 0.98), right ventricle 

(RV1/RV3, ROC Score = 0.83), and pancreas (PA2/PA3, ROC score = 0.73). Indeed, we 
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calculated Spearman’s rank correlation of P values between replicates and found that the 

average Spearman’s rank correlation was around 0.40.

Enrichment of pcHi-C interactions regarding TAD, boundary, and unorganized regions

The TAD annotations for 22 samples by DomainCaller14 with 2 Mb windows size were 

downloaded from the 3DIV database39. The regions between TADs were classified as 

“unorganized” when the gap is longer than 400 kb, otherwise, the remaining regions were 

classified as “boundary”. Then, the types of pcHi-C interactions were classified based on the 

location of DNA fragment’s centroid.

1. “Within TAD”, if both fragments’ centroids are located in the identical TAD.

2. “Within unorganized region”, if both fragments’ centroids are located in the 

identical unorganized region.

3. “Between different TADs”, if one fragment’s centroid is located in a TAD while 

another fragment’s centroid is located in a different TAD.

4. “Between TAD and boundary”, if one fragment’s centroid is located in a TAD 

while another fragment’s centroid is covered by boundary region.

5. “Between TAD and unorganized region”, if one fragment’s centroid is located in 

a TAD while another fragment’s centroid is located in an unorganized region.

Annotation of ChromHMM 18-chromatin state to DNA fragments

The pre-calculated chromatin state annotations were downloaded from the 18-state 

ChromHMM model established by Roadmap Epigenomics Project. As the genomic 

proportion of promoter and enhancer regions are relatively low, we assigned the chromatin 

states to DNA fragments based on the following priority order (TssA-EnhA1-EnhA2-

TssFlnk-TssFlnkU-TssflnkD-EnhG1/G2-EnhWk-TssBiv-Enhbiv). For instance, the 

chromatin state of a fragment was assigned as TssFlnkU, if the fragment contained two 

annotations TssFlnkU and EnhWk. EnhG1 and EnhG2 annotations were merged because of 

their low occurrence percentage. We considered two promoter types (TssA and TssBiv) 

according to ChromHMM annotations and investigated the preference of their interacting 

partners. For each promoter type, the occurrence of each chromatin status at interacting 

DNA fragments was divided by the total number of interacting DNA fragments. This 

fraction value of each chromatin status was normalized against the genomic fraction of each 

chromatin status. KS test was performed to measure the statistical significance of each 

chromatin status at interacting DNA fragments between TssA and TssBiv promoters.

Analysis with a 50-chromatin-state ChromHMM model

To supplement our analysis with the ChromHMM 18-chromatin state model, we conducted 

in-depth investigations with 5 samples, including H1 embryonic stem cells, mesendoderm, 

mesenchymal stem cells, trophoblast, and IMR90, using a 50-state ChromHMM model 

produced by the Roadmap Epigenomics Project36. The ChromHMM model utilized 

combination of 29 chromatin marks to generate a 50-state ChromHMM model. To be 

consistent with the 18-state ChromHMM model, we used the same definition for TssA and 
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TssBiv promoter containing fragments, but chromatin state of their interacting partners was 

further refined using the 50-state ChromHMM model. The statistical test was performed as 

described in the analysis with the 18-chromatin-state ChromHMM model.

Identification of extensively interacting DNA fragments

In order to identify DNA fragments that showed extensive long-range interactions with 

multiple promoters, we systematically defined these promiscuously interacting DNA 

fragments from P-P pcHi-C interaction maps and P-O pcHi-C interaction maps, respectively. 

For each cell or tissue-type, we selected frequently interacting DNA fragments with multiple 

promoters in terms of 0.01 Poisson P value cutoff.

Identification of TF clusters in H1-hESC and GM12878

Transcription factor ChIP-seq datasets on human lymphoblastoid cells (GM12878) and 

human embryonic stem cells (H1-hESC) were collected from ENCODE. These ChIP-seq 

reads were aligned against human genome hg19 using BWA-mem with default parameters. 

Non-uniquely mapped, low quality (MAPQ < 10), and PCR duplicate reads were removed. 

Peak calling of individual ChIP-seq experiments was performed with MACS2 callpeak with 

default parameters40. We defined TF clusters by calling peaks from combined bed files of 

TF peaked regions using MACS2 bdgpeakcall. The regions occupied by multiple TF peaks 

were recognized as TF clusters. To remove parameter dependent bias, we retrieved TF 

clusters 40 times with various parameter sets as following; minimum number of TFs within 

cluster (5 or 10), minimum length of cluster from 100 bp to 1,600 bp, and maximum gap 

length within cluster from 100 bp to 51.2 kb. Final TF clusters were defined when the region 

was detected as TF clusters more than 50 times from 100 different parameter sets.

Enrichment analysis of TF clusters and super-enhancers

In order to calculate the enrichment of TF clusters or super-enhancers at extensively 

interacting DNA fragments (EIF), we counted the number of matched TF clusters and super-

enhancers. The list of super-enhancers was obtained from the 3DIV database39. Permutation 

test was performed to calculate the expected values. Using Bedtools shuffleBed, we 

generated random genomic locations that resemble actual TF clusters with the same size but 

different genomic coordinates. Bedtools intersectBed identified any overlap between EIF 

and TF clusters or random genomic locations. Expected values in the random genomic 

locations were calculated from 10,000 random data sets. In order to test the enrichment of 

TF clusters compared to typical TF peaks, we generated random genomic locations that 

resemble actual TF clusters with the same size but different genomic coordinates matched to 

typical TF peaks. Standard deviations of error bars in the typical TF peaks were calculated 

from 10,000 random data sets. Similarly, enrichment analysis of super-enhancers was 

conducted by generating random genomic locations of the same size as super-enhancers but 

at different genomic coordinates. We also conducted the enrichment test with typical 

enhancers. We revealed that P-O EIFs highly co-exist with super-enhancer regions, rather 

than typical enhancers and genomic background for most of the samples, except two 

samples, lymphoblastoid cell lines and gastric tissue. Note that half of lymphoblastoid P-O 

EIFs are co-occupied with typical enhancers that are classified as super-enhancers in other 

cell/tissue types.
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Comparison between eQTL associations and P-O interactions

In order to test the enrichment for P-O pcHi-C chromatin interactions in significant eQTL 

associations, we compared P-O pcHi-C interactions to significant eQTL associations in the 

matching tissue types. The eQTL associations were downloaded directly from GTEx Portal 

(downloaded on Nov. 10th, 2017) for all matching tissue types (n = 14, adrenal gland, aorta, 

dorsolateral prefrontal cortex, brain hippocampus, sigmoid colon, esophagus, left heart 

ventricle, liver, lung, ovary, pancreas, small intestine terminal ileum for small bowel, spleen, 

and stomach for gastric). First, the significant eQTLs defined by GTEx (q value ≤ 0.05) were 

filtered so that only the eQTL variants within the fragments that involve P-O pcHi-C 

interactions remain for comparison. Then, we removed pcHi-C interactions beyond 1 Mb in 

distance to match the range of eQTL association, and discarded eQTL associations with 

distance below 15 kb to match the valid interaction cutoff. The filtered, significant eQTL 

associations were compared with pcHi-C and randomized interactions in the same condition. 

Here, we only considered P-O pcHi-C interactions with DNA fragments that do not harbor 

multiple promoters. For the random expectation, we generated a simulated pcHi-C 

interaction pool by creating all possible combinations of DNA fragments with no TSS and 

the protein coding genes that exist within the distance range. The pcHi-C interactions that 

exist in any of the tissue/cell type were removed from the control interaction pool for the 

enrichment analysis. To avoid variation caused by the difference in distance between pcHi-C 

interactions and eQTL associations, we created distance matched control, in which the 

number of pcHi-C interactions was stored at the interval of 40 kb, and the same number of 

interactions was drawn randomly from the control interaction pool. The number of 

randomized interactions drawn from each chromosome was matched to the pcHi-C 

interactions. The standard deviation was obtained by permuting the random expectation with 

1,000 iterations and was used to calculate the statistical confidence.

To illustrate the filtering process of the eQTL data, for example, the 549,763 significant 

eQTLs in adrenal gland were reduced to 237,181 after collecting eQTLs located in the DNA 

fragments without TSS and discarding eQTL association with the distance below 15 kb and 

with a pseudogene target. This filtered set of significant eQTL associations was used for 

enrichment test for both pcHi-C and randomized interactions. The number of total tested 

significant eQTL association, 19,996 in case of adrenal gland, in Supplementary Table 11, 

indicates the number of significant eQTLs located in the DNA fragments that are associated 

with the pcHi-C interactions in the corresponding cell/tissue type.

Statistics

We used the Kolmogorov-Smirnov (KS) test to compare distributions between two groups as 

a nonparametric test without assumptions of normality. We also used permutation test to 

calculate empirical P values, which does not make any assumptions on the underlying 

distribution of the data.

Supplementary Note

Further information on Methods is available in the Supplementary Note.
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Reporting Summary

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Data Availability

All raw and processed data have been deposited in the GEO database under accession 

number GSE86189. Visualization of processed Promoter Capture Hi-C data is available at 

http://www.3div.kr/capture_hic.

Code Availability

Code for pcHi-C interaction detection can be made available on request. For other data 

analysis, we used publicly available software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide mapping of promoter-centered chromatin interactions in diverse human 
tissues and cell types.
a, A schematic of the pcHi-C procedure. b, Barplots of normalized promoter-centered 

chromatin interaction frequencies (y-axis) emanating from the ADAMTS1 promoter 

(translucent gray). The identified chromatin interactions are shown below the axis (purple 

loops). Highlighted in translucent yellow are cell/tissue type specific interactions. c, 
Boxplots showing the fold enrichment of the interaction frequencies between the active 

(colored dots) or bivalent promoters (gray dots) and each chromatin state. The 17 chromatin 

states shown were obtained by processing 18-state ChromHMM model after merging genic 

enhancer 1 and 2 annotations. Two-sided KS tests were performed between interactions 

originating from active promoter regions (colored dots) and those from bivalent promoters 

(gray dots) for the samples listed on the right (n = 21) (** P value < 0.01 and *** P value < 

0.001). The chromatin states that interact more frequently with active promoters than 

bivalent promoters were highlighted in translucent yellow. The chromatin states that interact 
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more frequently with bivalent promoters than active promoters were highlighted in 

translucent blue. For the boxplots, the box represents the interquartile range (IQR), and the 

whiskers correspond to the highest and lowest points within 1.5 × IQR.
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Figure 2. Inference of target genes of cis-regulatory sequences from pcHi-C data.
a, Illustrative LocusZoom plot of eQTLs for VLDLR (top) and pcHi-C interactions in aorta 

tissue (bottom). Highlighted in translucent yellow are the VLDLR promoter and an eQTL 

connected by a pcHi-C interaction. Dots represent the P values of SNPs’ association with 

VLDLR gene expression levels in the aorta (data obtained from GTEx). Dots are also color-

coded based on their Linkage Disequilibrium scores with a tagging SNP. The blue bars 

indicate the recombination rate. b, Browser snapshots of the POU3F3 locus, showing 

positive correlation between the H3K27ac signals at a distal cRE (bottom left) and 

expression levels (bottom middle) of the promoter connected by long-range chromatin 

interactions (bottom right). The significant chromatin interaction between the POU3F3 
promoter and a distal cRE is shown at the top (translucent yellow). c, Boxplots illustrating 
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the H3K27ac signals at the cREs (n = 7,712) connected by hippocampus (HC, colored by 

blue) specific pcHi-C interactions. These cREs are marked by higher levels of H3K27ac in 

hippocampus than in other cell/tissues types (one-sided KS test P value < 0.005). For the 

boxplots, the box represents the interquartile range (IQR), and the whiskers correspond to 

the highest and lowest points within 1.5 × IQR. d-f, Heatmaps demonstrate the enrichment 

of pcHi-C interactions (column in Fig. 2d), z-score transformed H3K27ac RPKM values at 

cREs (column in Fig. 2e), and z-score transformed RNA-seq FPKM values at the cREs’ 

putative target genes (column in Fig. 2f) for given cell/tissue-specific cRE-promoter pairs in 

the corresponding cell/tissue type (rows in Fig. 2d-f). KS test was performed between pcHi-

C interaction frequencies, z-score transformed H3K27ac RPKM values, and z-score 

transformed RNA-seq FPKM values in the matched cell/tissue types (values in diagonal in 

each heatmap) and those in other cell/tissue types (values in off diagonal in each heatmap), 

demonstrating significant association of cRE-promoter pairs with cell/tissue-specific cRE 

H3K27ac signals and gene expression (two-sided KS test P value < 2.2 × 10−16).
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Figure 3. Enhancer-like promoters involved in regulation of distal target genes.
a, Browser snapshots of the TMED4 locus showing the RefSeq genes (top), H3K27ac 

signals (middle, n = 24), and pcHi-C chromatin interactions (bottom). Highlighted in 

translucent blue are promoter-promoter pairs showing highly correlated H3K27ac signal and 

significant pcHi-C interactions. Highlighted in gray is an adjacent promoter of the TMED4. 

Shown below are Pearson correlation coefficient (PCC) values based on H3K27ac signals 

and links based on pcHi-C interactions, with MSC as the acronym for mesenchymal stem 

cell. b, Density plots showing distributions of PCC values (x-axis) of H3K27ac (blue, 

median of PCC = 0.45, n = 48,893), H3K4me1 (orange, median of PCC = 0.67, n = 48,893), 

and H3K4me3 (green, median of PCC = 0.64, n = 48,893) signals for P-P pcHi-C 

interactions together with a random expectation (gray, median of PCC = 0.02, n = 48,142). c, 
A pie chart showing the fraction of unique P-P interactions matched by eQTL associations, 

of which 5.7% are P-P interactions (n = 1,976) in 12 matched tissue types (n = 34,880). d, 
Browser snapshots of RNA-seq results between control (n = 2) and mutant (n = 2) clones 

with deletion of the core promoter regions of the ARIH2OS. The expression of the 

NCKIPSD gene, which displays chromatin interactions with the ARIH2OS gene promoter, 

was significantly down-regulated in the mutant clones (FDR adjusted P value obtained from 

cuffdiff with two mutant clones = 0.02). e, Browser snapshots showing the promoter 
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containing eQTL (translucent yellow with a scissors symbol) targeted by sgRNAs and its 

distal target gene, ABCF3 (translucent green), together with H3K27ac and chromatin 

accessibility (DNase I). The relative mRNA expression levels of the ABCF3 quantified by 

RT-qPCR are shown below (* one-sided KS test P value < 0.05 derived from three mutant 

clones). Error bars indicate standard deviation of three mutant clones and y-axis indicates 

mean values.
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Figure 4. Analysis of human diseases and physiological traits based on the putative target genes 
of GWAS SNPs.
a, Browser snapshots showing multiple cREs harboring GWAS-SNPs (translucent yellow 

with a scissors symbol) and their common target gene, NT5DC2 (translucent green), 

together with signals of H3K27ac (ChIP-seq) and chromatin accessibility (DNase I) (left). 

The DNA fragments containing these cREs interact with the NT5DC2 gene promoter region 

as evidenced by pcHi-C analysis (arcs). The relative mRNA expression levels of the 

NT5DC2 upon induced mutations of GWAS SNPs with sgRNAs were quantified by RT-
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qPCR (right). Error bars indicate standard deviation of two mutant clones with technical 

triplicates and y-axis indicates mean values. b, Hierarchical clustering of human diseases 

and traits (n = 687) based on similarities of the putative target genes of trait-associated SNPs 

and SNPs in LD. The color intensity of each dot indicates Pearson correlation coefficient 

(PCC) of the putative target genes between two diseases or traits. Color bars on the left and 

top demarcate the clusters. c, d, Shown are similarities, as measured by PCC, between traits 

(n = 687) in the same order as Fig. 4b, based on either the nearest genes of the GWAS SNPs 

(c) or the GWAS SNPs alone (d). The color intensity of each dot indicates PCC of target 

gene similarities between two traits. e, Hierarchical clustering of GO biological processes 

(each column, n = 126) for the trait clusters defined in Fig. 4b (each row, n = 40). Each entry 

indicates –log10(P value) of GO biological processes in the corresponding cluster obtained 

from DAVID. Several representative biological processes are highlighted.
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