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Background. Procalcitonin algorithms may reduce antibiotic use for acute respiratory tract infections (ARIs).
We undertook an individual patient data meta-analysis to assess safety of this approach in different ARI diagnoses
and different clinical settings.

Methods. We identified clinical trials in which patients with ARI were assigned to receive antibiotics based on
a procalcitonin algorithm or usual care by searching the Cochrane Register, MEDLINE, and EMBASE. Individual
patient data from 4221 adults with ARIs in 14 trials were verified and reanalyzed to assess risk of mortality and
treatment failure—overall and within different clinical settings and types of ARIs.

Results. Overall, there were 118 deaths in 2085 patients (5.7%) assigned to procalcitonin groups compared
with 134 deaths in 2126 control patients (6.3%; adjusted odds ratio, 0.94; 95% confidence interval CI, .71–1.23)].
Treatment failure occurred in 398 procalcitonin group patients (19.1%) and in 466 control patients (21.9%; adjust-
ed odds ratio, 0.82; 95% CI, .71–.97). Procalcitonin guidance was not associated with increased mortality or
treatment failure in any clinical setting or ARI diagnosis. Total antibiotic exposure per patient was significantly
reduced overall (median [interquartile range], from 8 [5–12] to 4 [0–8] days; adjusted difference in days, −3.47
[95% CI, −3.78 to −3.17]) and across all clinical settings and ARI diagnoses.

Conclusions. Use of procalcitonin to guide initiation and duration of antibiotic treatment in patients with
ARIs was effective in reducing antibiotic exposure across settings without an increase in the risk of mortality or
treatment failure. Further high-quality trials are needed in critical-care patients.
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Acute respiratory infections (ARIs) comprise a large and het-
erogeneous group of infections, including bacterial infections,
viral infections, and infections of other etiologies. Early initia-
tion of adequate antibiotic therapy is the cornerstone in the
treatment of bacterial ARIs and is associated with improved
clinical outcomes [1, 2]. However, overuse of antibiotics by
overprescription in outpatients with bronchitis [3], for in-
stance, and prolonged duration of antibiotic therapy in
patients with bacterial ARIs in the hospital and intensive care
setting is associated with increased resistance for common
bacteria, high costs, and adverse drug reactions [4, 5]. The safe
reduction in antibiotic use is therefore of utmost importance.

In recent years, procalcitonin (PCT) has emerged as a prom-
ising marker for the diagnosis of bacterial infections because
higher levels are found in severe bacterial infections than in
viral infections and nonspecific inflammatory diseases [6, 7].
Hence, PCT may be used to support clinical decision making
for the initiation and discontinuation of antibiotic therapy [8].
Randomized controlled trials (RCTs) have demonstrated the
feasibility of such a strategy in different ARI patient populations
and different settings ranging from primary care [9, 10] to
emergency departments (EDs), hospital wards [11–17], and
intensive care units (ICUs) [18–22]. Most individual trials,
however, lacked the statistical power to assess the risk for
mortality and severe infectious disease complications associated
with PCT-guided decision making.

We undertook an individual patient data meta-analysis of
trials comparing the effects of using PCT to guide initiation
and duration of antibiotic treatment in patients with ARI as-
signed to routine PCT measurement or standard of care
without PCT measurement. The aim of this analysis was to
assess the safety and efficacy of this approach over a large
range of patients with varying severity of ARIs.

METHODS

Trial Selection and Data Collection
The predefined protocol for this meta-analysis of individual
patient data is published in the Cochrane Library [23]. We pre-
pared the present report according to PRISMA guidelines [24].

Patients in eligible randomized or quasi-randomized trials
had to be adults with a clinical diagnosis of either upper or
lower ARI (for detailed definitions see Supplementary Appen-
dix 1). Trials were excluded if they exclusively focused on pe-
diatric patients or if they used PCT for a purpose other than
to guide initiation and duration of antibiotic treatment. There
were no exclusions based on language or publication status of
reports.

We identified suitable trials by a formal search of the Co-
chrane Controlled Trials Registry (CCTR), MEDLINE, and
EMBASE (all from their inception to May 2011) and through

use of reference lists of reports describing such trials. The
full electronic search strategy is published with our study pro-
tocol [23].

Two reviewers (P. S. and M. B.) independently assessed trial
eligibility based on titles, abstracts, full-text reports, and
further information from investigators as needed. We request-
ed the protocol, case report forms, and unedited databases
containing individual patient data from investigators of all eli-
gible trials. The mortality and adverse outcome rates from
trials included in this individual patient data meta-
analysis might differ slightly from previous reports because
we treated data in a consistent manner across all trials.

Patients and Endpoints
Our patient population consisted of all randomized patients
with initial suspicion of ARI independent of the final diagno-
sis. We prespecified 2 primary endpoints: all-cause mortality
and setting-specific treatment failure at 30 days. For trials with
a shorter follow-up period, the available information was used
(eg, until hospital discharge (Table 1). Mortality is the most
important safety endpoint but relatively rare in some settings;
therefore we decided on treatment failure as a coprimary end-
point that is more frequent but needs to be defined according
to patient setting. For the primary-care setting, treatment
failure was defined as death, hospitalization, ARI-specific com-
plications (eg, empyema for lower ARI, meningitis for upper
ARI), recurrent or worsening infection, and patients reporting
any symptoms of an ongoing respiratory infection (eg, fever,
cough, dyspnea) at follow-up. For the ED setting, treatment
failure was defined as death, ICU admission, rehospitalization
after index hospital discharge, ARI-associated complications
(eg, empyema or acute respiratory distress syndrome for lower
ARI), or recurrent or worsening infection within 30 days of
follow-up. For the ICU setting, treatment failure was defined
as death within 30 days of follow-up.

Secondary endpoints were antibiotic use (initiation of anti-
biotics, duration of antibiotics and total exposure to antibiotics
[total amount of antibiotic days divided by total number of
patients]), length of hospital stay for hospitalized patients,
length of ICU stay for critically ill patients, and number of
days with restricted activities within 14 days after randomiza-
tion for primary-care patients.

Statistical Analysis
All patients were analyzed in the study group to which they
were randomized. For patients lost to follow-up, we assumed
in our main analysis that they did not experience an event.
For the primary endpoint of mortality from any cause, we cal-
culated odds ratios (ORs) and 95% confidence intervals (CIs)
using multivariable hierarchical logistic regression [25, 26].
Apart from the group variable indicating the use of a PCT
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Table 1. Characteristics of Included Trials

First Author
(Year) Country

Setting, Type of
Trial Clinical Diagnosis

Type of PCT Algorithm (PCT Cut-offs
Used to Recommend Initiation and

Duration [μg/L])
No. of ARI Patients

(Study Total)
Primary
Endpoint

Follow-up
Time

Briel (2008) [9] Switzerland Primary care,
multicenter

Upper and lower ARIs Initiation and duration; R against AB:
<0.25 (<0.1); R for AB: >0.25 (>0.5)

458 (458) Days with
restricted
activities

1 mo

Burkhardt (2010)
[10]

Germany Primary care,
multicenter

Upper and lower ARIs Initiation; R against AB: <0.25; R for
AB: >0.25

550 (571)a Days with
restricted
activities

1 mo

Christ-Crain
(2004) [11]

Switzerland ED, single center Lower ARI with x-ray
confirmation

Initiation; R against AB: <0.25 (<0.1);
R for AB: >0.25 (>0.5)

243 (243) AB use 2 wk

Christ-Crain
(2006) [12]

Switzerland ED, medical ward,
single center

CAP with x-ray confirmation Initiation and duration; R against AB:
<0.25 (<0.1); R for AB: >0.25 (>0.5)

302 (302) AB use 6 wk

Stolz (2007) [13] Switzerland ED, medical ward,
single center

Exacerbated COPD Initiation and duration; R against AB:
<0.25 (<0.1); R for AB: >0.25 (>0.5)

208 (226)b AB use 2–3 wk

Kristoffersen
(2009) [14]

Denmark ED, medical ward,
multicenter

Lower ARI without x-ray
confirmation

Initiation and duration; R against AB:
<0.25; R for AB: >0.25 (>0.5)

210 (223)c AB use Hospital
stay

Long (2009) [16] China ED, outpatients,
single center

CAP with x-ray confirmation Initiation and duration; R against AB:
<0.25; R for AB: >0.25

127 AB use 1 mo

Schuetz (2009)
[17]

Switzerland ED, medical ward,
multicenter

Lower ARI with x-ray
confirmation

Initiation and duration; R against AB:
<0.25 (<0.1); R for AB: >0.25 (>0.5)

1359 (1381)d AB use 1 mo

Long (2011) [15] China ED, outpatients,
single center

CAP with x-ray confirmation Initiation and duration; R against AB:
<0.25; R for AB: >0.25

156 (172)e AB use 1 mo

Nobre (2008)
[18]

Switzerland ICU, single center Suspected severe sepsis or
septic shock

Duration; R against AB: <0.5 (<0.25) or
>80% drop; R for AB: >0.5 (>1.0)

52 (79)f AB use 1 mo

Schroeder (2009)
[21]

Germany Surgical ICU,
single center

Severe sepsis following
abdominal surgery

Duration; R against AB: <1 or >65%
drop over 3d

8 (27)g AB use Hospital
stay

Hochreiter
(2009) [22]

Germany Surgical ICU,
single center

Suspected bacterial infections
and >1 SIRS criteria

Duration; R against AB: <1 or >65%
drop over 3d

43 (110)h AB use Hospital
stay

Stolz (2010) [19] Switzerland,
United States

ICU, multicenter Clinically diagnosed VAP Duration; R against AB: <0.5 (<0.25) or
>80% drop; R for AB: >0.5 (>1.0)

101 (101) AB-free days
alive

1 mo

Bouadma (2010)
[20]

France ICU, multicenter Suspected bacterial infections
during ICU stay without prior
AB (>24 h)

Initiation and duration; R against AB:
<0.5 (<0.25); R for AB: >0.5 (>1.0)

394 (630)i All-cause
mortality

2 mo

Abbreviations: AB, antibiotic; ARI, acute respiratory infection; CAP, community-acquired pneumonia; COPD, chronic obstructive pulmonary disease; ED, emergency department; ICU, intensive care unit;
PCT, procalcitonin; R, recommendation for or against antibiotics; SIRS, systemic inflammation response system; VAP, ventilator-associated pneumonia.
a Twenty-one postrandomization exclusions (2 withdrew consent, 1 due to loss of sample, 15 with autoimmune, inflammatory, or systemic disease, 2 with advanced liver disease, 1 with prior use of antibiotics).
b Eighteen postrandomization exclusions due to absence of COPD according to GOLD criteria.
c Thirteen postrandomization exclusions (3 no PCT testing, 6 not meeting inclusion criteria, 4 withdrew informed consent).
d Twenty-two postrandomization exclusions due to withdrawal of consent.
e Sixteen postrandomization exclusions (6 lost to follow-up, 7 withdrew consent, 3 with final diagnosis other than CAP).
f Twenty-seven not considered for this analysis due to a diagnosis other than ARI.
g Nineteen not considered for this analysis due to diagnosis other than ARI.
h Sixty-seven not considered for this analysis due to diagnosis other than ARI.
i Nine postrandomization exclusions (8 withdrew consent, 1 randomized twice); 227 not considered for this analysis due to diagnosis other than ARI.
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algorithm, we included important prognostic factors such as
patient age and ARI diagnosis as additional fixed effects; to
account for within-and between-trial variability, we added
trial to the model as a random effect. We fitted corresponding
linear and logistic regression models for continuous and
binary secondary endpoints, respectively. We performed pre-
specified sensitivity analyses based on the main quality indica-
tors, namely allocation concealment and blinded outcome
assessment; we conducted a complete case analysis and an
analysis assuming that patients lost to follow-up experienced
an event. In an additional sensitivity analysis, we used an al-
ternate definition of treatment failure (death, hospitalization
[for primary-care patients], rehospitalization [for hospitalized
patients], and ICU admission [for non-ICU patients at ran-
domization]). We also performed sensitivity analyses

excluding trials with low adherence to PCT algorithms (<70%)
or not reporting adherence, excluding all ICU trials, and ex-
cluding only the largest ICU trial due to low adherence [20].
To further investigate the consistency of results across our het-
erogeneous patient population in terms of disease severity, we
performed prespecified analyses stratified by clinical setting
and ARI diagnosis and formally tested for potential subgroup
effects by adding the clinical setting and ARI diagnosis in turn
to the regression model together with the corresponding inter-
action term with PCT group as fixed effects. We conducted
meta-analyses with aggregate data of included trials to investi-
gate inconsistency and heterogeneity of effects by means of I2

and the Cochran Q test [27].
We used Stata version 9.2 and SAS version 9.1 for statistical

analyses.

Figure 1. Trial flow. The 14 ongoing trials comprise 5 in pediatrics, 2 focusing on patients with community acquired pneumonia, 1 focusing on stroke
patients, 1 focusing on neutropenic patients, and 5 focusing on intensive-care patients. Abbreviations: ABs, antibiotics; PCT, procalcitonin; RCT, random-
ized controlled trial.
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RESULTS

We identified 14 completed trials with a total of 4551 patients
that met the inclusion criteria (Figure 1). Four of the ICU
trials [18, 20–22] included patients with sepsis not related to
ARI; these patients (n = 340) were not considered for this
analysis. Patients with initial suspicion of ARI and other final
diagnoses were included in the overall analysis. Our intention-
to-treat population consisted therefore of 4211 patients with
ARI at randomization. We further identified 14 ongoing RCTs
on the topic with expected completion between 2012 and 2014.

Characteristics of the individual trials are presented in
Table 1. Most trials had a follow up of 1 month, with 2 trials
assessing outcome after 14–21 days and 3 trials following pa-
tients until hospital discharge only. Both primary-care trials, 1
trial conducted in the ED [17], and 1 ICU trial [20] employed
a noninferiority design. The PCT algorithms used in the dif-
ferent trials were similar in concept and recommended initia-
tion and/or continuation of antibiotic therapy based on
similar PCT cut-off levels (Table 1). However, there were dif-
ferences: some trials in primary care [10] and the ED [11]
used only a single PCT measurement on admission to guide
initiation of antibiotics, whereas the other trials (predomi-
nantly in hospitalized patients with severe infections) used re-
peated measurements for guiding the duration of treatment.
Adherence to algorithms was variable, ranging from 47%–91%
(Table 2). In terms of methodological quality of included
trials, there were 6 trials with concealed allocation and 5 trials

with blinded outcome assessment. All trials achieved complete
or near-complete follow-up for mortality. None of the trials
blinded patients or caregivers to group allocation.

Baseline characteristics of included patients were similar in
PCT and control groups with respect to important prognostic
features (Table 3). Most patients were recruited in the ED
setting, and community-acquired pneumonia (CAP) was the
most frequent ARI diagnosis, occuring in almost 50% of
patients. The PCT concentrations on admission were highest
in patients from the ICU setting and lowest in primary-care
patients. There were no statistically significant differences in
PCT levels between PCT and control groups overall and for
individual settings (P > .05 for all comparisons).

Primary Endpoints
Overall, there was no difference in mortality in PCT group pa-
tients compared with control patients (5.7% vs 6.3%; adjusted
OR, 0.94; 95% CI, .71–1.23; Table 4). This was consistent
across clinical settings and ARI diagnoses (see Kaplan–Meier
curves in Supplementary Appendix 2). We found overall a sig-
nificantly lower risk for treatment failure in PCT-treated pa-
tients compared with control patients (19.1% vs 21.9%;
adjusted OR, 0.82; 95% CI, .71–.97). Statistically significant
differences in treatment failure were also found for the ED
setting and CAP patients (Table 4, lower part). A similar, al-
though statistically not significant, result was found when re-
stricting the definition of treatment failure to death, ICU
admission, hospitalization, or rehospitalization (9.1% vs

Table 2. Methodological Quality of Included Trials

First Author (Year) Allocation Concealment
Blinded Outcome

Assessment
Follow-up for
Mortality

Adherence to PCT
Algorithm in PCT Group

Briel (2008) [9] Yes (central randomization, by phone) Yes 454/458 (99%) 85% adherence
Burkhardt (2010) [10] Yes (central randomization, by fax) Yes 546/550 (99%) 87% adherence

Christ-Crain (2004) [11] No (weekly randomization) No 230/243 (95%) 83% adherence

Christ-Crain (2006) [12] No (envelopes) No 300/302 (99%) 87% adherence
Stolz (2007) [13] No (envelopes) Yes 208/208 (100%) Not reported

Kristoffersen (2009) [14] Yes (central randomization, web-based) No 210/210 (100% until
discharge)

59% adherence

Long (2009) [16] No (odd and even patient ID numbers) No 127/127 (100%) Not reported

Schuetz (2009) [17] Yes (central randomization, web-based) Yes 1358/1359 (100%) 91% adherence

Long (2011) [15] No (odd and even patient ID numbers) No 156/156 (100%) Not reported
Nobre (2008) [18] Yes (sequentially numbered, opaque,

sealed envelopes)
No 52/52 (100%) 81% adherence

Schroeder (2009) [21] No (unconcealed drawing of lots) No 8/8 (100% until
discharge)

Not reported

Hochreiter (2009) [22] No (unconcealed drawing of lots) No 43/43 (100% until
discharge)

Not reported

Stolz (2010) [19] No (envelopes) No 101/101 (100%) Not reported

Bouadma (2010) [20] Yes (central randomization, web-based) Yes 393/394 (100%) 47% adherence

Abbreviations: ID, identification; PCT, procalcitonin.
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10.8%; adjusted OR, 0.82; 95% CI, .67–1.01). These results
proved robust in various sensitivity analyses. We found no
evidence for heterogeneity or effect modification across
clinical settings or ARI diagnoses (Supplementary Appendices
3 and 4).

Secondary Endpoints
The PCT-guided patients had a lower antibiotic exposure
overall (adjusted difference in days, −3.47; 95% CI, −3.78 to
−3.17) in all clinical settings and across ARI diagnoses
(Figure 2; Table 5). In the primary-care setting, this was
mainly due to lower initial prescription rates (adjusted OR,
0.10; 95% CI, .07–.14; P < .0001 for interaction between
primary-care setting and PCT group on antibiotic prescrip-
tions). Similarly, lower antibiotic exposure due to lower
prescription rates were found in selected infections, such as
upper ARI (adjusted OR, 0.14; 95% CI, .09–.22; P for interac-
tion = .006) and acute bronchitis (adjusted OR, 0.15; 95% CI,
.10–.23; P for interaction = .001). Shorter duration of antibiotic
therapy further contributed to this effect in patients admitted

to the ED (adjusted difference in days −3.70; 95% CI, −4.09
to −3.31; P for interaction = .005) and the ICU setting (adjust-
ed difference in days, −3.17; 95% CI, −4.28 to −2.06; P for
interaction = .007) and in those with CAP (adjusted difference
in days, −3.34; 95% CI, −3.79 to −2.88; P for interaction
< .0001) and ventilator-associated pneumonia (VAP; adjusted
difference in days −2.23; 95% CI, −4.06 to −.39; P for interac-
tion = .01).

In primary-care patients, we found no significant difference
in rates of treatment failure and days with restricted activities
after 14 days between groups (Table 4). In ED patients, there
was a significantly lower risk of treatment failure in favor of
PCT-guided patients (adjusted OR, 0.76; 95% CI, .61–.95).
There was no difference in the length of stay for ED and ICU
patients.

DISCUSSION

This systematic review and individual patient data meta-
analysis of 14 trials found no increased risk for mortality or

Table 3. Baseline Characteristics of Included Patients

Parameter PCT Group (n = 2085) Control Group (n = 2126)

Demographics

Age in years, mean (SD) 59.4 (20.1) 60.1 (19.4)
Men, No. (%) 1152 (55.3) 1130 (53.2)

Clinical setting, No. (%)

Primary care 507 (24.3) 501 (23.6)
Emergency department 1291 (61.9) 1314 (61.8)

ICU 287 (13.8) 311 (14.6)

Primary diagnosis
Total upper ARI, No. (%) 282 (13.5) 267 (12.6)

Common cold 149 (7.2) 156 (7.3)

Rhino-sinusitis, otitis 72 (3.5) 65 (3.1)
Pharyngitis, tonsillitis 61 (2.9) 46 (2.2)

Total lower ARI, No. (%) 1752 (86.1) 1815 (87.2)

Community-acquired pneumonia 999 (47.9) 1028 (48.4)
Hospital-acquired pneumonia 31 (1.5) 48 (2.3)

Ventilator-associated pneumonia 126 (6) 116 (5.5)

Acute bronchitis 249 (11.9) 282 (13.3)
Exacerbation of COPD 288 (13.8) 296 (13.9)

Exacerbation of Asthma 20 (1.0) 10 (0.5)

Unspecified lower ARI 39 (1.9) 35 (1.7)
Other final diagnosis, No. (%) 51 (2.5) 44 (2.1)

Procalcitonin in μg/L, mean, median (SD; IQR)

Overall 2.7, 0.2 (13.1; 0.1–0.8) 2.3, 0.2 (9.3; 0.1–0.8)
Primary care 0.1, 0.1 (0.9; 0.05–0.1) 0.2, 0.1 (1.8; 0.05–0.1)

Emergency department 2.4, 0.3 (10.7; 0.1–0.9) 2.5, 0.3 (10.0; 0.1–0.9)

Intensive care unit 9.3, 1.4 (26.4; 0.4–5.8) 6.4, 1.2 (9.3; 0.3–4.7)

Abbreviations: ARI, acute respiratory infection; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; IQR, interquartile range; PCT,
procalcitonin; SD, standard deviation.

656 • CID 2012:55 (1 September) • Schuetz et al



treatment failure when PCT was used to guide initiation and
duration of antibiotic treatment in patients with ARI com-
pared with control patients. The upper boundary of the 95%
CI for treatment failure of .97 makes more frequent treatment
failures with PCT unlikely. For mortality, however, the rela-
tively wide CI does not exclude a 23% relative increase in odds

with the PCT approach. This may correspond to an absolute
risk increase for mortality of 1% in the ED setting, assuming
an event rate of 4.5%, and an absolute risk increase of 4% in
the ICU setting, assuming an event rate of 23.8%. The remain-
ing uncertainty associated with the mortality estimate for ICU
patients calls for further research in this high-risk patient

Table 4. Clinical Endpoints Overall and Stratified by Setting and Acute Respiratory Infection Diagnosis

PCT Group Control Group Adjusted OR (95% CI)a P Value

Overall n = 2085 n = 2126 … …

Mortality, No. (%) 118 (5.7) 134 (6.3) 0.94 (.71–1.23) .75
Treatment failure, No. (%)b 398 (19.1) 466 (21.9) 0.82 (.71–.97) .02

Setting specific

Primary care n = 507 n = 501
Mortality, No. (%) 0 (0) 1 (0.2) … …

Treatment failure, No. (%)c 159 (31.4) 164 (32.7) 0.95 (.73–1.24) .69

Days with restricted activities, median (IQR) 9 (6–14) 9 (5–14) 0.05 (−.46 to .56)d .85
Emergency department n = 1291 n = 1314

Mortality, No. (%) 61 (4.7) 59 (4.5) 1.03 (.7–1.5) .90

Mortality or ICU admission, No. (%) 126 (9.8) 147 (11.2) 0.83 (.64–1.08) .16
Treatment failure, No. (%)e 182 (14.1) 228 (17.4) 0.76 (.61–.95) .01

Length of hospital stay, median (IQR)f 8 (4–13) 8 (4–13) −0.42 (−1.2 to .35)d .28

Intensive care unit n = 287 n = 311
Mortality, No. (%) 57 (19.9) 74 (23.8) 0.84 (.54–1.31) .44

Length of ICU stay, median (IQR) 12 (6–23) 12 (6–22) 1.01 (−1.26 to 3.28)d .39

Length of hospital stay, median (IQR) 21 (11–38) 24 (14–38) −1.36 (−4.5 to 1.77)d .39
Disease specific

Upper ARI n = 282 n = 267

Mortality, No. (%) 0 (0) 1 (0.4) … …

Treatment failure, No. (%)c 93 (33.0) 92 (34.5) 0.95 (.73–1.24) .69

Community-acquired pneumonia n = 999 n = 1028

Mortality, No. (%) 92 (9.2) 111 (10.8) 0.89 (.64–1.23) .47
Treatment failure, No. (%)b 190 (19.0) 240 (23.4) 0.77 (.62–.96) .02

Ventilator-associated pneumonia n = 126 n = 116

Mortality, No. (%) 8 (6.3) 12 (10.3) 0.69 (.25–1.94) .49
Treatment failure, No. (%)b 8 (6.3) 12 (10.3) 0.69 (.25–1.94) .49

Acute bronchitis n = 249 n = 282

Mortality, No. (%) 0 (0) 2 (0.8) … …

Treatment failure, No. (%)b 51 (20.5) 54 (19.2) 1.09 (.70–1.70) .71

Exacerbation of COPD n = 288 n = 296

Mortality, No. (%) 9 (3.1) 8 (2.7) 1.15 (.43–3.09) .77
Treatment failure, No. (%)b 35 (13.7) 45 (15.2) 0.75 (.46–1.22) .25

Abbreviations: ARI, acute respiratory infection; CI, confidence interval; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit; IQR, interquartile
range; OR, odds ratio; PCT, procalcitonin.
a Multivariable hierarchical regression with outcome of interest as dependent variable; PCT group, age, and ARI diagnosis as independent variables; and trial as a
random effect.
b Treatment failure was defined according to clinical setting: primary care (death, hospitalization, ARI-specific complications, recurrent or worsening infection, and
discomfort at 30 days), emergency department (mortality, ICU admission, rehospitalization, complications, recurrent or worsening infection within 30 days),
intensive care unit (all-cause mortality within 30 days).
c Treatment failure was defined as death, hospitalization, ARI-specific complications, recurrent or worsening infection, and discomfort at 30 days.
d Adjusted difference in days from hierarchical linear regression with PCT group, age, and ARI diagnosis as fixed effects and trial as a random effect.
e Treatment failure is defined as mortality, ICU admission, rehospitalization, complications, recurrent or worsening infection within 30 days.
f Two trials focusing on outpatients were excluded from this analysis [15, 16].
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Figure 2. Antibiotic use in all patients (n = 4221; A), primary-care patients (n = 1008; B ), emergency-department patients (n = 2605; C ), intensive-care
patients (n = 598; D ), patients with upper acute respiratory tract infections (n = 549; E ), patients with community-acquired pneumonia (n = 2027; F ),
patients with ventilator-associated pneumonia (n = 242; G ), patients with bronchitis (n = 531; H ), and patients with chronic obstructive pulmonary
disease exacerbation (n = 584; I ).
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population. Due to the low adherence to PCT protocols in the
ICU setting, we performed a number of sensitivity analyses to
investigate whether excluding ICU data would affect our
overall findings and found similar results in all such analyses.
In terms of efficacy, we found a consistent reduction of antibi-
otic use in PCT groups, mainly due to lower prescription rates

in primary care (predominantly among patients with upper
ARI and bronchitis), and lower duration of antibiotic courses
in ED and ICU patients (with CAP and VAP).

Because we included a patient population ranging from
primary care to ICU, we adapted the definition of treatment
failure to clinical settings by including setting-specific and

Table 5. Antibiotic Treatment Overall and Stratified by Setting and Acute Respiratory Infection Diagnosis

Parameter PCT Group Control Group Adjusted OR or Difference (95% CI)c P Value

Overall n = 2085 n = 2126

Initiation of antibiotics, No. (%) 1341 (64) 1778 (84) 0.24 (.20–.29) <.0001
Duration of antibiotics in days, median (IQR)a 7 (4–10) 10 (7–13) −2.75 (−3.12 to −2.39) <.0001

Total exposure of antibiotics in days, median (IQR)b 4 (0–8) 8 (5–12) −3.47 (−3.78 to −3.17) <.0001

Setting specific
Primary care n = 507 n = 501

Initiation of antibiotics, No. (%)a 116 (23) 316 (63) 0.10 (.07–.14) <.0001

Duration of antibiotics in days, median (IQR) 7 (5–8) 7 (6–8) −0.6 (−1.17 to −.03) .04
Total exposure of antibiotics in days, median (IQR)b 0 (0–0) 6 (0–7) −3.06 (−3.48 to −2.65) <.0001

Emergency department n = 1291 n = 1314

Initiation of antibiotics, No. (%) 939 (73) 1151 (88) 0.34 (.28–.43) <.0001
Duration of antibiotics in days, median (IQR)a 7 (4–10) 10 (7–12) −3.7 (−4.09 to −3.31) <.0001

Total exposure of antibiotics in days, median (IQR)b 5 (0–8) 9 (5–12) −2.96 (−3.38 to −2.54) <.0001

Intensive care unit n = 287 n = 311
Initiation of antibiotics, No. (%) 286 (100) 311 (100) … …

Duration of antibiotics in days, median (IQR)a 8 (5–15) 12 (8–18) −3.17 (−4.28 to −2.06) <.0001

Total exposure of antibiotics in days, median (IQR)b 8 (5–15) 12 (8–18) −3.21 (−4.32 to −2.10) <.0001
Disease specific

Upper ARI n = 282 n = 267

Initiation of antibiotics, No. (%) 43 (15) 129 (48) 0.14 (.09–.22) <.0001
Duration of antibiotics in days, median (IQR)a 7 (5–8) 7 (6–7) −1.16 (−2.08 to −.24) .01

Total exposure of antibiotics in days, median (IQR)b 0 (0–0) 0 (0–7) −2.64 (−3.16 to −2.11) <.0001

Community-acquired pneumonia n = 999 n = 1028
Initiation of antibiotics, No. (%) 898 (90) 1019 (99) 0.07 (.03–.14) <.0001

Duration of antibiotics in days, median (IQR)a 7 (5–10) 10 (8–14) −3.34 (−3.79 to −2.88) <.0001

Total exposure of antibiotics in days, median (IQR)b 6 (4–10) 10 (8–14) −3.98 (−4.44 to −3.52) <.0001
Ventilator-associated pneumonia n = 126 n = 116

Initiation of antibiotics, No. (%) 125 (99) 116 (100) … …

Duration of antibiotics in days, median (IQR)a 11 (6–17) 14 (9–19.5) −2.23 (−4.06 to −.39) .02
Total exposure of antibiotics in days, median (IQR)b 11 (6–17) 14 (9–19.5) −2.34 (−4.18 to −.50) .01

Acute bronchitis n = 249 n = 282

Initiation of antibiotics, No. (%) 61 (24) 185 (66) 0.15 (.10–.23) <.0001
Duration of antibiotics in days, median (IQR)a 7 (4–9) 7 (5–8) −0.38 (−1.21 to .46) .38

Total exposure of antibiotics in days, median (IQR)b 0 (0–0) 5 (0–7) −3.06 (−3.69 to −2.43) <.0001

Exacerbation of COPD n = 288 n = 296
Initiation of antibiotics, No. (%) 137 (48) 216 (73) 0.32 (.23–.46) <.0001

Duration of antibiotics in days, median (IQR)a 6 (3–9) 8 (6–10) −1.58 (−2.33 to −.82) <.0001

Total exposure of antibiotics in days, median (IQR)b 0 (0–6) 7 (0–10) −3.03 (−3.76 to −2.30) <.0001

Abbreviations: ARI, acute respiratory infection; CI, confidence interval; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; OR, odds ratio;
PCT, procalcitonin.
a Total days of antibiotic therapy in patients in whom antibiotics were initiated.
b Total days of antibiotic therapy in all randomized patients.
c Multivariable hierarchical model adjusted for age and diagnosis and trial as a random effect.
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clinically relevant components in this composite outcome.
This may challenge the clinical interpretation in the overall
analysis but lead to a better interpretation of patient risk in
respective prespecified subgroups. We found lower rates of
treatment failure for patients allocated to the PCT group
overall, in the ED setting, and in CAP patients. Different sensi-
tivity analyses confirmed this finding. There are 3 potential
explanations:

1. PCT appears to provide additional useful information
which can influence decision making in areas such as consid-
eration of safe and early discharge [18].

2. In control groups, treatment failures may be related to
prolonged antibiotic exposure and risk for secondary compli-
cations and rehospitalization [28, 29].

3. The finding turned out to be statistically significant by
chance.

Considering the marginally nonsignificant result with the
alternate definition, we would like to conservatively interpret
this finding (ie, it is unlikely that PCT guidance increases
treatment failures).

Similar to other tests [30], the use of PCT cut-offs and test
result interpretation need to be reflected in the context of the
pretest probability and to be adapted to clinical settings and
the risk of patients. In included trials with patients at low risk
for severe bacterial infections (eg, primary-care patients), a
PCT algorithm was used to determine whether antibiotics
should be initiated at all; in trials with higher-risk patients
(ICU or ED patients), PCT was mainly used to determine
when treatment could be safely discontinued [8]. Importantly,
all trials included PCT in clinical algorithms, and physicians
could deviate from the PCT algorithm if needed. As a conse-
quence, some trials had low protocol adherence, particularly
ICU trials. Although reductions in antibiotic exposure despite
this low adherence were impressive, concerns about safety may
arise. Clinicians commonly agree that important clinical deci-
sions, such as initiation and continuation of antibiotic
therapy, should not be based on a single diagnostic criterion
only; PCT should complement but not replace clinical deci-
sion making [31]. Accordingly, PCT protocols specified “over-
ruling criteria” whereby the PCT algorithm could be bypassed
(eg, if clinical criteria suggest a high-risk situation) [8]. Of note,
sensitivity analyses showed no evidence of heterogeneity, and
results were similar when only trials with high adherence rates
were considered. Poststudy surveys have been published [32, 33]
in order to better understand the effects and challenges of
PCT protocols in clinical practice, where adherence and confi-
dence will be a crucial factor for the success of this strategy.

Previous meta-analyses of RCTs investigating the effect of
PCT algorithms on antibiotic use focused on the critical-care
setting [34–36], patients with suspicion of bacterial infections, [37]
and patients with sepsis and respiratory infections [38]. However,

these meta-analyses used aggregated data and were not able to
investigate the effects of PCT on different ARI diagnoses and
on outcomes other than mortality. The strengths of this meta-
analysis based on individual patient data from 14 eligible trials
include an explicit study protocol, a comprehensive search to
retrieve all relevant trials, a network that allowed inclusion of
individual patient data from eligible trials, standardized
outcome definitions across trials, the possibility to conduct
appropriate subgroup and sensitivity analyses, and analyses
based on the intention-to-treat principle, thereby overcoming
limitations of previous meta-analyses with aggregated data.

Despite these merits, our study has several limitations. Al-
though we included all available evidence in our pooled analy-
sis, we cannot rule out a clinically relevant absolute risk
increase of 4% for ICU patients with PCT guidance. In addi-
tion, the adherence to the PCT algorithm in the largest ICU
trial [20] was relatively low (47%), leaving an even greater un-
certainty about the safety of PCT use in ICU patients. There
are currently several ongoing trials registered in the Clinical
Trials database. Five ongoing trials focus on PCT as a guide to
stop antibiotics in ICU patients with sepsis, and 2 of those are
enrolling large numbers of patients (>1000 patients each).
Hence, these trials may help to further establish the safety of
PCT in this vulnerable patient population. However, if one
wanted to rule out, for instance, a 10% relative (or 2.3% abso-
lute) mortality increase in ICU patients, a total of 5735 ran-
domized patients would be needed in each group (assuming a
mortality rate in control ICU patients with ARI of 23%, an
alpha error of 5%, and a power of 80%).

We limited our analysis to adult patients with ARIs that
were mostly immunocompetent, thus limiting the generaliz-
ability to other populations. Previous RCTs have shown that
PCT guidance also reduces antibiotic exposure in a neonatal
sepsis population and in children with pneumonia [39, 40],
but not in children with fever without a source [41]. We
found 7 ongoing pediatric RCTs evaluating PCT algorithms
that should shed further light on the benefits and harms of
PCT use in pediatric populations.

Finally, included trials were mostly conducted in the Euro-
pean setting, with 2 trials coming from China [15, 16] and 1
multinational trial including US sites [19]. Thus, further vali-
dation and adaptation of PCT algorithms to other countries
may be needed.

In conclusion, the use of PCT to guide initiation and dura-
tion of antibiotic treatment in patients with ARI was not asso-
ciated with higher mortality rates or treatment failure, but
PCT use did significantly reduce antibiotic consumption
across different clinical settings and ARI diagnoses. The re-
maining uncertainty with respect to mortality and the partially
low adherence rates to protocols in ICU patients calls for
further trials, particularly in the critical-care setting, before
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PCT-based algorithms can be considered safe. The use of PCT
embedded in clinical algorithms has the potential to improve
the antibiotic management of ARI patients and has substantial
clinical and public health implications to reduce antibiotic
exposure and the associated risk of antibiotic resistance.
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