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Background
Genome-wide association studies (GWAS) are a powerful method to detect associa-
tions between variants and phenotypes; from initial raw genotype data until detection of 
putative causal variant requires numerous steps, software and approaches to extract and 
understand results [1]. Common steps after genotyping include: 

1.	 Preparing data into standard formats
2.	 Quality control (QC) of genotypes to remove uncertain positions and individuals—

e.g., discrepancy between genotyped sex and known sex, and bias due to high relat-
edness between individuals. These are important steps to reduce noise and false pos-
itive discovery rate [2–4].

3.	 Associating genetic variation with phenotype. This step is very expensive, with mil-
lions of positions and sample sizes ranging from several thousands to several hun-
dred thousand. These methods take account of relatedness between individuals with 
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mixed models and different algorithms to improve detection and/or approximations 
for a very large sample size.

4.	 Post-association analysis, which may include highly complex methods such as meta 
analysis considering different GWAS summary statistics, fine-mapping to define 
causal variants, heritability of phenotype, replication and transferabilty of previous 
results, annotation, integration of eQTL, and/or calculation of polygenic risk score 
[5].

Motivation
The phases of GWAS are all complex, and typically require multiple executions, some-
times on different platforms by different collaborators and replicability of analyses is 
crucial. The Pan-African Bioinformatics Network of the Human Heredity and Health in 
Africa Consortium [6] (H3ABioNet) has as one of its goals the task of supporting the 
work of H3Africa, and African scientists more broadly by developing workflow for com-
monly performed analyses. Baichoo et  al. [7] provide an overview of workflow devel-
opment within H3ABioNet, including an introduction to a much earlier version of this 
workflow. The goal of the H3AGWAS workflow is to support scientists undertaking 
GWAS taking into account access to heterogeneous computing environments.

In summary, the goal of the H3AGWAS workflow is to provide a flexible, powerful and 
portable workflow for genome-wide association studies. The use of a workflow reduces 
the manual intervention required by human analysts, thereby reducing the overall time 
for a project to complete. Some phases of a GWAS are exploratory and analyses may 
need to be re-run as QC proceeds, and different parameters and analytic techniques 
tried after assessing initial results. The workflow needs to support reproducible analyses 
and be portable and scalable across many different computational environments (lap-
top to cluster to cloud), reflecting the heterogeneous environments across Africa. Using 
Nextflow and containerisation promotes scalability and portability.

Implementation
The workflow has been developed in Nextflow [8], with Python [9], bash and R scripts 
[10] and uses well-known bioinformatics tools. It can easily be ported to different execu-
tion environments (e.g., standalone, job scheduling, cloud) and uses containers to pack-
age software and dependencies assures replicability and simple installation. Figure  1 
gives an overview.

Rather than producing one workflow which operates end-to-end, the H3AGWAS 
workflow is split into several independent sub-workflows mapping to separate phases 
of work. Independent workflows allow users to execute parts that are only relevant to 
them at those different phases. For example, our experience has shown that the QC 
step requires multiple iterations over several weeks to find the best QC parameters and 
resolve problems with data. Once the QC is complete, the analysis moves to the next 
phase, which in turn may take weeks.

Sample runs and extensive documentation for the different phases can be found at 
http://​github.​com/​h3abi​onet/​h3agw​as/.

http://github.com/h3abionet/h3agwas/
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Pre‑association workflows

Producing PLINK data

The call2​plink workflow converts Illumina genotyping reports into PLINK format.

Quality control

The qc workflow performs quality control on a set of input PLINK file. The workflow 
considers per-sample and per-single nucleotide polymorphism (SNP) missingness, 
minor allele frequency, levels of heterozygosity, highly related samples, possible dupli-
cates, and sex mismatches, and also examines possible batch effects (for example, 
between cases and controls, for samples collected from different sites, or genotyped 
in different runs). A detailed report is produced which helps the user understand the 

Fig. 1  Overview of GWA studies from DNA sample until post-association analysis, box in blue corresponding 
to part of GWA studies present in H3AGWAS workflow and text in red corresponding to scripts in H3AGWAS 
workflow

https://github.com/h3abionet/h3agwas/tree/master/call2plink
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data and which can be used in the methods section of a paper. All QC and workflow 
parameters (including software versions) and the MD5 checksums of input and out-
put data are recorded in order to promote replicability and reduce the risk of version 
skew.

Association testing

The assoc workflow performs association on PLINK formatted files, including adjust-
ment for multiple testing in PLINK. In addition to the basic association tests, the 
workflow currently supports Cochran-Mantel-Haenszel (CMH), linear and logistic 
regression, permutation and mixed-model association testing. This workflow provides 
user-selectable choices of software for association testing. PLINK is the work-horse for 
basic linear models, including support of covariates and adjusting for population struc-
ture. Exact linear mixed models with relatedness matrix have been included (Fast-LMM 
[11] and GEMMA [12]). For larger data sets, BOLT-LMM [13] and fastGWA [14, 15], 
SAIGE [16] and regenie [17] which use approximation of relatedness can be selected 
(and the workflow can compute the SNP-derived genetic relationship matrix (GRM) 
from genotype data using GCTA [15]). Besides PLINK format, BOLT-LMM, SAIGE, 
fastGWA and regenie also accept dosage as optional input (e.g., for imputed data). 
BGEN format can be extracted from VCF files after imputation, using formatting scripts 
(see the Format conversion section below)—the assoc pipeline supports these formats.

Many common complex traits are believed to be a result of the combined effect of 
genes, environmental factors and their interactions. Gene-environment interaction 
(G× E) can be analysed to detect loci where genotype-phenotype association may depend 
on the environment: G × E options from GEMMA and PLINK are implemented in the 
workflow (see Fig. 2 and Table 1).

The PLINK input files are also used to perform a principal component analysis (PCA) 
and a PCA plot is generated that can be used to identify any possible population struc-
ture in the data set.

Output includes a report with PCA, Manhantan plot, qq plot of each phenotype, sum-
mary statistics and software versions used by the pipeline.

Post‑association analysis

The post-association analysis workflows use genotype data and results of association 
testing in order to (1) find putative causal variants; (2) perform a meta-analysis or multi-
trait genome-wide association study using summary statistics; (3) estimate global herit-
ability; and (4) annotate positions (see Tables 1 and 2).

Genetic heritability and co‑heritability of phenotypes

There are two scripts to compare heritability and co-heritability of phenotypes. The first 
uses relatedness and phenotypes, based on REML or variance components analysis with 
BOLT-LMM [13, 31], GEMMA [12] and GCTA [14, 32]. The second uses summary sta-
tistics and methods implemented in GEMMA [33] and LDSC [24]. Furthermore, the 
workflow can compute the co-variability and co-heritability between phenotypes using 

https://github.com/h3abionet/h3agwas/tree/master/assoc
https://github.com/h3abionet/h3agwas/tree/master/assoc
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relatedness and phenotypes using BOLT-LMM and GCTA or with summary statistics 
with LDSC.

Annotations

An annotation script extracts genotypes of each individual and compares to phenotype, 
annotates lead SNPs using Annovar [27], plots regions using LocusZoom software [26], 
plot distribution of phenotypes by genotypes, and generates a report for the user.

Simulations of phenotypes

To estimate true and false positive detection in GWA, build_​examp​le_​data/​simul-​assoc_​
pheno​sim.​nf script randomly builds phenotypes using the PhenoSim software [25] and 
genetics data where loci are randomly selected, followed by a GWA on the simulated 
data using BOLT-LMM and GEMMA (see Additional file  1: table  7). In addition, the 
build_​examp​le_​data/​main.​nf script builds phenotypes of individuals using initial geno-
type and allele effects. By default, the workflow uses 1000 Genomes Project (KGP) data 
[34] and extracts effect of positions from the GWAS Catalog. The steps are: (1) extract 
and format KGP data; (2) download GWAS catalog positions and results; (3) simulate 

Table 1  List of softwares and resources used in H3AGWAS workflow, softwares are classify by phase 
of GWAS and task

Phase Software/resource Workflow/task References

All PLINK (1.9) All [18]

Python (3) All [9]

R (3.6) Plot and extraction data [10]

Association testing GEMMA (0.98.5) Association testing/heritability/
conditional analysis

[12]

Fast-LMM (binary version) Association testing [11]

BOLT-LMM Association testing/heritability [13]

SAIGE 1.0 Association testing [16]

regenie 3.1.3 Association testing [17]

GCTA : fastGWA​ Association testing [14, 15]

Post-association analysis GCTA: COJO-slct, simulation, 
GREML

Fine-mapping/heritability/simula‑
tion

[19]

MetaSoft Meta-analyses [20]

GWAMA Meta-analyses [21]

METAL Meta-analyses [22]

MTAG​ Multi-trait association [23]

LDSC Heritability [24]

PhenoSim Simulation [25]

LocusZoom Annotations [26]

Annovar Annotations [27]

Format data BCFtools Convert vcf [28]

QCTOOL (v2) Convert vcf to bgen/bimbam/
impute2

[29]

CrossMap Convert positions between 
genome builds

[30]

https://github.com/h3abionet/h3agwas/blob/master/utils/build_example_data/
https://github.com/h3abionet/h3agwas/blob/master/utils/build_example_data/
https://github.com/h3abionet/h3agwas/blob/master/utils/build_example_data/
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phenotype in KGP individuals using effect of position, using GCTA [18] (see Additional 
file 1: table 7).

Causal variants

Three workflows have been implemented to detect causal variants: finem​apping/​cojo-​
assoc.​nf uses a step-wise model selection procedure to select independently associ-
ated SNPs [19]. finem​apping/​main.​nf or finem​apping/​finem​ap_​region.​nf use genotypes, 
summary statistics and a region of interest to extract putative causal variants under a 

Table 2  List and description of Nextflow scripts by phase of GWAS

Phase Script names Description

Pre-association qc/qc.nf Quality control of genetics data

call2plink/main.nf Converting from Illumina genotyping 
reports in TOP/BOTTOM or Forward

Association testing assoc/main.nf Run association and GxE using genetics on 
PLINK file and phenotype(s)

Post-association analysis finemapping/cojo-assoc.nf Stepwise model selection procedure to 
select independently associated SNPs

finemapping/cond-assoc.nf Run conditional association using gemma

finemapping/finemap_region.nf Fine-mapping on specific region using 
FineMap,

finemapping/main.nf Extract lead SNPs and perform a fine-map‑
ping on each region using FineMap,

heritabilities/main.nf Estimated heritability using GCTA, BOLT-
LMM, LDSC or GEMMA

replication/gwascat/main.nf Extraction of replication using GWAS cata‑
log by positions and linkage disequilibrium.

meta/meta-assoc.nf Meta analysis using PLINK, Meta-soft, 
GWAMA and Metal

meta/mtag-assoc.nf Multi-trait genome-wide association using 
mtag software

utils/annotation/annot-assoc.nf Locus zoom, annotation using , distribution 
of phenotype by genotype

utils/build_example_data/main.nf Extracted genotype for a sample and 
simulated phenotype with GCTA using 
1000 Genome and positions, effect of 
catalog results

utils/build_example_data/simul-assoc_
gcta.nf

Simplified version of main.nf, simulated 
phenotype with GCTA using 1000 Genome 
and positions, effect of catalog results

utils/build_example_data/simul-assoc_
phenosim.nf

Simulated phenotypes using phenosim 
with random choice of positions and run 
association on simulated phenotypes

Format data formatdata/convert_posversiongenome.
nf

Convert position between reference

formatdata/format_gwasfile.nf Format GWAS file

formatdata/plk_in_vcf_imp.nf Format PLINK in VCF for imputation

formatdata/vcf_in_bimbam.nf Use VCF output of imputation to format in 
bimbam

formatdata/vcf_in_impute2.nf Use VCF output of imputation to format in 
impute2 format

formatdata/vcf_in_plink.nf Use VCF output of imputation to format in 
PLINK format

formatdata/vcf_in_bgen_merge.nf Use VCF output of imputation to format in 
bgen format

https://github.com/h3abionet/h3agwas/tree/master/finemapping/
https://github.com/h3abionet/h3agwas/tree/master/finemapping/
https://github.com/h3abionet/h3agwas/tree/master/finemapping/
https://github.com/h3abionet/h3agwas/tree/master/finemapping/
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Bayesian framework with FINEMAP [21], CaviarBF [35] and PAINTOR or using step-
wise model selection (cojo-slct). Output includes results of all steps and plots of regions 
of interest with p-value and post probabilities obtained by fine-mapping to compare 
results. In finem​apping/​finem​ap_​region.​nf, if no genotype is given by users, data are 
downloaded from the KGP and LD is computed (build_​examp​le_​data/​main.​nf ). finem​
apping/​cond-​assoc.​nf test Independence between lead SNP and list of SNPs using 
GEMMA software.

Meta‑analysis and multi‑trait genome‑wide association

Script meta/​mtag-​assoc performs a multi-trait genome-wide association using the 
mtag  software [23] for joint analysis of summary statistics from GWASs of different 
traits. The meta/​meta-​assoc.​nf workflow performs meta-analysis with different software 
and statistical approaches to account for variability between data sets, genomic inflation 
or overlap between samples with METAL [22] or GWAMA [21] and Metasoft [20, 36]. 
Summary statistics, results of meta-analysis, and a report are produced as output.

Format conversion

Many GWAS tools use different formats and being able to convert easily between them 
is useful. We provide various scripts to support this conversion. For instance the forma​
tdata/​plk_​in_​vcf_​imp.​nf script prepares data for imputation. There are scripts that trans-
form VCF data imputed in various formats to PLINK, bimbam, BGEN or impute2 for-
mat. forma​tdata/​conve​rt_​posve​rsion​genome.​nf converts genomic coordinates between 
different assemblies, for example between GRCh38 and hg19, using CrossMap [30].

Fig. 2  Workflow of association testing each background color represent different steps from input to output 
with preparation of input data, generated relatedness matrix or GRM to take account population structure 
and association testing

https://github.com/h3abionet/h3agwas/tree/master/finemapping/
https://github.com/h3abionet/h3agwas/blob/master/utils/build_example_data/
https://github.com/h3abionet/h3agwas/tree/master/finemapping
https://github.com/h3abionet/h3agwas/tree/master/finemapping
https://github.com/h3abionet/h3agwas/tree/master/meta
https://github.com/h3abionet/h3agwas/tree/master/meta
https://github.com/h3abionet/h3agwas/tree/master/formatdata
https://github.com/h3abionet/h3agwas/tree/master/formatdata
https://github.com/h3abionet/h3agwas/tree/master/formatdata
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Example data set

There is a sample data set, built using KGP and GWAS catalog [37] data, at https://​
github.​com/​h3abi​onet/​h3agw​as-​examp​les. This includes summary statistics, PLINK 
data, dosage, and phenotype data. For each individual in the KGP, we extracted genotype 
data at each position in the H3Africa Custom Array chipi​nfo.​h3abi​onet.​org. Data was 
imputed using the Sanger imputation server (https://​imput​ation.​sanger.​ac.​uk/). After 
formatting, we extracted 500 individuals and 50,000 positions.

Installation and support

The H3AGWAS workflow requires Java 8 or later and Nextflow, and can either be cloned 
from GitHub explicitly or run directly using Nextflow.

In addition, the workflow relies on a number of state-of-the art bioinformatics tools 
(Tables 1, 2). We recommend that users install either Singularity or Docker and then run 
H3AGWAS workflow workflow using the appropriate profile—we provide containers 
with all tools bundled. These containers will automatically be installed on the first execu-
tion of the workflow. However, for those users who are not able to use Singularity or 
Docker or who would like control over which versions of the tools are used, the Docker 
files can be used to guide someone with basic system administration skills to install the 
necessary dependencies.

Manuals and examples can be found at https://​github.​com/​h3abi​onet/​h3agw​as and 
https://​github.​com/​h3abi​onet/​h3agw​as-​examp​les. Common problems faced by users or 
help with the workflow itself is provided through GitHub issues. The H3ABioNet sup-
ports general queries from African researchers about the use of the workflow or GWAS 
in general through its help desk [38] (https://​helpd​esk.​h3abi​onet.​org).

FAIR

The workflow was developed to be “Findable, Accessible, Interoperable and Reusable” 
according to guidelines on the FAIR https://​fair-​softw​are.​eu/ website. The H3AGWAS 
workflow has been registered in bio.tools (https://​bio.​tools/​h3agw​as), uses an MIT 
Licence, contain citation metadata files, and uses a software quality checklist via a Core 
Infrastructure Initiative (CII) Best Practices badge (https://​bestp​racti​ces.​corei​nfras​truct​
ure.​org/​en).

Results and discussion
Each workflow was tested on the Wits University Core Research Cluster (CentOS 7, 
SLURM) and Singularity images [39], on Amazon AWS and Microsoft Azure. It has also 
been used in production on other environments. Since it uses Nextflow and containers, 
it can run on any environment that Nextflow supports such as PBS/Torque.

We illustrate the use of the workflow with a real data set from the H3Africa AWI-
Gen Collaborative Centre [40]. The data comes from a cross-sectional study that 
investigated populations from six sub-Saharan African sites—≈12,000 black African 
men and women from two urban settings (Nairobi and Soweto) and four rural set-
tings (Agincourt, Dikgale, Nanoro and Navrongo), aged 40 to 80 years. DNA from 
these individuals was genotyped on the H3Africa Custom Array (https://​chipi​nfo.​
h3abi​onet.​org), designed as an African common variant enriched GWAS array with 

https://github.com/h3abionet/h3agwas-examples
https://github.com/h3abionet/h3agwas-examples
https://chipinfo.h3abionet.org/
https://imputation.sanger.ac.uk/
https://github.com/h3abionet/h3agwas
https://github.com/h3abionet/h3agwas-examples
https://helpdesk.h3abionet.org
https://fair-software.eu/
https://bio.tools/h3agwas
https://bestpractices.coreinfrastructure.org/en
https://bestpractices.coreinfrastructure.org/en
https://chipinfo.h3abionet.org
https://chipinfo.h3abionet.org
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≈2.3 million SNPs. QC was run on the array data set resulting in ≈ 10, 600 individu-
als and ≈1.733m SNPs. Imputation was performed on the cleaned data set using the 
Sanger Imputation Server and the African Genome Resources as a reference panel. 
We selected EAGLE2 [41] for pre-phasing and the default PBWT algorithm was 
used for imputation. The resulting data was used for the following phases.

Testing of different sub‑workflows

•	 QC: Quality control of genotype data was tested using AWI-Gen data set with 
12,000 individuals before imputation.

•	 Association testing: For association testing, we used four residuals of lipid phe-
notype: LDL, cholesterol, HDL and triglycerides normalised using sex and age 
followed by an inverse normal transformation previously described [42]. We 
simultaneously ran linear associations with PLINK [18], GEMMA using the Uni-
variate Linear Mixed Model [12], BOLT-LMM using mixed model analysis [13], 
fastGWA from GCTA [14, 15] using mixed linear model, SAIGE [16] and regenie 
[17] with genotype and dosage using BGEN format as input.

•	 Meta-analysis: The meta-analysis workflow was tested using GEMMA summary 
statistics of cholesterol from each region of AWI-Gen data set: South Africa, east 
Africa and west Africa.

•	 Other scripts: Testing of other scripts is summarized in Table  3. The finem​
apping/​main.​nf script was tested using cholesterol result of GEMMA. Conver-
sion of PLINK to VCF was tested using genotypes processed by the QC work-
flow. Conversion of VCF to PLINK, bimbam, impute2 was tested using data after 
imputation.

Table 3  List of evaluation of additional workflow implemented in H3AGWAS workflow. using AWI-
Gen data set or 1000 genome project

Script Test descriptive

qc/main.nf QC of genotype 12,000 individuals from AWI-Gen project

finemapping/main.nf Extraction of lead SNPs of cholesterol result from GEMMA

heritabilities/main.nf Estimation of heritabilities of 4 phenotypes lipid using genotype and 
phenotype and/or summary statistics

formatdata/plk_in_vcf_imp Transformation of PLINK after qc in vcf to prepared data for imputation

formatdata/vcf_in_plink.nf Transformation of data imputed in PLINK format

meta/mtag-assoc.nf Multi-trait analysis of genome-wide association performed using 4 
lipid phenotypes

utils/build_example_data/main.nf Build an example data set using diabetes phenotype from lead snps of 
GWAS catalog and 1000 genomes project genotype [34]

https://github.com/h3abionet/h3agwas/tree/master/finemapping
https://github.com/h3abionet/h3agwas/tree/master/finemapping
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Association testing

The association workflow was tested using 10,700 individuals, four phenotypes and 14 
million imputed positions using genotype in PLINK format and/or dosage with BGEN 
format [43] with PLINK, GEMMA, BOLT-LMM, fastGWA, SAIGE and regenie. We 
excluded Fast-LMM from testing given that it required over 100 GB of memory for a 
single chromosome. Using the Wits Core cluster1, the workflow ran with an elapsed time 
of 12h 36m. Among the five programs used for association, GEMMA used most com-
puting time and jobs, followed by fastGWA, regenie, SAIGE, BOLT-LMM and PLINK. 
Other processes took less than 6% of CPU time (Additional file 1: table 12). The largest 
maximum memory (resident set size) used by any job was 7.9 GB. Example of report of 
workflow can be found in Additional file 1: section 3.2.

Meta‑analysis workflow

As an illustration, we performed meta-analysis (meta/​meta-​assoc.​nf ) using 3 sum-
mary statistics, each with 14 million SNPs. The script ran for 34 minutes in total, with 
METAL using the shortest processing time (1.8 minutes) and GWAMA using the long-
est processing time. The highest amount of memory (10 GB) was also used by GWAMA, 
whereas PLINK used the lowest (2 GB; Additional file 1:  table 13).

Others tests

Each script has been tested using the AWI-Gen data set, as summarised in Table 3. The 
Additional file  1 provide more details, showing the costs of each step being run on a 
Linux cluster with SLURM and using Singularity images.

Cloud computing

The QC and association workflows have been tested on Amazon Web Services (AWS) 
as well as Microsoft Azure using batch processing through Nextflow. All workflows have 
configuration files that include profiles for use on AWS and Azure, and instructions are 
provided in the README for the workflow. Using a large simulated data set with 22k 
individuals across 2.2m SNPs, the QC script took 8.6 hours to run on AWS and 20 hours 
to run on Azure, with cost between US$5-US$10 using spot pricing.

Contribution and related work

The H3AGWAS workflow provides a comprehensive suite of portable and scalable work-
flows for GWAS. Few existing workflows integrate so many steps of GWAS, from QC to 
post-association analysis.

The closest competing workflow is BIGwas [44] which provides both QC and asso-
ciation testing. Kässens et  al. compared BIGwas to an earlier version of H3AGWAS 
workflow. With respect to QC, they found that the two were roughly equivalent in 
functionality but BIGwas was much faster. However, we have been unable to replicate 
their findings and our experimentation shows that the QC and association testing using 
H3AGWAS workflow execution with default parameters is much faster (see Additional 

1  This is a production cluster and while the cluster was lightly loaded at this time there were other jobs running

https://github.com/h3abionet/h3agwas/tree/master/meta
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file 1). However, although workflow engineering is important to performance, the com-
putational cost primarily depends on underlying tools rather than the virtues of the 
workflow. With respect to association testing and pre- and post-analysis, they found 
their workflow to be superior. Whatever arguable shortcomings the H3AGWAS work-
flow may have had in October 2020, in March 2022 the H3AGWAS workflow has signifi-
cantly more extensive set of functionalities. In addition, the H3AGWAS workflow has 
two significant advantages: (1) it supports cloud computing directly through the use of 
AWS and Azure batch; and (2) relatively lightweight Singularity/Docker containers allow 
deployment in HPC environments where setuid for Singularity is often disabled (see the 
Additional file 1 for an explanation).

Other tools that are available are summarised in Table 4.

Conclusion
The H3AGWAS workflow provides a suite of workflows from quality control of genomic 
data to post-association analysis of result. Using Nextflow and containers, supports easy 
installation of the workflow and makes it portable and scalable—from laptop to server 
to cloud (AWS and Azure). The multiple workflow scripts intuitively map to individual 
GWAS workflow phases. The workflows are available on GitHub and we strive to comply 
with FAIR principles.

Table 4  Non-exhaustive list of workflows that perform QC, association testing and/or post-
association analysis of GWAS

Software Analysis Link

GWASTools (Bioconductor) QC https://​www.​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​GWAST​ools.​html, [45]

BigGWAS QC, Association testing https://​github.​com/​ikmb/​gwas-​assoc, [44]

plinkQC QC https://​meyer-​lab-​cshl.​github.​io/​plink​QC/​
artic​les/​plink​QC.​html, [46]

GWAS-ellingson QC https://​github.​com/​sally​rose0​425/​GWAS, 
[47]

TASSEL Association testing with general 
linear model and mixed linear model 
approaches, some post analysis analysis

https://​avika​rn.​com/​2019-​07-​22-​GWAS/, 
[48]

CAUSALdb-finemapping Fine-mapping using different software https://​github.​com/​mulin​lab/​CAUSA​Ldb-​
finem​apping-​pip, [49, 50]

FINNGEN Fine-mapping https://​github.​com/​FINNG​EN/​finem​
apping-​pipel​ine

FUMA Post-association analysis using web 
interface

https://​fuma.​ctglab.​nl/, [51, 52]

postgap Post-association analysis with annota‑
tion through cis-regulatory data sets 
using python

https://​github.​com/​Ensem​bl/​postg​ap, 
[53]

nf-gwas-pipeline QC, Association testing integrating R 
packages SNPRelate/GENESIS/GMMAT 
and ANNOVAR using Nextflow

https://​github.​com/​monti​lab/​nf-​gwas-​
pipel​ine [54]

gwasglue Post-association analysis with colocalisa‑
tion, fine-mapping Mendelian randomi‑
sation using R

https://​mrcieu.​github.​io/​gwasg​lue

https://www.bioconductor.org/packages/release/bioc/html/GWASTools.html
https://www.bioconductor.org/packages/release/bioc/html/GWASTools.html
https://github.com/ikmb/gwas-assoc
https://meyer-lab-cshl.github.io/plinkQC/articles/plinkQC.html
https://meyer-lab-cshl.github.io/plinkQC/articles/plinkQC.html
https://github.com/sallyrose0425/GWAS
https://avikarn.com/2019-07-22-GWAS/
https://github.com/mulinlab/CAUSALdb-finemapping-pip
https://github.com/mulinlab/CAUSALdb-finemapping-pip
https://github.com/FINNGEN/finemapping-pipeline
https://github.com/FINNGEN/finemapping-pipeline
https://fuma.ctglab.nl/
https://github.com/Ensembl/postgap
https://github.com/montilab/nf-gwas-pipeline
https://github.com/montilab/nf-gwas-pipeline
https://mrcieu.github.io/gwasglue
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Pre-association scripts focus on quality control, with imputation performed by a 
separate workflow. We plan to add calling of array data to the workflow, in the future. 
Association studies, including G × E analysis, can be performed in our workflow using 
six different techniques provided by state-of-the-art tools. Post-analysis of GWAS sup-
ports meta analysis, heritability computation, identifying causal SNPs, co-localisation 
and fine-mapping.

Our workflow supports multiple tools, providing users with opportunities to compare 
results (e.g., different approaches for fine-mapping and association testing). Further-
more, different Nextflow scripts for each step allows the user to run analyses with differ-
ent parameters and customise the analysis to their needs. Each script is associated with a 
Docker image to simplify installation, and returns a PDF report to the researcher to help 
to interpret the results.

Future development

Several additional features are under development. In pre-association, calling genotypes 
from raw array data is challenging, and we are currently working on a workflow to per-
form this step. New features to be added include supporting replication and transferabil-
ity of previous result using GWAS Catalog result [37] or full summary statistics. We plan 
to port the workflow to DSL2 and make it nf-core compatible.

Availability and requirements

Project name: H3AGWAS workflow
Project home page: https://​github.​com/​h3abi​onet/​h3agw​as
Example home page: https://​github.​com/​h3abi​onet/​h3agw​as-​examp​les
Operating system: Linux (or MacOS and Windows with Docker)
Program language: Nextflow, Python, R, bash
Other requirements: Java 8 or later, Nextow Docker/Singularity (or softwaredepend-
encies listed in Dockerfile)
Licence: MIT Licence
Restrictions on non-academic use: None

Docker images are available from https://​quay.​io/​organ​izati​on/​h3abi​onet_​org/ and 
https://​github.​com/​h3abi​onet/​h3agw​as-​docker.

Example are available from https://​github.​com/​h3abi​onet/​h3agw​as-​examp​les.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​05034-w.

Additional file 1. Comparison between h3agwas and BIGWAS and description and test of other scripts of workflow.
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