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Abstract: The detailed knowledge about the structure of multinuclear paramagnetic lanthanide
complexes for the targeted design of these compounds with special magnetic, sensory, optical and
electronic properties is a very important task. At the same time, establishing the structure of such
multinuclear paramagnetic lanthanide complexes in solution, using NMR is a difficult task, since
several paramagnetic centers act simultaneously on the resulting chemical shift of a particular
nucleus. In this paper, we have demonstrated the possibility of molecular structure determination in
solution on the example of binuclear triple-decker lanthanide(III) complexes with tetra-15-crown-5-
phthalocyanine Ln2[(15C5)4Pc]3 {where Ln = Tb (1) and Dy (2)} by quantitative analysis of the pseudo-
contact lanthanide-induced shifts (LIS). The symmetry of complexes was used for the simplification
of the calculation of pseudo-contact shifts on the base of the expression for the magnetic susceptibility
tensor in the arbitrary oriented magnetic axis system. Good agreement between the calculated and
experimental shifts in the 1H NMR spectra indicates the similarity of the structure for the complexes
1 and 2 in solution of CDCl3 and the structure in the crystalline phase, found from the data of the
X-ray structural study of the similar complex Lu2[(15C5)4Pc]3. The described approach can be useful
for LIS analysis of other polynuclear symmetric lanthanide complexes.

Keywords: NMR spectroscopy; lanthanides; phthalocyanines; symmetry; pseudo-contact contribution
of lanthanide-induced shifts

1. Introduction

Lanthanide complexes with phthalocyanine ligands exhibit unique physical and chem-
ical behavior [1–3] responsible for their application as components of electrochromic mate-
rials and sensors [4,5], molecular switches and memory devices [6,7], fluorescent probes [8],
single molecule magnets [9] and MRI contrasting agents [10]. Another promising appli-
cation of those complexes is clinical magnetic resonance tomography, which can simul-
taneously perform magnetic imaging and measure 3D temperature distributions. The
accurate non-invasive local temperature measurements in living cells is a crucial task for
modern medicine and biochemistry [11–14]. For these approaches, lanthanide-containing
compounds and complexes are very promising [15–17]. Targeted design of such mate-
rials requires the investigation of the relationships between the structure of lanthanide
complexes and their functional properties [18]. Nuclear magnetic resonance spectroscopy
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(NMR) is a very efficient tool for studying the molecular structure, paramagnetic proper-
ties and molecular dynamics of paramagnetic lanthanide complexes. Thus, methods for
the structure determination of mononuclear lanthanide complexes, based on the analysis
of paramagnetic lanthanide-induced shifts (LIS), are successfully applied for both small
molecules and biological systems containing proteins and nucleic acids [19–31].

In the presence of a structural model for the system under study (obtained from the
X-ray structural analysis data or obtained by quantum-mechanical modeling and other
methods), it is possible to use the method for analyzing pseudo-contact contributions to
the LIS, based on the optimization procedure [32–39]. At the same time, NMR studies
of polynuclear lanthanide complexes are more difficult, since each paramagnetic center
contributes to the LIS as well as the increase in the relaxation rate. Accordingly, the
qualitative and quantitative analysis of the LISs of polynuclear complexes is significantly
complicated due to the increase in the number of unknown parameters (determined, for
example, by quantum-chemical calculations or X-ray diffraction studies) [39]. However, in
some cases, one can try to simplify structural calculations, for example, due to the symmetry
of the complex. In this work, we use the method of simplifying the structural calculations
of tetra-15-crown-5-phthalocyanine Ln2[(15C5)4Pc]3 {where Ln= Tb (1) and Dy (2)} taking
into account their symmetry, Figure 1.
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Figure 1. Schematic representation of the structure of the complexes 1 and 2 with an example of the
arrangement of “paired” protons (where M = Tb (1) or Dy (2)).

2. Results and Discussion
Structural Assignment by NMR

Previously, all observed signals in the 1H NMR spectra of Ln2[(15C5)4Pc]3 (Ln = Tb,
Dy) (Figure 2) were assigned by complementary LIS and relaxation rate analysis with
satisfactory convergence [40]. This analysis was made by simplified method (by «axial
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approximation»). The direct use of Formula (1) is limited by the complexity of the calcula-
tion procedures associated with an increase in the variable parameters. A more rigorous
description of the pseudo-contact interaction for a polynuclear complex leads us to a more
complex task. In our case, however, the calculations can be simplified using the symmetry
of complexes.
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Figure 2. 1H NMR spectra of Ln2[(15C5)4Pc]3 (where Ln = Tb, Dy) measured in CDCl3 at 303 K.

In this work, we present a new approach for calculating paramagnetic pseudo-contact
shifts in NMR spectra using the example of three-decker homobinuclear homoleptic com-
plexes of lanthanides with phthalocyanine (1 and 2, Figures 1 and 2). The complexes are
characterized by the C4h symmetry, and the plane of symmetry coincides with the inner
phthalocyaninate deck. The outer decks (“upper” and “lower”) are mirror-like and inverted
reflections of each other. Thus, each proton from the outer “upper” phthalocyaninate deck
has its own “opponent” with a similar chemical and coordination environment in the
“lower” deck (Figure 1). Each of the paramagnetic centers Ln1 and Ln2, interacting with a
pair of “duplicating” (“paired”) protons from the “upper” and “lower” outer decks of ph-
thalocyanine, and induces similar pseudo-contact shifts on them. Using such a symmetric
arrangement of paramagnetic centers and “paired” protons, it is possible to simplify the
computational task from the case of a binuclear complex to a quasi-mononuclear case (the
detailed description of the calculation procedure is presented in Supplementary Materials).

The calculation of pseudo-contact LISs, carried out according to the procedure for a
quasi-mononuclear complex (see detailed describing in Supplementary Materials), led to a
set of theoretical values of δLIS (calc) for each of the complexes with an agreement factor of
about 6% in both cases (see Table 1). The AF parameters were obtained as the optimization
result {0.06 both for 1 and 2}, confirming the consistency between the calculated and
experimental LISs. The values of the calculated paramagnetic LIS for protons of different
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groups and the corresponding experimental LISs (Table 1) show a good convergence
in these complexes. Indeed, the structure of the complexes 1 and 2 in the solution is
consistent to the structure of single crystals of Lu2[(15C5)4Pc]3 obtained by single-crystal
X-ray diffraction analysis.

Table 1. The observed δLIS (exp, ppm) and calculated δLIS (calc, ppm) pseudo-contact contributions to
lanthanide-induced shifts in the 1H NMR spectra of the Ln2[(15C5)4Pc]3 (Ln = Tb and Dy) complexes
in CDCl3 at 303 K.

Assignment
Tb Dy

δLIS(exp) δLIS(calc) ∆δLIS (Ln1) ∆δLIS (Ln2) δLIS(calc) δLIS(exp) ∆δLIS (Ln1) ∆δLIS (Ln2)

HPc
o −57.6 −56.6 −71.4 14.8 −29.2 −29.7 −36.8 7.6

1o −37.9 −35.4 −32.6 −2.79 −18.1 −19.4 −16.8 −1.4

1′o −25.0 −25.4 −28.8 3.4 −13.1 −12.9 −14.9 1.8

2o −21.9 −23.2 −18.7 −4.5 −12.0 −11.4 −9.6 −2.3

2′o −20.3 −18.2 −15.7 −2.5 −9.4 −10.4 −8.1 −1.3

3o −12.6 −14.0 −10.1 −3.8 −7.1 −6.4 −5.1 −1.9

3′o −10.4 −16.3 −11.9 −4.3 −8.4 −5.3 −6.1 −2.2

4o −9.0 −10.5 −8.9 −1.6 −5.3 −4.5 −4.5 −0.8

4′o −7.6 −13.4 −11.3 −2.1 −6.9 −3.8 −5.8 −1.0

HPc
i −154.3 −153.6 −150.2 −3.4 −79.0 −79.3 −78.9 −0.2

1i −69.5 −67.7 −55.4 −12.3 −34.8 −35.9 −28.9 −5.9

2i −35.1 −37.6 −28.1 −9.5 −19.4 −18.2 −14.7 −4.7

3i −16.9 −15.1 −13.2 −1.9 −7.5 −8.5 −6.8 −0.8

4i −14.0 −19.0 −14.8 −4.2 −9.7 −7.1 −7.7 −2.0

Sqrt(AF) 0.06 0.06

The calculated values of the magnetic susceptibility tensor of the lanthanide cations
are presented in Table 2. As can be seen from Table 2, the values of the parameters for the
Tb complexes are approximately two times greater than those for the Dy complexes. This
explains the observed trend that the paramagnetic LIS values for Tb complexes are about
two times greater than for Dy complexes (see Table 2).

Table 2. Calculated values of the components of the magnetic susceptibility tensor of the Ln cation
(χ−χzz)
N×}×γ , (χxx−χyy)

N×}×γ , χxy
N×}×γ , χxz

N×}×γ , χyz
N×}×γ (expressed in ppm × Å3) for the Ln2[(15C5)4Pc]3 com-

plexes in CDCl3 at 303 K.

Ln
(χ−χzz)

N×h̄×γ

(χxx−χyy)

N×h̄×γ

χxy

N×h̄×γ

χxz

N×h̄×γ

χyz

N×h̄×γ

Tb −89,395 23,001 −29,816 −70,807 −66,432

Dy −45,992 11,872 −16,379 −38,628 −34,892

The observed little discrepancy between the calculated and experimental values of
LISs (for H atoms) in complexes 1 and 2 can be due to several reasons. First, the Fermi-
contact contribution to the LIS was not taken into account. Secondly, the cationic radius of
Tb3+ and Dy3+ is about 5% larger than the cationic radius of Lu3+. Moreover, the influence
of the solvate shell of the complexes, which can distort the spatial structure of complexes in
solution compared to the crystal structure in solid state.
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In addition, the “partial” contributions ∆δLIS (Ln1) and ∆δLIS (Ln2) of each of the
lanthanides to the “total” shift δLIS(calc) were calculated (see Table 1). These values may be
useful for an in-depth understanding of the paramagnetic properties of the complexes.

Previously, the 2D distribution of the “zero” values of the paramagnetic pseudo-
contact contributions of LIS for heteroleptic triple-decker symmetric two-nuclear lanthanide
complexes of a similar structure have been calculated [38]. In that case, a simplified one-
parameter expression was used to calculate the paramagnetic pseudo-contact contributions
of the LIS. In addition, the authors assumed that the z axis of the paramagnetic susceptibility
tensor coincides with the symmetry axis of the complexes (which may not always exist
in specific systems) [38]. In particular, closed and open curves were revealed on 2D
images of “zero” values of the paramagnetic pseudo-contact contributions of the LIS.
Moreover, the orientation of the dumbbell-shaped distribution of the negative pseudo-
contact contributions of the LIS coincides with the symmetry axis of the complex.

In the presented work, we used the most complete (five-parameter) expression for
the paramagnetic pseudo-contact contributions of the LIS, which is valid for an arbitrarily
oriented coordinate system (see Formula (1)). There was no binding of the axes of the
paramagnetic susceptibility tensor to the symmetry axis of the complexes. For the first time,
3D images of the distribution of pseudo-contact LISs (Figures 3 and 4) and “zero” pseudo-
contact LISs (Figure 5) in a paramagnetic binuclear lanthanide complex with identical
ligands were constructed. In addition, partial 3D images of the distribution of “zero”
pseudo-contact LISs from an individual paramagnetic center in a paramagnetic binuclear
lanthanide complex were determined (Figure 5a).
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Figure 3. Effective field of the pseudo-contact contributions to lanthanide-induced shifts in the Dy
complex created by only one lanthanide cation (a) and two lanthanide cations (b). Areas with positive
shift values are shown in red, and areas with negative shift values are shown in blue.

Further, in the text, we would like to consider and discuss the obtained results in more
detail. The experimentally determined susceptibility tensor can be displayed in the form
of pseudo-contact contributions to lanthanide-induced shift fields (see Figures 3 and 4 for
the Dy and Tb complexes, respectively). Figures 3a and 4a show the distribution fields of
chemical shifts created by one of the paramagnetic centers (in this case, the upper metal
cations of the Dy and Tb complexes, respectively). Positive pseudo-contact shifts (PCSs)
are shown in red, and negative PCSs are shown in blue. The method of presenting the
calculation results is similar to that used in references [38]. The distribution of chemical
shifts created by both paramagnetic centers are presented in Figures 3b and 4b according to
the same manner.

It should be noted that the fields for the Tb complex visually differ from the fields for
the Dy complex. A red «dumbbell» and a blue oval «collar» are visually observed (in the
case of complexes with one paramagnetic center (Figures 3a and 4a). In the case of two
paramagnetic centers in both cases (Figures 3b and 4b), a more complex figure is observed.
Although the red “dumbbells” can be visually detected (in both cases, Figures 3b and 4b),
an additional “red” region is observed between the two paramagnetic centers.
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Figure 4. Effective field of pseudo-contact contributions to lanthanide-induced shifts in the Tb
complex created by only one lanthanide cation (a) and two lanthanide cations (b). Areas with positive
shift values are shown in red, and areas with negative shift values are shown in blue.
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The found values of the angles θ and ϕ, characterizing the orientation of the “dumb-
bells”, turned out to be equal: 18.5◦ and 36.3◦ for Dy and 18.9◦ and 37.7◦ (for Tb, corre-
spondently). Here, the angle θ corresponds to the orientation of the “dumbbell” relative
to the z-axis (coinciding with the axis passing through the Ln cations); ϕ is the angle of
rotation of the dumbbell axis around the z axis (ϕ = 0 if the projection of the dumbbell axis
on the xy plane coincides with the x axis). The presence of dumbbell-shaped distributions
of positive and negative LIS values is generally consistent with [39]. The fact that the angle
θ for complexes 1 and 2 is nonzero is an important distinguishing feature compared to the
results of [41].

For the first time, we analyzed 3D surfaces with a zero value of PCSs. As can be seen,
in the case of complexes with one paramagnetic center, there are two surfaces (Figure 5a).
In the case of two paramagnetic centers, there are three surfaces (as seen in Figure 5b).
Two of them are open, and one, located between the paramagnetic centers, has a closed
character. This result, on the one hand is in agreement with previously found peculiarities,
and, on the other hand, it is a generalization of the result obtained in reference [41] (where
2D images of the distribution of “zero” pseudo-contact shifts in the NMR spectra are given).

Quite similar calculation results were obtained in the analysis of chemical shifts in the
terbium complex (Supplementary Materials).
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In the work of Ishikawa [41], for the analysis of LIS on ligand protons in binuclear
three-deck complexes, related to those presented in Figure 3, a simplified one-parameter
analytical expression was used under the assumption that the axis of the paramagnetic
susceptibility tensor associated with each of the two paramagnetic metal centers coincides
with the axis of symmetry complexes. The authors of [41] described in 2D the distribution
of positive and negative LISs in space (a kind of “dumbbells”), as well as lines describing
zero LISs. We have solved this problem in the most general form (using five parametric
expressions for LIS ) in an arbitrary coordinate system using the example of complexes
shown in Figure 3. Using the symmetry of the complex, the problem was reduced from
a “two-center” problem to a “one-center” problem without loss of generality. As a result
of 3D modeling, it was found that the axis of the paramagnetic susceptibility tensor (the
red “dumbbell” characterizing positive LIS ) does not coincide with the axis of symmetry
of the complex, but is shifted by 19 degrees. For the first time, the surfaces of “zero” LISs
were calculated (Figure 3). It turned out that there is one closed surface and two non-closed
surfaces of “zero” LIS (see Figure 3).

It can be noted that a simple formal analysis carried out by us, in a visual form, led to
rather interesting results. It seems that the further approbation of this method is quite pos-
sible for the purpose of structural analysis and calculation of paramagnetic chemical shifts
of a wide range of compounds based on symmetric polynuclear lanthanide complexes.

3. Materials and Methods
3.1. Materials and Equipment

The complexes 1 and 2 as well as the diamagnetic counterpart Y2[(15C5)4Pc]3 were
synthesized in moderate yields (50%, approx.) using a previously described procedure [40].

1H NMR spectra were recorded on a Bruker Avance III spectrometer operating at
600 MHz in CDCl3 in the presence of 10 µL of a 1% solution of N2H4·H2O in CD3OD and
at ambient temperature with the use of the residual solvent resonance as internal reference.

3.2. Paramagnetic NMR Shifts Analysis

A commonly used approach of the LIS analysis is based on expression in the arbitrary
magnetic axis system. The pseudo-contact contribution of LIS (in ppm) for a mononuclear
complex can be expressed in the most general form through the tensor of molar magnetic
susceptibility χ [25,42,43]:

δPC
j =

1
2N}γ

 (χ− χzz)
〈

1−3 cos2 θ
r3

〉
+
(
χxx − χyy

)〈 sin2 θ cos 2ϕ

r3

〉
+

+2
(
χxy
)〈 sin2 θ sin ϕ

r3

〉
+ 2(χxz)

〈
sin 2θ cos ϕ

r3

〉
+ 2
(
χyz
)〈 sin 2θ sin ϕ

r3

〉
 (1)

where r, θ, ϕ are the spherical coordinates of the nucleus relative to the Ln cation (the dis-
tance between the resonating nucleus of the hydrogen atom and the Ln cation is expressed
in Å, Figure 6). Formula (1), which already contains five terms on the right side of the
equation, is given for the case of an arbitrary chosen coordinate system, centered on the
lanthanide ion.

In this work, a structural model based on the data obtained from X-ray structural
analysis for the Lu2[(15C5)4Pc]3 complexes was used [44]. The coordinates of similar
“paired” protons of phthalocyaninate decks, symmetrically located relative to the plane
of symmetry, were removed from the structural model. Based on the structural data, the
structural parameters were calculated for each set of paired protons corresponding to each
other according to the procedure presented in Supporting Information (SI).
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4. Conclusions

In summary, a new approach for calculating paramagnetic pseudo-contact shifts in
NMR spectra was developed using the example of triple-decker homobinuclear homoleptic
complexes of lanthanides with crown-phthalocyanine. Due to the symmetry of complexes,
the calculation task for the binuclear complex has been reduced to the quasi-mononuclear
case. The obtained values of the calculated paramagnetic LIS for the protons of different
groups and the corresponding experimental LISs shows a good correlation. The distribu-
tion fields of chemical shifts created by both paramagnetic centers have a complex form
compared to the one lanthanide case.

The results of the LISs analysis obtained in this work are a 3D generalization of the data
obtained from the 2D analysis of the LISs by Ishikawa et al. for other substituted heteroleptic
triple-decker phthalocyanine complexes. It turned out, in particular, that the orientation
of the dumbbell-shaped distributions of positive LIS in the studied complexes did not
coincide with the orientation of the symmetry axis (which was assumed in Ishikawa’s
work), but were shifted by about 19◦ with respect to the symmetry axis of the complexes.
The approach described here can be useful for LIS analysis of other polynuclear symmetric
lanthanide complexes.
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