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Introduction 

Chronic kidney disease (CKD) affects 8% to 16% of the 

global population and is the 16th leading cause of years of 

life lost. CKD incidence and prevalence have been increas-

ing concurrently with increases in lifespan and lifestyle 

diseases such as diabetes, hypertension, and obesity [1,2]. 

CKD is defined by the presence of kidney abnormalities, a 

decline in renal function (glomerular filtration rate [GFR] 

of <60 mL/min/1.73 m2), or albuminuria for more than 3 

months [3]. CKD is characterized by the development of 

renal fibrosis and progressive loss of renal function, and 

ultimately CKD leads to end-stage renal disease (ESRD). 

The main goal of CKD therapy is to hamper progression 
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to ESRD by treating underlying diseases, such as hyper-

tension, diabetes, and albuminuria, and to prevent car-

diovascular disease, which is the main cause of morbidity 

and mortality in CKD patients [4]. However, despite these 

therapeutic approaches, the absolute risk of renal and 

cardiovascular morbidity and mortality in the CKD popu-

lation remains extremely high [5]. Therefore, more effective 

therapeutic options are needed to effectively halt the pro-

gression of renal function loss. 

Regardless of the primary cause, renal fibrosis is the 

hallmark of progressive CKD. Fibrosis is characterized by 

excessive deposition of extracellular matrix (ECM) pro-

teins by activated myofibroblasts, resulting in loss of organ 

architecture (scarring) and function [6,7]. Fibrogenesis is 
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initiated in response to chronic kidney damage; following 

renal injury, profibrotic factors are produced by injured 

tubular epithelial cells and infiltrating inflammatory cells 

that stimulate signaling events leading to myofibroblast ac-

tivation and ECM production [8,9]. 

Transforming growth factor-β (TGF-β) is one of the key 

regulators involved in the fibrotic process and, irrespective 

of etiology, elevated TGF-β levels correlate with increased 

activity of profibrotic signaling pathways and CKD progres-

sion [10,11]. TGF-β can directly promote ECM protein pro-

duction, including collagen 1 and fibronectin, via the Smad 

signaling pathway, which is recognized as a major pathway 

of TGF-β signaling in progressive renal fibrosis [10,12]. 

Moreover, several studies have demonstrated that TGF-β 

stimulates expression of cyclooxygenase-2 (COX-2) and 

the production of its metabolic product prostaglandin E2 

(PGE2) in renal cells [13–18], indicating an important role 

for the COX-2/PGE2 system in renal fibrosis and CKD. The 

focus of this review is the role of PGE2 in the development 

and progression of renal fibrosis in CKD. We will particu-

larly highlight PGE2 EP receptors as promising targets for 

renal fibrosis. 

The prostaglandin system 

Prostaglandins are important lipid mediators that play 

critical roles in modulating numerous physiological and 

pathophysiological actions in different organs. In the kid-

ney, prostaglandins are of major importance for regulating 

renal hemodynamics, like mediating blood pressure and 

fluid metabolism [19–21]. Similarly, prostaglandin synthe-

sis can be stimulated in response to different pathophysio-

logical situations, including inflammation, pain, and can-

cer [22,23]. Prostaglandins are derived from arachidonic 

acid and are metabolized to the intermediary product 

prostaglandin G2/prostaglandin H2 (PGG2/PGH2), which 

is further converted to the bioactive PGE2, prostaglandin 

I2 (PGI2), prostaglandin D2 (PGD2), prostaglandin F2α 

(PGF2α), and thromboxane A2 (TXA2) by tissue-specific 

synthases [24]. These prostaglandins primarily exert their 

function by binding to specific prostaglandin receptors, 

with each prostaglandin modulating different cellular 

biochemical pathways depending on the specific receptor 

stimulated [25–27]. COX chiefly regulates the production 

of the five abovementioned prostaglandins by adjusting 

the substrate (PGG2/PGH2) supply to the individual tis-

sue-specific synthases. The COX enzyme exists in two 

isoforms; COX-1 and COX-2. We have previously provided 

an exhaustive review of the role of the COX enzymes in 

several physiological and pathophysiological processes in 

the kidney [28]. 

Prostaglandin E2 

PGE2 is the major prostaglandin in the kidney and the role 

of PGE2 in renal health and disease has been widely stud-

ied. PGE2 can be produced by all renal cells via the enzyme 

PGE2 synthase. Currently, three PGE2 synthases have been 

cloned, including microsomal prostaglandin E2 synthase 

(mPGES)-1, mPGES-2, and cytosolic PGES [29]. Among 

the three PGES isoforms, mPGES-1 has been identified as 

the most abundant renal PGES. It is highly inducible in re-

sponse to (patho)physiological stimuli and acts in concert 

with COX-2 to generate PGE2 [29–31]. The role of mPGES-1 

in CKD is complex [32]. In a paper by Jia et al. [33], it was 

demonstrated that inhibition of mPGES-1 may be a novel 

therapeutic strategy for improving renal function and urine 

concentration ability in an experimental model of CKD. 

PGE2 can bind to four G-protein-coupled EP receptors 

(EP1–EP4) that stimulate different intracellular signaling 

pathways [25–27,34,35]. The COX pathway leading to PGE2 

synthesis as well as its downstream receptors are depict-

ed in Fig. 1. These EP receptors are often simultaneously 

expressed in renal cells and their relative expression levels 

dictate the overall cellular response to PGE2. The localiza-

tion of the EP receptors along the nephron is illustrated in 

Fig. 2. 

The EP1 receptor is highly expressed in the collecting 

duct [36–38], but EP1 is also found in proximal tubules 

[39], glomerular mesangial cells (MCs) [40], and podocytes 

[41,42] as well as in thick ascending limbs [43]. Activation 

of EP1 increases intracellular calcium, thus contributing 

to the natriuretic and diuretic effects of PGE2 [43-45], as 

well as playing an important role in the regulation of blood 

pressure [46]. The EP2 receptor is detected in vascular 

smooth muscle cells and renal interstitial cells. Additional-

ly, EP2 is also expressed in glomeruli, the descending thin 

limb of the loop of Henle, and cortical and outer medullary 

collecting ducts as shown by reverse transcription poly-

merase chain reaction and functional studies [47–50]. EP2 
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stimulates adenylate cyclase and signals via the second-

ary messenger cyclic adenosine monophosphate (cAMP) 

[26]. In addition, it has been described that EP2 also can 

signal through β-arrestin-dependent pathways, including 

extracellular signal-regulated kinase and AKT [51]. The 

EP3 receptor is mainly expressed in the distal nephron 

and is most abundant in medullary thick ascending limbs 

and collecting ducts [52,53]. EP3 exists as different splice 

variants that define the preference for G-protein coupling 

[54,55]. It preferentially signals via Gi protein to inhibit ade-

nylate cyclase and thereby decrease cAMP levels. However, 

EP3 is also involved in the regulation of intracellular calci-

um levels [26,34] and activation of the G12/G13 pathway, 

which activates Rho kinase [56]. The EP4 receptor is abun-

dantly expressed in vascular tissue but also found in nearly 

all renal cell types, including proximal tubules, collecting 

ducts, thick ascending limb, and distal tubules [39,48]. 

Like the EP2 receptor, the EP4 receptor signals via Gαs to 

increase cAMP levels but coupling to Gi and β-arrestin has 

also been demonstrated [57,58]. The intrarenal distribution 

of EP receptors, as well as the different downstream signal-

ing pathways, suggest distinct functional consequences of 

activating each receptor subtype. Next, we will delineate 

the role of each EP receptor in the development and pro-

gression of renal fibrosis. Moreover, the impact of EP recep-

tor modulation on renal fibrosis is summarized in Table 1. 

The role of prostaglandin E2 EP receptors in 
development and progression of renal fibrosis 

EP1 

In 1999, Ishibashi et al. [40] reported that treatment with 

SC-51322, a specific EP1 receptor antagonist, dose-de-

pendently reduced high-glucose-induced DNA synthesis 

in rat MCs. They believed that increased MC proliferation 

Figure 1. The cyclooxygenase enzyme system and prostaglandin E2 signaling pathways.
cAMP, cyclic adenosine monophosphate; COX, cyclooxygenase; EPRAP, EP4 receptor-associated protein; ERK, extracellular signal-reg-
ulated kinase; IP3, inositol trisphosphate; PGES, prostaglandin E synthase; PGE2, prostaglandin E2; PGG2, prostaglandin G2; PGH2, 
prostaglandin H2; PI3K, phosphoinositide 3-kinase.
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reflected the early stages of glomerulosclerosis; thus, their 

findings suggested that EP1 receptor antagonism might be 

beneficial for treating diabetic nephropathy. Three years 

later, they demonstrated that selective EP1 blockade, using 

ONO-8713, attenuated nephropathy progression in a rat 

model of type-1 diabetes [59]. With regard to glomerulo-

sclerosis, they observed that treatment with ONO-8713 

markedly reduced glomerular messenger RNA (mRNA) 

expression of TGF-β1 and fibronectin in diabetic rats [59]. 

However, despite these promising results, research into 

the EP1 receptor and diabetes-induced renal fibrosis was 

virtually absent for a decade. In 2013, Thibodeau et al. [60] 

studied the onset and progression of diabetic nephrop-

athy in EP1−/− mice. Their study revealed that absence of 

the EP1 receptor protected against diabetes-induced re-

nal injury, illustrated in part by a reduction in mesangial 

matrix deposition and cortical fibronectin expression 

compared with diabetic mice. Additionally, they showed 

that treatment with ONO8711 as well as EP1 small inter-

fering RNA (siRNA) completely mitigated PGE2-induced 

fibronectin expression in mouse proximal tubule cells 

[39,60]. In line with these results, it has been reported that 

fibronectin and collagen I expression was lower in TGF-β-

exposed EP1−/− MCs than in wild-type (WT) MCs [17]. The 

exact molecular mechanisms underlying the protective 

effects of EP1 antagonism remain unclear; however, it has 

been postulated that it might be related to a reduction in 

reactive oxygen species and suppression of endoplasmic 

reticulum (ER) stress [39,61]. Next to diabetic nephropa-

thy, it has been proposed that the EP1 receptor plays a role 

in hypertension-related renal injury. Suganami et al. [62] 

demonstrated, in stroke-prone spontaneously hyperten-

sive rats, that treatment with ONO-8713 for 5 weeks im-

proved renal function and attenuated the development of 

interstitial fibrosis. Conversely, in mice with long-standing 

hypertension, it was demonstrated that absence of the EP1 

receptor was associated with a reduction in glomerular 

filtration as well as ultrastructural injury to podocytes and 

glomerular endothelium [63]. Interestingly, in both studies 

the impact of EP1 receptor modulation was observed de-
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spite persistent hypertension. Recently, Chen et al. [14] re-

ported that antagonizing the EP1 receptor with SC-19220 

improved renal function and fibrosis in mice subjected to 

5/6 nephrectomy (PNx), most likely by reducing ER stress. 

Moreover, they demonstrated that activation of the EP1 re-

ceptor with 17-phenyl-trinor-PGE2 ethyl amide aggravat-

ed renal injury in PNx mice. Taken together, it appears that 

EP1 receptor antagonism protects against diabetes- and 

CKD-induced renal fibrosis. However, its role in hyperten-

sive kidney disease remains unclear. 

EP2 

Studies regarding the role of the EP2 receptor in renal fi-

brosis are more recent. In 2018, Liu et al. [64] reported that 

butaprost, one of the older synthetic EP2 receptor agonists, 

attenuated TGF-β-induced podocyte injury by promoting 

cell proliferation and reducing apoptosis. Additionally, Jen-

sen et al. [65] recently demonstrated that butaprost mark-

edly reduced renal fibrosis in mice subjected to unilateral 

ureteral obstruction (UUO) surgery as assessed by a de-

Table 1. Impact of PGE2 EP receptor modulation on renal disease
Receptor Model Agonist/antagonist Receptor activity Overall effect Reference

EP1 Mesangial cells SC-51322 - ✓ [40]

Diabetic nephropathy ONO-8713 - ✓ [59]

Diabetic nephropathy EP1 KO - ✓ [60]

Proximal tubule cells ONO8711 - ✓ [60]

Proximal tubule cells EP1 siRNA - ✓ [39]

Mesangial cells EP1 KO - ✓ [17]

Hypertension ONO-8713 - ✓ [62]

Hypertension EP1 KO - X [63]

5/6 Nephrectomy SC‑19220 - ✓ [14]

5/6 Nephrectomy 17‑phenyl‑trinor‑PGE2 ethyl amide + X [14]

EP2 Podocytes Butaprost + ✓ [64]

UUO Butaprost + ✓ [65]

hPCKS Butaprost + ✓ [65]

ADPKD PF-04418948 - X [67]

EP3 Nephritis L-798106 - X [69]

EP4 Acute renal failure CP-044,519-02 + ✓ [72]

5/6 nephrectomy CP-044,519-02 + ✓ [72]

UUO EP4 KO - X [73]

UUO ONO-4819 + ✓ [73]

Interstitial fibrosis ONO-4819 + ✓ [73]

Renal fibroblasts ONO-AE1-329 + ✓ [73]

Proximal tubule cells EP4 siRNA - X [39]

Inner medullary collecting duct cells CAY10598 + ✓ [75]

Proximal tubule cells CAY10598 + ✓ [75]

ADPKD ONO-AE3-208 - X [67]

5/6 nephrectomy EP4 KO (podocytes) - ✓ [76]

Diabetic nephropathy ONO-AE1-329 + X [77]

Mesangial cells EP4+ + X [16]

Mesangial cells EP4 KO - ✓ [16]

5/6 nephrectomy EP4 KO - ✓ [16]

5/6 nephrectomy ASP7657 - ✓ [78]

Acute kidney injury Grapiprant - ✓ [80]

ADPKD, autosomal dominant polycystic kidney disease; hPCKS, human precision-cut kidney slices; UUO, unilateral ureteral obstruction; +, increased; -, 
decreased; ✓, beneficial; X, detrimental.
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crease in fibronectin, α-smooth muscle actin, and collagen 

1A1 expression. More importantly, they also demonstrated 

that butaprost elicited an antifibrotic effect in TGF-β-ex-

posed human precision-cut kidney slices [65]. Thus, their 

study provided strong evidence that the effect of butaprost 

may translate to clinical care since its effects on markers of 

fibrosis are present in UUO mice and human kidney slices 

[66]. The mechanisms of action underlying the antifibrot-

ic effect of butaprost is not fully understood. Jensen et al. 

[65] proposed that butaprost had a direct effect on TGF-β/

Smad signaling, independent of the cAMP/PKA pathway. 

Additionally, butaprost might mitigate ER stress [61]. In-

terestingly, a recent study regarding autosomal dominant 

polycystic kidney disease (ADPKD), demonstrated that, 

while EP2 antagonism reduced cyst formation in vitro, 

treatment of Pkd1nl/nl mice with PF-04418948, a selective 

EP2 antagonist, resulted in more severe cystic disease and 

renal fibrosis [67]. Thus, although evidence is scarce, all of 

the current studies, including work in human precision-cut 

kidney slices, support the notion that EP2 receptor activa-

tion can mitigate renal fibrogenesis. 

EP3 

Using single-cell RNA sequencing, Wu et al. [68] demon-

strated that the EP3 receptor is highly expressed in myofi-

broblasts isolated from a human rejected kidney allograft 

biopsy (http://humphreyslab.com/SingleCell/). This might 

indicate that the EP3 receptor is involved in myofibroblast 

activation and/or ECM production. Yet, studies on the role 

of this receptor in renal fibrogenesis are absent. In a mouse 

model of nephrotoxic serum-induced nephritis, PGE2 ad-

ministration restored renal function and mitigated renal 

damage; however, this positive effect was completely abol-

ished by exposure to the EP3 receptor antagonist L-798106 

[69]. Suggesting that EP3 receptor activation might protect 

against renal injury. Furthermore, EP3 receptor depletion 

was associated with cardiac fibrosis and reduced MMP-

2 expression and activity in mice [70]. In contrast, using 

gingival fibroblasts, it was demonstrated that EP3 receptor 

activation increased the gene and protein expression of 

connective tissue growth factor (CTGF) [71], which could 

promote fibrogenesis. Clearly, the role of EP3 receptor in 

fibrosis and its therapeutic potential remain unknown. 

EP4 

Of all PGE2 receptors, EP4 is most widely studied in the 

context of renal fibrosis. In 2006, Vukicevic et al. [72] 

demonstrated in a rat model of mercury chloride (Hg-

Cl2)-induced acute renal failure that treatment with the EP4 

agonist, CP-044,519-02, restored renal function (serum cre-

atinine and blood urea nitrogen) and significantly improved 

histopathological outcomes (proximal tubule necrosis and 

total number of apoptotic cells). They also reported that 

EP4 agonism markedly improved GFR in rats subjected to 

PNx, which was associated with reduced glomerular sclero-

sis, more viable glomeruli, less tubulointerstitial injury, and 

better preservation of proximal and distal tubule structure 

[72]. Six years later, Nakagawa et al. [73], used EP4–/– mice 

to further unravel the role of this receptor in renal fibrosis. 

They demonstrated that UUO-induced tubulointerstitial 

fibrosis, as assessed by collagen deposition, macrophage 

infiltration, myofibroblast proliferation and TGF-β1 and 

CTGF mRNA levels, was more pronounced in the kidneys 

of knockout mice than WT mice. Moreover, stimulation of 

the EP4 receptor using ONO-4819 significantly reduced 

UUO-induced fibrosis in WT mice, but not in EP4–/– mice, 

indicating that the positive effect of ONO-4819 on tubu-

lointerstitial fibrosis was mediated by EP4 [73]. Of note, the 

antifibrotic effect of ONO-4819 was confirmed using anoth-

er model of kidney disease as well, viz. folic acid-induced 

nephropathy [73]. They also showed that the EP4 agonist 

ONO-AE1-329 significantly suppressed platelet-derived 

growth factor-BB-induced proliferation of renal fibroblasts 

isolated from WT kidneys, but not of fibroblasts isolated 

from EP4–/– kidneys [73]. Furthermore, ONO-AE1-329 sig-

nificantly inhibited TGF-β1-induced CTGF production by 

WT fibroblasts but not by EP4–/– fibroblasts [73]. This ele-

gant work provided strong evidence that the EP4 receptor is 

a potent endogenous therapeutic target limiting renal fibro-

sis [74]. In line with these results, it was demonstrated that 

treatment with EP4 siRNA slightly increased PGE2-induced 

fibronectin expression in mouse proximal tubule cells [39]. 

Additionally, Luo et al. [75] reported that treatment with 

the EP4 agonist CAY10598 markedly suppressed TGF-β1-

induced protein expression of collagen I and fibronectin 

in murine inner medullary collecting duct cells. They also 

showed that CAY10598 treatment mitigated angiotensin 

II-mediated NLRP3 inflammasome activation in human 
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proximal tubule cells. Interestingly, similar to the findings 

with EP2 receptor modulation, treatment with the EP4 ag-

onist ONO-AE1-329 promoted cyst growth in MDCK II and 

OX161-C1 cells, whereas EP4 receptor blockade in vivo in-

creased disease severity in two mouse ADPKD models [67]. 

Taken together, all these studies seem to indicate that EP4 

agonism mitigates fibrotic processes in the kidney. Howev-

er, the role of the EP4 receptor in renal fibrogenesis might 

not be so clear-cut, as Lannoy et al. [67] already illustrated. 

In 2010, it was shown that podocyte-specific EP4 deletion 

significantly reduced glomerulosclerosis in mice subjected 

to PNx [76]. A few years later, it was demonstrated that 12 

weeks of EP4 agonist ONO-AE1-329 administration exacer-

bated fibrosis in streptozotocin-induced diabetic mice, as 

shown by increased collagen deposition and elevated gene 

and protein expression of various fibrosis markers, includ-

ing collagen I, fibronectin, and α-smooth muscle actin [77]. 

Importantly, the same study revealed that the profibrotic 

effect of EP4 agonism was absent in interleukin-6 knockout 

animals [77]. In line with these results, it was shown that 

TGF-β1–induced gene and protein expression of collagen 

1 and fibronectin was augmented in EP4-overexpressing 

mouse MCs, while the response to TGF-β1 was absent 

in EP4+/− MCs [16]. Moreover, EP4+/− mice showed fewer 

fibrotic lesions following PNx than WT mice [16]. More 

recently, Mizukami et al. [78] demonstrated that repeat-

ed administration of ASP7657, a EP4 receptor antagonist, 

reduced glomerulosclerosis and interstitial fibrosis in rats 

subjected to PNx, according to histopathological exam-

ination. The beneficial effect of EP4 receptor blockade was 

also seen in a mouse model of cisplatin-induced kidney 

damage. In these mice, treatment with the EP4 antagonist 

grapiprant, a nonsteroidal anti-inflammatory drug widely 

used in veterinary medicine [79], markedly reduced col-

lagen deposition and α-smooth muscle actin expression 

associated with cisplatin exposure [80]. Taken together, the 

EP4 receptor has been the greatest focus of research to de-

velop new renal fibrosis therapies. Unfortunately, despite 

decades of work, results are conflicting and the therapeutic 

potential of the EP4 receptor remains unclear. 

Conclusion 

Although the role of COX-2 and PGE2 in renal (patho)

physiology is well established, studies revolving around its 

receptors and renal fibrosis, which is the most damaging 

process in CKD development, remain sparse (~20 at the 

time of writing). Still, the current body of work is enlight-

ening and suggests that PGE2 receptors are potentially 

important targets for renal fibrosis treatment. Nonetheless, 

more studies are required to fully unravel the therapeutic 

potential of PGE2 receptor agonists/antagonists. With the 

advent of improved translational disease models, such as 

human precision-cut kidney slices and kidney organoids, 

pre-clinical studies will provide valuable information on 

the antifibrotic efficacy of putative therapeutic compounds 

in human tissue, which will hopefully expedite the devel-

opment of effective and safe therapeutics that can be used 

in clinical care. 
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