
Uveal melanoma (UM) is the most common primary 
intraocular malignancy in adults with an incidence of 
approximately 5.1 per million per year in the United States 
[1], while in Europe, the incidence varies from less than 2 per 
million per year in Spain and southern Italy to more than 8 
per million per year in Scandinavia [2,3]. Despite advances in 
the diagnosis and treatment of the disease, the prognosis has 
remained largely unchanged [1,4]. UM has a high propensity 
for metastatic spread. Relapse can be seen several years after 
treatment, and 40–50% of patients will eventually die of 
metastatic disease [4-7]. Dissemination of cancer cells from 
the primary tumor is believed to be an early event in UM. 
Circulating malignant cells (CMCs) have been detected in 
up to 88% of patients with UM and can be found at the time 
of diagnosis but also years after the primary tumor has been 

removed [8]. Micrometastatic cells have also been found 
in the bone marrow of patients with UM in 29% of cases 
[9]. Intriguingly, the presence of disseminated cells in bone 
marrow and the bloodstream does not correlate with overall 
survival [8,10]. Cancer cells disseminating from the primary 
tumor have to adapt to a changing micromilieu to generate 
metastatic disease. The various tissues of the metastatic route 
provide a different nutritional supply, pH, and oxygen concen-
tration; thus, the malignant cells have to exhibit metabolic 
flexibility to sustain growth and survival [11-13].

Anchorage-independent growth and resistance to anoikis 
(cell death induced by loss of extracellular matrix attachment 
as in circulating metastatic cells) are essential features of 
disseminated cancer cells and metastatic progression [14-16]. 
The generation of multicellular tumor spheroids (MCTS) by 
anchorage-independent growth is associated with enrichment 
of an aggressive phenotype characterized by chemoresistance, 
invasiveness, and expression of undifferentiated markers 
[17-21]. The present study aims to compare the differential 
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Purpose: Uveal melanoma (UM) has a high propensity for metastatic spread, and approximately 40–50% of patients 
die of metastatic disease. Metastases can be found at the time of diagnosis but also several years after the primary 
tumor has been removed. The survival of disseminated cancer cells is known to be linked to anchorage independence, 
anoikis resistance, and an adaptive cellular metabolism. The cultivation of cancer cells as multicellular tumor spheroids 
(MCTS) by anchorage-independent growth enriches for a more aggressive phenotype. The present study examines the 
differential gene expression of adherent cell cultures, non-adherent MCTS cultures, and uncultured tumor biopsies from 
three patients with UM. We elucidate the biochemical differences between the culture conditions to find whether the 
culture of UM as non-adherent MCTS could be linked to an anchorage-independent and more aggressive phenotype, 
thus unravelling potential targets for treatment of UM dissemination.
Methods: The various culture conditions were evaluated with microarray analysis, quantitative reverse-transcription 
polymerase chain reaction (qRT-PCR), RNAscope, immunohistochemistry (IHC), and transmission electron microscopy 
(TEM) followed by gene expression bioinformatics.
Results: The MCTS cultures displayed traits associated with anoikis resistance demonstrated by ANGPTL4 upregulation, 
and a shift toward a lipogenic profile by upregulation of ACOT1 (lipid metabolism), FADS1 (biosynthesis of unsaturated 
fatty acids), SC4MOL, DHCR7, LSS (cholesterol biosynthesis), OSBPL9 (intracellular lipid receptor), and PLIN2 (lipid 
storage). Additionally, the present study shows marked upregulation of synovial sarcoma X breakpoint proteins (SSXs), 
transcriptional repressors related to the Polycomb group (PcG) proteins that modulate epigenetic silencing of genes.
Conclusions: The MCTS cultures displayed traits associated with anoikis resistance, a metabolic shift toward a lipogenic 
profile, and upregulation of SSXs, related to the PcG proteins.
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gene expression of MCTS of UM to primary tumor tissue 
and adherent cultures, with a special emphasis on unravelling 
the pathways and survival mechanisms pathognomonic for 
disseminated and circulating cancer cells.

METHODS

All experiments were conducted in accordance with the 
Declaration of Helsinki (2013), and all tissue harvesting was 
approved by the Local Committees for Medical Research 
Ethics (REK Ref. 2009/1973 and REK Ref. 2013/803–1). The 
study is adhered to the ARVO statement on human subjects. 
Informed written consent was obtained from patients before 
tissue harvesting. All reagents used in the present study were 
from Sigma-Aldrich (St. Louis, MO) unless otherwise stated.

Biopsies and cell cultures: UM biopsies from patients under-
going enucleation of the eye were included in this study. 
After enucleation, the ophthalmic pathologist excised fresh 
tumor tissue for use in research before formalin fixation for 
routine histopathological examination. The UM of the three 
donors (D1, D2, and D3) was classified as mixed (D1) and 
epithelioid (D2 and D3) types with a routine histopathological 
examination. Retrospectively, donors D1, D2, and D3 all had 
confirmed liver metastases. A fourth supplementary donor 
was added to the study after data were obtained. The UM of 
this donor, D(S), was classified as epithelioid, and the donor 
tissue underwent the same culture conditions as the tissue 
from donors D1, D2, and D3.

A fraction of the tissue was snap-frozen and stored at 
−80 °C. The remaining sample was minced with scissors 
in collagenase I and IV (1 mg/ml), before being incubated 
for 1 h at 37 °C. After dissociation, the tissue was cultured 
adherently for 7 days in RPMI 1640 (Invitrogen, Carlsbad, 
CA), 10% fetal bovine serum (FBS), penicillin/streptomycin 
(100 U/ml, P4333), and amphotericin B (2.5 µg/ml, A2942) in 
addition to gentamycin (75 µg/ml; Sanofi-Aventis, Gentilly, 
France) to ensure the removal of fibroblasts [22]. After 7 
days of adherent culturing, the cells were trypsinized using 
Trypsin-EDTA (0.25%, T4049) and pelleted into three frac-
tions of 100,000 cells. The first fraction of the cells was 
collected for RNA analyses, the second fraction for further 
adherent growth, and the third for non-adherent growth as 
MCTS. The term MCTS is used for this non-adherent culture 
of tumor cells, in accordance with the nomenclature, and is 
considered aggregation and compaction of tumor cells [21]. 
The cell fraction for MCTS culture was plated at a density of 
500–1,000 cells per well on Corning Costar ultra-low attach-
ment, polystyrene, round-bottom 96-well plates (CLS7007) 
in melanoma stem cell medium (MSCM) (1) and (2): (1) 30% 
human embryonic stem cell medium (hESC); (78% KnockOut 

DMEM/F12 (Cat. no. 12660–012, Thermo Fisher Scientific 
Inc., Waltham, MA), 20% KnockOut serum replacer (Cat. 
no. 10828–028, Thermo Fisher Scientific Inc.), 1% MEM 
non-essential amino acids (Cat. no. 11140–050, Thermo 
Fisher Scientific Inc.), 4 ng/ml basic fibroblast growth factor 
(b-FGF; Cat. no. 13,256-029, Thermo Fisher Scientific Inc.), 
1% GlutaMAX (35,050-061, Thermo Fisher Scientific Inc.), 
and 1.4‰ 2-mercaptoethanol (M7522) and (2) 70% mouse 
embryonic fibroblast (MEF) conditioned medium (AR005, 
R&D Systems/Bio-Techne, Minneapolis, MN) [23] with peni-
cillin/streptomycin (100 U/ml) and amphotericin B (2.5 µg/
ml). The cells were collected after 12 days of cell culture 
and further embedded in paraffin for immunohistochemistry 
(IHC) or pelleted and stored at −80 °C for RNA analyses.

RNA isolation: RNA from fresh frozen primary tumors 
(D1, D2, and D3) was isolated using the Qiagen RNeasy kit 
(Qiagen, Hilden, Germany). Briefly, the tissue was placed in 
a 4.5 ml cryotube, and 500 µl of QIAzol (Qiagen) was added 
before the sample was disrupted using Qiagen TissueRuptor 
(Qiagen), according to the manufacturer’s recommenda-
tions. The sample was centrifuged at 18 400 ×g for 10 min 
to remove insoluble material before being processed with 
the Qiagen RNeasy kit with DNase. Samples were purified 
using the Zymo PCR inhibitor removal kit (Zymo, Irvine, 
CA). RNA from the pelleted samples (adherent and cultured 
spheres from D1, D2, and D3) was isolated as described 
above, except the disruption step using the Qiagen Tissu-
eRuptor. RNA concentration and purity were determined 
using NanoDrop (Wilmington, DE) and Bioanalyzer (Agilent 
2100, Agilent, Santa Clara, CA). All nine samples had RNA 
integrity number (RIN) values above 8 before being analyzed 
with microarray and PCR [24].

Immunohistochemistry: The growth media in the 96-well 
plates was diluted by gently adding Hanks’ Balanced Salt 
solution (Thermo Fisher Scientific Inc.). Then the MCTS 
were allowed to make sediment before the media was care-
fully removed. A mixture of human plasma and thrombin 
(Sigma–Aldrich) was used to clot the MCTS together before 
fixation in 4% paraformaldehyde (PFA) and embedment in 
paraffin. Then 3.5 μm sections were cut and stained [25]. 
Ki-67 staining was performed using the Envision + Dual 
Link HRP (K4065, Dako, Glostrup, Denmark) and AEC + 
Substrate chromogen ready-to-use (k3461, Dako). Briefly, 
the K4065 kit protocol was followed until the addition of 
3,3′-diaminobenzidine (DAB). After polymer horseradish 
peroxidase (HRP), 3-amino-9-ethylcarbazole (AEC) chro-
mogen from the kit k3461 was added, and the sections were 
washed and counterstained with hematoxylin according to the 
k3461 protocol. Negative controls without primary antibody 
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were included for all stainings. The following primary 
antibodies and dilutions were used (rabbit:rb, mouse:ms): 
Ki-67 (rb, 1:200; Thermo Fisher Scientific Inc.), SSX4 (rb, 
1;50; Acris), anti-melanoma (a-melanoma) [HMB45 + 
MART1 (DT101 + BC199) + tyrosinase (T311)] (ms, 1:50; 
ab733, Abcam, Cambridge, UK), Perilipin (rb, 1:100; Santa 
Cruz Biotechnology Inc., Dallas, TX), and ANGPTL4 (rb, 
1:500; Abcam). The secondary antibodies had the fluorescent 
marker Alexa Fluor 488 (1:500; Invitrogen). Hoechst (1:500; 
Invitrogen) was used for nuclear staining. The sections were 
analyzed using a Zeiss Axio Observer.Z1 fluorescence micro-
scope (Zeiss, Oberkochen, Germany). Sections were also 
stained with hematoxylin and eosin (H&E) for morphological 
examination.

Microarray: Microarray analysis was performed at the 
Genomics Core Facility, Oslo University Hospital and Helse 
Sør-Øst. HumanHT-12 v4 Expression BeadChip (Illumina, 
San Diego, CA) was used for the analysis. It targets more than 
31,000 annotated genes with 47,000 probes mainly derived 
from the National Center for Biotechnology Information 
Reference Sequence (NCBI) RefSeq Release 38 (November 
7, 2009). For each sample, 440 ng of total RNA was amplified 
and labeled using the Illumina TotalPrep-96 RNA Amplifica-
tion Kit protocol. The quantity of labeled copy RNA (cRNA) 
was measured using the NanoDrop spectrophotometer 
(Wilmington, DE). The quality and size distribution of the 
labeled cRNA were assessed using the 2100 Bioanalyzer. 
This was done to be able to hybridize equal amounts of 
successfully labeled cRNA to the arrays. For each sample, 
750 ng of biotin-labeled cRNA was hybridized to the Illumina 
HumanHT-12 v4 Expression BeadChip. J-Express and rank 
product (RP) analysis were used to further identify differ-
ently expressed genes with ≥2 fold up- or downregulation and 
q values ≤0.05 between the different groups. One thousand 
permutations (1,000*) were run for each RP analysis [26].

Quantitative reverse-transcription PCR: RNA concentration 
and purity were measured using NanoDrop. Reverse tran-
scription (RT) was performed using the High Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Abingdon, 
UK) with 50 ng total RNA per 20 μl RT reaction. Copy 
DNA (cDNA) was diluted to a volume of 50 µl (1 ng/µl) after 
cDNA synthesis. Quantitative PCR (qPCR) was performed 
using the StepOnePlus RT–PCR system (Applied Biosystems) 
and Taqman Gene Expression assays following the manufac-
turer’s protocols (Applied Biosystems). The TaqMan Gene 
Expression Assays used include ANGPTL4 (Hs01101127_m1) 
and 18S (Hs03003631_g1). The thermal cycling conditions 
were 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s 
and 60 °C for 1 min. All samples were run in duplicate (each 

reaction: 2.5 μl/2.5 ng cDNA in a total volume of 12.5 μl). 
The data were analyzed using the 2−ΔΔCt method to find the 
relative changes in gene expression as a fold change between 
the samples. The uncultured tumor sample was chosen as the 
calibrator and equaled one, while the other samples had fold 
changes related to the uncultured tumor calibrator sample. 
The 18S probe, primers, and assay (Hs03003631_g1) were 
used as a loading control to quantify the differences in cDNA 
input between the samples.

RNAscope in situ hybridization: RNA in situ hybridization 
was performed using the RNAscope® 2.5 High Definition 
(HD)- Red assay (Advanced Cell Diagnostics, Hayward, 
CA) according to the manufacturer’s instructions using the 
standard pretreatment protocol. Sections were mounted using 
Prolong Gold with 4',6-diamidine-2'-phenylindole dihydro-
chloride (DAPI). RNAscope permits direct visualization of 
RNA in formalin-fixed, paraffin-embedded (FFPE) tissue 
with single molecule sensitivity and single cell resolution 
[27]. RNAscope Probe-Hs-SSX4–01 (Cat. no. 468,641, 
Advanced Cell Diagnostics) was used. Hybridization signals 
were detected with chromogenic reactions using Fast Red. 
Fast Red produces red fluorescence in addition to the red 
reaction product, thus providing a greater level of sensitivity 
[28]. The RNA staining signal was identified as red punctate 
dots. Each sample was quality controlled for RNA integrity 
with a probe specific to peptidyl-prolyl cis-trans isomerase 
B (PPIB) mRNA. Negative control background staining was 
evaluated using a probe (Cat.no. 3100439, Advanced Cell 
Diagnostics, Newark, NJ) specific to the bacterial dihydro-
dipicolinate reductase (DapB) gene (Gene ID EF191515). 
The sections were analyzed with a Zeiss Axio Observer.Z1 
fluorescence microscope.

Pathway and gene ontology analysis: Data from the micro-
array analysis were imported into Ingenuity Pathway Analysis 
(IPA) software in the search for biologic pathways and Gene 
Ontology to identify potential networks. Principal component 
analysis (PCA) and unsupervised hierarchical clustering were 
performed using the Partek Genomics Suite software (Partek, 
Inc., Chesterfield, MO).

Transmission electron microscopy: Primary tissue from 
uncultured tumor D1 and the donor D(S) cultured as MCTS 
were fixed at 4 °C overnight in glutaraldehyde (0.1 M). The 
tissue was washed four times in cacodylate buffer (0.2 M) 
before post-fixation in a mixture of 1% osmium tetroxide and 
cacodylate buffer (0.2 M) for 60 min. The tissue was further 
rinsed in cacodylate buffer (0.2 M) before being dehydrated 
through a graded series of ethanol up to 100%. The tissue 
was then immersed in propylene oxide for 2 ×5 min and a 
mixture of Epon and propylene oxide before embedment in 
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Epon. Ultrathin sections (60–70 nm thick) were cut on a Leica 
Ultracut Ultramicrotome UCT (Leica, Wetzlar, Germany), 
stained with uranyl acetate and lead citrate, and examined 
using a Tecnai12 transmission electron microscope (Phillips, 
Amsterdam, the Netherlands).

RESULTS

Cultivation of uveal melanoma: The cells cultured as MCTS 
grew as large aggregations involving the majority of the cells 
in the well (Figure 1A and insets). The MCTS were mitoti-
cally active, as seen with the positive Ki67 staining with a 
score of 1%, 2%, and 4% for donors D1, D2, and D3, respec-
tively (Figure 1C). The melanoma profile of the MCTS was 
verified by staining for a-melanoma, a marker that recognizes 
HMB-45, MART-1, and tyrosinase. More than 90% of the 

cells in the MCTS-derived paraffin sections stained positive 
for this marker (Figure 1D).

Genetic clustering is determined by the culture conditions: 
The gene expression profiles of the UMs (D1, D2, and D3), 
uncultured, cultured as MCTS, or cultured as adherent 
primary cells, were comprehensively analyzed with micro-
array analysis. PCA was performed on raw data from the 
microarray with a false discovery rate (FDR) of 10%. This 
type of analysis clusters the samples and represents them on 
a three-dimensional space based on the differential relative 
gene expression. The PCA plot shows that the clustering was 
mainly determined by the culture conditions (Figure 2A).

The relative gene expression of UMs (uncultured, 
cultured as MCTS, or cultured as adherent primary tumor 
cells) was further investigated by performing an unsupervised 

Figure 1. Multicellular tumor spheroid culture of primary uveal melanoma cells. A: Single cells (upper inset) after primary tumor isolation, 
during cultivation small pigmented tumor spheres formed (lower inset), and further developing resulting into large spheroid structures if not 
passaged. B: Adherent cell culture of primary uveal melanoma (UM) cells. C: Ki67 staining (*) of UM multicellular tumor spheroid (MCTS). 
D: Immunohistochemical staining of antimelanoma (green) and Hoechst staining of the nucleus (blue; right panel) with the corresponding 
light-microscopic image (left panel) of UM MCTS.
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hierarchical clustering with an FDR of 10% presented as 
a heat map (Figure 2B). The heat map shows significant 
downregulation of the surface markers in the cultured cells 
compared to the uncultured primary tumor biopsy. These 
markers reflect the cellular heterogeneity of the primary 
tumor and the loss of macrophages (CD68), endothelial cells 
(von Willebrand factor), and T-cells (CD3D, CD8A, and CD2) 
in the cell cultures (Table 1). Additionally, there is a marked 
downregulation of human leukocyte antigen (HLA) expres-
sion in MCTS (Table 1) and in the adherent primary tumor 
cells (Appendix 1). This finding is in accordance with the 
work of van Essen et al. who showed downregulation of HLA 
expression upon loss of tumor-infiltrating leukocytes [29].

The genes found to be upregulated in the unsupervised 
hierarchical clustering (Figure 2B) were in concordance 
with many of the genes found in the RP analysis (Table 1 and 
supplementary data). The RP analysis (q≤0.05) resulted in 
206 genes ≥2 fold upregulated and 373 genes ≥2 fold down-
regulated in MCTS versus uncultured tumor biopsies. Two 

hundred eighteen genes were found to be ≥2 fold upregulated, 
and 552 genes were ≥2 fold downregulated in adherent cell 
cultures versus the uncultured tumor biopsies. Sixty-four 
genes were found to be ≥2 fold upregulated, and 71 genes 
were ≥2 fold downregulated in adherent cell cultures versus 
the MCTS.

The genes from the RP analysis were further analyzed 
with Ingenuity IPA software. The differences in molecular 
and cellular functions between the various culture conditions 
are shown in Figure 3.

There was a noticeable increase in the cellular strain 
in the MCTS compared to the uncultured tumor biopsies, 
indicated by increased free radical scavenging, enhanced 
drug metabolism, and the increase in lipid metabolism in the 
MCTS versus adherent cells and uncultured tumor biopsies. 
Associated pathways and molecules in lipid metabolism in the 
MCTS versus uncultured tumor biopsies are shown in Figure 
3. Alterations in the lipid metabolism include seven networks: 

Figure 2. Gene expression in uveal 
melanoma donors (D1, D2, and 
D3) cultured as primary adherent 
cells (red), multicellular tumor 
spheroids (blue), and uncultured 
tumor biopsies (green). A: Prin-
cipal component analysis (PCA) 
plot of gene expression in uveal 
melanoma donors (D1, D2, and D3) 
cultured as primary adherent cells 
(red), multicellular tumor spher-
oids (blue), and uncultured tumor 
biopsies (green). B: Hierarchical 
clustering of gene expression in 
uveal melanoma donors (D1, D2, 
and D3), where each row represents 
the single sample tested: adherent 
cultures (D1, D2, and D3; red), 
multicellular tumor spheroids 
(MCTS; D1, D2, and D3; blue), 
and uncultured tumors (D1, D2, 
and D3; green), while each column 
represents a single probe set (gene 
symbol or Illumina ID number) 
analyzed. Relative gene expression 

is presented in color: Red is higher-level expression relative to the sample mean, blue is relatively lower level expression, and gray is no 
change in expression.
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synthesis of lipids, steroid metabolism, metabolism of choles-
terol, metabolism of lipid membrane derivatives, synthesis of 
cholesterol, and conversion of lipid and fatty acid metabolism.

MCTS display a genetic profile indicating EMT and 
anoikis resistance: Anoikis is a form of apoptosis induced 
by loss or inappropriate cell adhesion [30]. The process of 
epithelial-to-mesenchymal-transition (EMT) is considered 
an important feature of anoikis [31]. Rank product data 
revealed 3.5-fold upregulation of snail family transcriptional 
repressor 2 (SNAI2; Gene ID: 6591, OMIM 602150) and 
0.6-fold downregulation of cadherin 1 (CDH1; Gene ID: 999, 
OMIM 192090; E-cadherin) in MCTS (Table 1). Anoikis 
resistance is also supported by the upregulation of pyruvate 

dehydrogenase kinase 4 (PDK4; Gene ID: 5166, OMIM 
602527), an enzyme that inactivates pyruvate dehydrogenase 
(PDH), which is required for the conversion of pyruvate to 
acetyl-CoA. PDK4 is upregulated in response to loss of adher-
ence (LOA) and reduces reactive oxygen species (ROS) strain 
[32]. Noticeably, there was strong upregulation of angiopoi-
etin like 4 (ANGPTL4; Gene ID: 51129, OMIM 605910) in 
the MCTS (Table 1, Figure 4). ANGPTL4 has recently been 
shown to be associated with an angiogenic phenotype of UM, 
and thus being involved in metastatic spread [33]. ANGPTL4 
is thought to contribute to anoikis resistance by inducing 
conformational changes that enable resistance to inducers of 
apoptosis [34,35]. ANGPTL4 is further known to stimulate 

Table 1. List of selected genes, including the ten most up- and downregulated, from the microarray rank 
product (RP) analysis (≥ 2fold up- or down- regulated, q≤0.05) in multicellular tumour spheroids (MCTS) versus 

uncultured tumours and MCTS versus adherent cultures (see supplementary data for the complete list).

Up in MCTS 
vs. uncultured 
tumours

Down in MCTS 
vs. uncultured 
tumours

Up in MCTS 
vs. adherent 
cultures

Down in MCTS 
vs. adherent 
cultures

Gene 
symbol

Fold 
change

Gene 
symbol

Fold 
change

Gene 
symbol

Fold 
change

Gene 
symbol

Fold 
change

ANGPTL4 27.1 HLA-DRA -32.1 ANGPTL4 21.1 VGF -11
SSX4 6.4 CD74 -22.9 SSX4 6.2 ID3 -10.7
ASPA 4.7 C1QB -17.8 ASPA 4.6 MIR1974 -5.9
SSX2 4.5 VWF -14 SSX2 4.3 ILMN_1881909 -3.9
LDLR 4.4 CD14 -12.2 APOD 3.6 ID2 -4.6
MT1X 4.3 C1QC -11.7 IL17D 3.2 CTGF -4.1
HTR2B 4.3 HLA-DMB -11.1 NRXN2 3.2 ID1 -3.9
FCRLA 4.1 HLA-DRB1 -11.7 MT1X 3.1 SRGN -3.1
SQLE 4 HLA-DMB -11.1 COL16A1 3 NPTX1 -2.8
PRUNE2 4 HLA-DPA1 -10.4 MAL 2.8 PENK -2.7
SLC2A10 3.8 ARHGDIB -9.7 BMF 2.7 CAPS -2.4
SNAI2 3.5 TYROBP -8.7 SSX5 2.7 ODC1 -2.3
FADS1 2.9 SLC15A3 -6.4 MT1G 2.5 RNU1A3 -2.3
ECH1 2.7 HBA2 -6.3 AEBP1 2.5 CYR61 -2.3
PLIN2 2.5 HBB -5.5 CDH19 2.4 LOC389342 -2.3
DHCR7 2.5 ITGB2 -5.2 CLCNKA 2.4 MAL2 -2.1
OSBPL9 2.5 IL18BP -4.9 PKNOX2 2.4 CDCA7 -2.1
BMF 2.5 SNORD3A -4.5 PDK4 2.2 WFDC1 -2.1
PDK4 2.5 CD68 -3.7 MT2A 2.2 HSP90B1 -2.2
LSS 2.4 CXCL16 -3.5 SLC2A10 2.2 IFI6 -2.2
MT2A 2.4 CD8A -3.3 GPR125 2.2 LAMA1 -2.2
SC4MOL 2.3 CD3D -2.7 LSS 2.1 THBS2 -2.2
PECI 2.1 CDH1 -2.6 CREB1 2.1 CTSL1 -2.2
MT1E 2.1 VCAM1 -2.1 MT1E 2.1 EIF5A -2
ACOT1 2 CD2 -2.1 FADS1 2 QPCT -2
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intracellular lipolysis, thus supplying substrate for fatty 
acid oxidation (FAO) [35]. Upregulation of FAO in MCTS is 
indicated by upregulation of enoyl-CoA hydratase 1 (ECH1; 
Gene ID: 1891, OMIM 600696), peroxisomal D3,D2-enoyl-
CoA isomerase (PECI; Gene ID: 10455, OMIM 608024), and 
acyl-CoA thioesterase 1 (ACOT1, Gene ID: 641371, OMIM 
614313; Table 1). FAO has been proven to be an advantageous 
metabolic trait for cancer cells and is linked to anoikis resis-
tance [36].

MCTS culture conditions induce a metabolic shift toward a 
lipogenic profile: Microarray results indicated a metabolic 
shift toward a lipogenic profile in the MCTS. A high content 
of lipid droplets (LDs) and stored-cholesterol ester is strongly 
associated with tumor aggressiveness [37,38]. As shown in 

Table 1, ACOT1 (lipid metabolism), fatty acid desaturase 
1 (FADS1, Gene ID: 3992, OMIM 606148; biosynthesis 
of unsaturated fatty acids), sterol-C4-mehtyl oxidase-like 
(SC4MOL, Gene ID: 6307, OMIM 607545), 7-dehydrocho-
lesterol reductase (DHCR7, Gene ID: 1717, OMIM 602858), 
lanosterol synthase (LSS, Gene ID: 4047, OMIM 600909; 
cholesterol biosynthesis), and oxysterol binding protein 
like 9 (OSBPL9, Gene ID: 114883, OMIM 606737; intracel-
lular lipid receptor) all showed marked upregulation in the 
MCTS cultures compared to primary tumors. SC4MOL, LSS, 
and FAD1 were also found to be upregulated in the MCTS 
cultures compared to the adherent cultures. The microarray 
results also demonstrated increased lipid storage by upregula-
tion of perilipin 2 (PLIN2, Gene ID: 123, OMIM 103195). 
PLIN2 belongs to the perilipin family, members of which 

Figure 3. Molecular and cellular functions being upregulated in tumor biopsies versus multicellular tumor spheroids (upper left panel), 
multicellular tumor spheroids versus tumor biopsies (upper right panel), multicellular tumor spheroids versus adherent cultures (lower left 
panel), and adherent cultures versus multicellular tumor spheroids (lower right panel). The number of molecules upregulated is shown in 
brackets. MCTS = tumors cultivated as multicellular tumor spheroids; adherent cultures = adherent cultivated tumors; tumor biopsies = 
uncultured primary tumor tissue.
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coat intracellular lipid storage droplets [39]. The presence 
of PLIN2 was verified with IHC of donors D1, D2, and D3 
(Figure 4). Morphological examination with transmission 
electron microscopy (TEM) revealed numerous lipid droplets 
in the supplementary donor D(S) cultured as MCTS (Figure 
5). The TEM images also showed numerous mitochondria.

MCTS cultures increase the expression of cancer and testis 
antigens: The synovial sarcoma X breakpoint (SSX, Gene 
ID: 6759, OMIM 300326) gene family consists of nine 
highly homologous members (SSX1–9) [40]. SSX expression 
is confined to the testis, placenta, at low levels in the thyroid, 
and in a wide range of tumors (including synovial sarcoma), 
thus making them interesting targets for cancer therapy [41]. 
SSXs have been linked to EMT and anoikis resistance [42].

The microarray results showed an increase in the expres-
sion of SSX4 in MCTS versus primary tumors and adherent 
cultures (Table 1). This presence of SSX4 mRNA was verified 
with RNAscope, while the SSX4 protein was verified with 
IHC staining. The proportion of cells expressing SSX4 in 

primary tumors and MCTS was found (Figure 6). Notice-
ably, the SSX protein was minimally expressed in the tumor 
biopsies.

DISCUSSION

By comparing the UM MCTS to biopsies and adherent cell 
cultures, the present study revealed a metabolic shift in the 
MCTS. The latter display traits associated with anoikis resis-
tance, including a shift toward a lipogenic profile, as well 
as marked upregulation of SSXs, transcriptional repressors 
capable of humoral and cellular immune responses in cancer 
patients and putative targets for immunotherapy in cancers.

To disseminate, cancer cells have to undergo loss of 
adherence. Loss of adherence inhibits uptake of glucose and 
glycolysis which results in diminished levels of ATP and 
NADPH leading to metabolic stress and generation of ROS 
that induces anoikis [15]. The induction of FAO restores ATP 
production and increases NADPH, thus preventing anoikis 
[15,43]. This metabolic shift is also indicated in the MCTS 

Figure 4. Lipogenic profile of uveal melanoma multicellular tumor spheroids. Angiopoietin like 4 (ANGPTL4; green) staining of multicel-
lular tumor spheroids (MCTS), Hoechst staining of nucleus (blue; A) with corresponding light-microscopic image (B). Perilipin 2 (PLIN2) 
staining (green) of MCTS and Hoechst staining of the nucleus (blue; C) with the corresponding light microscopic image (D). E: Quantitative 
reverse-transcription PCR (qRT-PCR) of ANGPTL4 in support of the microarray finding. F: Ingenuity Pathway Analysis (IPA) based on rank 
product (q≤0.05) in MCTS versus the tumor, showing important molecules and pathways, including seven networks and their associated 
upregulated molecules in lipid metabolism. Deep red indicates more pronounced expression, and numbers below the gene symbols reflect 
the fold change (number on top) and q value/significance (number below).
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in the present study. Malignant cells have been shown to 
provide and utilize fatty acids [36]. The lipogenic profile of 
the MCTS-derived cells reveals an increase in the synthesis 
of cholesterol, a trait associated with cancer aggressiveness 
[38,44,45]. Depletion of cholesterol has been shown to result 
in anoikis-like cell death [46]. Whether the lipogenic switch 
seen in the MCTS in the present study is valid for in vivo 
disseminated UM cells remains to be revealed. Lipogenic 

targeting could be advantageous for solid tumors. The present 
study showed abundant LDs in the MCTS and in the primary 
tumor. The presence of LDs in UM has been described in 
the literature previously, as a response to radiation and in the 
untreated tumor tissue [47,48]. UM is characterized by its 
poor response to chemotherapeutics, and FAO has been shown 
to fuel chemoresistant cancer cells [49]. Several FAO inhibi-
tors have shown promising results in mice models, although 

Figure 5. Transmission electron microscopy of uveal melanoma. A: Uveal melanoma biopsy with nucleus (n), lipid droplets (li), pigment (p), 
mitocondria (m) and interdigitations (*) between cells. B–D: In the multicellular tumor spheroids (MCTS), the cells were less packed but 
contained abundant lipid droplets, pigment, interdigitations, and a dense concentration of mitochondria. D: Adherence-like junctions (***) 
between cells were also evident (inset). Scale bars: A, 5 μm; B, 10 μm; C, 1 μm; D, 1 μm.
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Figure 6. Immunohistochemistry analysis of uveal melanoma multicellular tumor spheroids shows positive staining for SSX4 (green), 
Hoechst staining of nucleus (blue; A) with corresponding light-microscopic image (B). The presence of synovial sarcoma X breakpoint 
protein 4 (SSX4) was verified with RNAscope staining (red), Hoechst staining of nucleus (blue; C) where SSX4 RNA transcripts are shown 
as red chromogenic dots, and with the corresponding light-microscopic image (D). E: Percentage of SSX4-positive cells in multicellular 
tumor spheroids (MCTS) (D1, D2, and D3) versus uncultured primary tumors (D1, D2, and D3) analyzed with immunohistochemistry (IHC).
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chemosensitization by FAO and cholesterol synthesis inhibi-
tors might be even more favorable [50-52]. The present results 
imply that ANGPTL4 might be a key player in orchestrating 
lipid metabolism in MCTS. ANGPTL4 has previously been 
shown to play a role in anoikis resistance and in angiogenesis 
and oncogenesis of several cancers, including UM [34,53-
55]. The link between ANGPTL4 and EMT has recently been 
highlighted as a decrease in EMT markers and aggressiveness 
after silencing of ANGPTL4 in non-small cell lung cancer 
[56]. Although most publications indicate an oncogenic func-
tion of ANGPTL4, the opposite has been shown in gastric 
cancer, where it is a proposed tumor suppressor [57]. These 
conflicting findings suggest that further characterization of 
ANGPTL4 in UM is needed. The present results suggest that 
ANGPTL4 could be an attractive target in UM and possibly 
a way to target disseminated cancer cells.

Another compelling finding in the present study is the 
marked upregulation of SSX4. SSXs show tissue-restricted 
expression and are therefore regarded as attractive targets 
for cancer therapy [40,58]. The proteins are implied to be 
involved in proliferation and survival in cancer cells and 
formed a transient complex with beta-catenin thus altering 
the expression of genes involved in EMT [59]. SSXs are 
localized to the nucleus and contains two different repressor 
domains: a Krüppel associated box (KRAB) domain and 
a potent repressor domain (RD) [60,61]. SSXs have a close 
connection with the Polycomb repressive group of proteins 
[62,63]. SSX2 (a homologous SSX group member) has been 
shown to antagonize BMI1 and EZH2 through an indirect 
mechanism, thus activating repressed genes. Additionally, 
SSX2 has been shown to have DNA-binding properties 
and negatively regulate the distribution of histone mark 
H3K27me3, implying that SSX2 plays a role in the regula-
tion of chromatin structure and function [64]. The exact 
function of SSXs in UM is not known, although the link 
between EMT and SSXs highlights a potential role in anoikis 
resistance. Disseminated cancer cells are likely to have an 
altered metabolic state as a survival strategy, and SSXs with 
their gene-regulating properties might be essential for these 
alterations. The synovial sarcoma fusion protein SS18-SSX2 
has been associated with induction of cholesterol synthesis 
[65]. Whether there is a direct link between lipid metabo-
lism and SSXs in UM is yet to be unveiled. SSX4 has been 
shown to be expressed in 21% of skin melanomas; however, 
SSX4 expression in UM has not yet been assessed [41]. If 
SSXs are highly expressed in disseminated cancer cells, it 
would make them valuable targets for immunotherapy. The 
restricted tissue expression of SSXs might lead to less severe 
side effects than targeting molecules and pathways involved 
in normal cellular homeostasis.

Cell culturing of UM is often hampered by tumor size 
and growth properties. A limitation of the present study is 
the low number and histological homogeneity of the donors 
included. In our experience, spindle cell tumors are more 
challenging to cultivate, thus making it difficult to run 
extensive genomic analyses on this cell type. Tumor size is 
an important aspect in UM research as the relative size of the 
tumors is small compared to other cancers, such as colon and 
breast. The diagnostic assessment should always be priori-
tized, meaning that miniscule amounts of tissue are available 
for research if the primary tumor is small. Unfortunately, 
small tissue samples (as often seen in spindle cell UM) also 
show greater clonal homogeneity upon expansion provided 
that the same number of cells is needed for downstream 
analyses. By using samples from larger tumors and early cell 
culture passages, we hope to better reflect the innate proper-
ties of the primary tumor. Epitheloid and mixed tumors are 
more prone to metastasis. The donors D1, D2, and D3 all had 
confirmed liver metastases. The selection of tumors analyzed 
in this study therefore is highly representative of aggressive 
UMs. Whether these results are valid for all UMs or solely 
the aggressive UMs is yet to be revealed, although there are 
indications that tumors with a low metastatic risk profile are 
more difficult to cultivate using the present protocol. The 
optimization of culture conditions would enable us to conduct 
further experiments for extensive verification of results and 
unravelling of epigenetic pathways.

In conclusion, we found that UM MCTS cultures 
undergo a metabolic shift. The MCTS display traits asso-
ciated with anoikis resistance, including a shift toward a 
lipogenic profile. Targeting of lipid metabolism as a method 
to kill disseminated cancer cells could be a compelling new 
therapy in UM and needs further investigation. Additionally, 
the present study showed marked upregulation of SSXs, tran-
scriptional repressors related to the PcG proteins that modu-
late epigenetic silencing of genes. SSXs have been implied in 
the process of EMT, and their expression could be increased 
in cells that have conferred anoikis resistance, thus serving 
as a potential target for disseminated cancer cells. UM MCTS 
could be a suitable model to reveal novel candidate targets for 
treatment of UM dissemination.

APPENDIX 1. J-EXPRESS AND RANK PRODUCT 
(RP) ANALYSIS OF DIFFERENTIALLY EXPRESSED 
GENES (≥2 FOLD UP/DOWN, Q≤ 0.05) IN 
MULTICELLULAR TUMOR SPHEROIDS (MCTS) 
VERSUS UNCULTURED TUMOR BIOPSIES VS 
ADHERENT PRIMARY CULTURES.

To access the data, click or select the words “Appendix 1.”
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