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Abstract: The back-end-of-line (BEOL) copper interconnect structure has been subjected to down-
scaling for the last two decades, while the materials used for conforming and assuring its physical
integrity during processing have faced significant obstacles as the single-digit nanometer process
node is implemented. In particular, the diffusion barrier layer system comprised of Ta/TaN has
faced major constraints when it comes to the electrical performance of the smaller Cu lines, and thus
alternative formulations have been investigated in recent years, such as Ru-Ta or Co-W alloys. In
this work, we assess how PVD (physical vapor deposition) deposited equimolar Co-W films perform
when exposed to different vacuum annealing temperatures and how these films compare with the
Ta adhesion layer used for Cu seeding in terms of dewetting resistance. The stacks were charac-
terized using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron
microscopy (TEM) and scanning transmission electron microscopy (STEM) coupled with energy
dispersive X-ray spectroscopy (EDX) mapping. The Cu film at the surface of the Cu/Co-W system
exhibited grain growth starting at 300 ◦C, with the formation of abnormally large Cu grains starting
at 450 ◦C. Sheet resistance reached a minimum value of 7.07 × 10−6 Ω/sq for the Cu/Co-W stack
and 6.03 × 10−6 Ω/sq for the Cu/Ta stack, both for the samples annealed at 450 ◦C.

Keywords: barrier layers; dewetting; cobalt tungsten; copper metallization

1. Introduction

The replacement of aluminum by copper as the metal of choice for ULSI (ultra large
scale integration) interconnects in the late 1990s has led to a significant increase in the
research of copper films, particularly with respect to downscaling. Currently, as the
miniaturization of circuits is capable of processing nodes below 10 nm, the limitations
inherent to the production of these structures has further fostered the need for new materials
to optimize the performance and manufacturability of copper interconnects [1–3]. In
this regard, the use of Ta/TaN adhesion/barrier layer systems is becoming a structural
limitation [4]. In fact, the use of Ta/TaN restricts the minimum Cu seed layer thickness
due to copper overhang after electroplating, which is not compatible with the continuous
miniaturization process in the nanoelectronics industry [5]. The high interfacial energy of
the Ta/Cu interface also limits the performance of systems based on this adhesion layer
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due to the electromigration resistance limit of the interconnect wires produced using these
materials [6]. A variety of alternative materials to these Ta/TaN films used in copper
metallization have been proposed, such as Co, Ti-W, Co-W, or Ru based systems like Ru-Ta
or Ru-W [6–12].

The use of Co-W as a candidate system for replacing the Ta/TaN has been suggested
for seedless Cu metallization, potentially suppressing the need for a copper seed layer
deposited by PVD (physical vapor deposition), thus eliminating one of the manufacturing
steps necessary for the production of each copper interconnect layer [7,13]. While the work
of Su et al. [7] showed the use of Co-W as a directly plateable material for diffusion barrier
layers, the effect of the annealing treatment on the copper layer deposited over the Co-W
barrier was not addressed in detail. The authors showed the effects of a rapid thermal
annealing (RTA) treatment of Cu/Co-W films deposited over differently formulated Co-W
alloys at 400 ◦C for 30 min, but an in-depth microstructural study of the substrates or
films after annealing was not shown. Knowledge of the relation between the annealing
conditions and its effects on the materials involved is crucial in assessing the viability of
this solution as a new diffusion barrier material.

In order to be a viable alternative for the deployment of new diffusion barrier liners,
the Co-W layer should exhibit an interfacial energy with the underneath Cu film similar
to the Ta/Cu interface, so that dewetting of the copper film does not occur during the
annealing step, which is critical for the manufacture and operation of the devices [7]. It
is also important to ascertain the electrical performance of the barrier layer and copper
film stack, specifically pertaining to its overall electrical resistivity, as it provides an insight
into the energy efficiency of the system and its capability to deal with the electrical current
transport during service conditions. The fact that neither Co nor W should form compounds
with Cu makes them an interesting alternative material for diffusion barrier layers. There
is a reduced risk of creating phases that are not as electrically conductive as the metallic Cu
film without a considerable loss to the adhesion strength of the interface [14].

In this work, we explore the evolution of the surface of copper films deposited over a
Co-W barrier layer as a function of annealing temperature, as well as assess the effect of
processing conditions on the electrical resistivity of the films.

2. Materials and Methods
2.1. PVD Film Deposition

The metallic layers were deposited over a plasma-enhanced chemical vapor deposition
(PECVD) (SPTS Technologies Ltd., Newport, UK) prepared 100 nm SiO2 surface of a
15 mm × 15 mm p-type boron doped single crystal Si (100) wafer piece (Silicon Valley
Microelectronics, Santa Clara, CA, USA). The 25 nm thick Co-W films were deposited by
co-sputtering Co and W targets (99.95%, Testbourne Ltd., Basingstoke, UK) for 600 s in a
DC magnetron sputtering system (Kenosistec, Binasco, Italy), at 40 W power for each of
the targets used, using a constant Ar flux of 20 sccm. These conditions aimed to produce a
film with a 1:1 atomic ratio, as used in [13]. The Ta film representing the reference adhesion
layer material was deposited at 100 W for 380 s to produce a film of equal thickness, with a
base pressure of 6.4 × 10−5 Pa and working pressure of 6.9 × 10−3 Pa. Both layers were
covered by a Cu layer deposited at 40 watts for 900 s, with a base pressure of 6.9 × 10−3 Pa.

2.2. Vacuum Annealing

The dewetting behavior of the films was analyzed by vacuum annealing treatments
carried out inside an alumina tube furnace for one hour after reaching the set temperature,
using a 5 ◦C/minute heating/cooling rate. Starting pressure of the annealing treatments
was 1.20 × 10−3 Pa. The films’ surface was studied after treatments at 300, 450, 500, 550,
600, 650, and 700 ◦C.
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2.3. Film Characterization

The surface structure observation was carried out using scanning electron microscopy
(SEM, Thermo Fischer Scientific Quanta 400FEG ESEM and Thermo Fischer Scientific
Quanta 650FEG ESEM, Waltham, MA, USA). The film surface evolution as a function of the
annealing temperatures was evaluated by the grazing incidence X-ray diffraction (GIXRD)
using Cu Kα radiation (λ = 0.15406 nm) at a 1.5◦ angle with a 0.04◦·s−1 step. The interfacial
region of the barrier layer/copper film was observed cross-section in a lamella prepared by
a focused ion-beam (FIB, Thermo Fisher Helios 450S). The Cu film surface of these lamellae
was preserved by using protective Pt layers deposited with electron and Ga+ ion beams
prior to milling. These samples were characterized using aberration-corrected high angle
annular dark-field scanning transmission electron microscopy (HAADF STEM, Thermo Fis-
cher Scientific Titan G2 ChemiSTEM, at 200 kV) in conjunction with energy dispersive X-ray
element mapping. Topography mapping of the Cu/Ta films was undertaken using atomic
force microscopy (AFM, Veeco Metrology Multimode, Veeco Instruments Inc., Plainview,
NY, USA) to evaluate the state of the film surface after annealing at high temperatures.

The electrical resistivity of the films was determined using a four-point probe mea-
surement system in a Van der Pauw configuration (Hall-Effect Measurement System Ecopia
5000, Ecopia, Gyeonggi-do, South Korea) at room temperature. Each sample was measured
a total of ten times before being rotated 90◦, after which a second set of ten additional
measurements was carried out, with the final result being the average value of the total
measurements of both orientations per sample.

3. Results and Discussion
3.1. Scanning Electron Microscopy

Figure 1a shows the surface of the Co-W layer in the as-deposited condition, showing
a compact film throughout. The surface of all Cu films deposited over the Co-W samples,
visible in Figure 1b–i, exhibited some pinholes of relatively uniform dimensions on the
surface of the copper layer, even on the as-deposited condition. This surface irregularity
could indicate contamination of the deposition chamber during coating or merely be the
result of the reproduction of surface defects present at the original substrate surface over
which the sputtering process was undertaken [15–17]. The absence of this type of defect in
the as-deposited Co-W layer in Figure 1a indicates that pinhole formation for the deposition
conditions employed was likely associated with the growth of the Cu film, potentially due to
impurity contamination of the Cu target used or due to epitaxial growth of the Cu film from
the Co-W surface. As the temperature of the isothermal annealing stage rises, these round
holes dispersed throughout the Cu surface did not exhibit discernible growth, suggesting
that they were not associated with mechanisms for residual stress relaxation or any other
thermal-activated mechanisms that affected atomic mobility during annealing. The copper
film deposited over the Co-W barrier layer exhibited grain growth after annealing at 300 ◦C
(Figure 1c). As the annealing temperature increased up to 600 ◦C, abnormally large grains
with irregular shapes started emerging from the relatively smooth surface of the film, whilst
still maintaining full substrate coverage, as shown in Figure 1d–f). It is possible to notice
that the size of these irregularly-shaped grains increased with annealing temperature due
to the corresponding increase in atomic mobility on the copper film.

In Figure 1h, some areas of the substrate underneath the Cu film are exposed, with
Figure 1i exhibiting complete dewetting of the copper film, as the copper atoms previously
covering the surface of the film have been consumed to foster the growth of larger grains, as
represented in Figure 2, where d corresponds to the combined thickness of the Cu film and
the diffusion barrier layer. In Figure 3, the backscattered electron (BSE) signal highlights
how the neighboring regions of the protruding Cu grains have a lower atomic number,
reflecting the localized Cu atom depletion.
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Figure 1. SEM secondary electron (SE) images of the Co-W (a) and Cu/Co-W film surfaces in
the as-deposited state (b), and after annealing at 300 (c), 450 (d), 500 (e), 550 (f), 600 (g), 650 (h),
and 700 ◦C (i). The insets show higher magnification images of the respective surface. Scale bar
corresponds to 1 µm in images (a,b), and all higher magnification insets, while corresponding to
10 µm in (c–i) main images.

Figure 2. Cross-section representation of the Cu/Co-W stack in the as-deposited condition (a), after
initial dewetting of the Cu layer at the surface, following annealing (b) and after complete dewetting
of the Cu film (c).

In Figure 4, it is possible to notice how the annealing temperature affects the surface
evolution of the Cu films deposited over the Ta layer. From room temperature up until
500 ◦C, seen in Figure 4a–d, there are no appreciable changes to the Cu film surface. Above
this temperature, it is possible to see a change in contrast at the surface, Figure 4e,f, which
hints at a possible change in chemical composition, with the possibility of Ta diffusion
towards the Cu film surface, as shown in [18]. Above the 650 ◦C annealing temperature, it
is possible to verify that the chemical composition of the Cu film surface has been altered,
as evidenced by the appearance of white dotted regions dispersed throughout the observed
surface (Figure 4g,h). The appearance of these dotted regions at this temperature range
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is likely linked to the Ta diffusion towards the surface of the Cu film, identified in [19]
to happen as early as 630 ◦C. EDS analysis results of both type of constituents, shown in
Figure 5, indicates that the brighter regions have a Cu deficit when compared to the darker
matrix over which they are dispersed, consistent with the presence of a higher atomic
weight material such as Ta, which has seemingly diffused to the surface. No analyzed
temperature conditions have apparently initiated Cu film dewetting for this system.

Figure 3. SEM BSE image of the Cu/Co-W film after 600 ◦C vacuum annealing. The darker regions
around coarse Cu grains highlight the localized thinning of the film.

Figure 4. SEM SE of the Cu/Ta film surfaces in the as-deposited state (a) and after annealing at
300 (b), 450 (c), 500 (d), 550 (e), 600 (f), 650 (g), and 700 ◦C (h). The insets show higher magnification
images of each surface. SEM BSE Cu/Ta surface of the films after annealing at 700 ◦C, with indication
of areas scanned for the EDS spectral analysis (i). Scale bar corresponds to 1 µm in image (a) and all
higher magnification insets, while corresponding to 10 µm in (b–i) main images.
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Figure 5. The EDS spectra of the two distinct zones marked in Figure 4i of the surface of the Cu/Ta
film after annealing at 700 ◦C showing lower Cu content on the brighter constituent.

The formation of lighter particles above the 600 ◦C mark for the Cu/Ta stack warranted
further investigation using AFM, as seen in Figure 6. This result can be associated with the
respective SEM EDS analysis, thus demonstrating that the integrity of the copper film was
seemingly compromised by Ta diffusion from the bottom layer up to the surface.

Figure 6. AFM topographic images for the Cu/Ta stack annealed at 600 ◦C (a) and at 650 ◦C (b).

3.2. X-ray Diffraction

The diffractograms of the Cu/Co-W stacks in Figure 7a show a slight sharpening and
increase in intensity of the two first peaks at 43.40◦ and 50.52◦, consistent with the Cu (111)
and (200) orientations, with annealing temperature, which can be attributed to an increase
in the grain size of the Cu film on the top of the stack. The absence of any signal specific
to Co or W suggests that the barrier layer did not diffuse towards the top of the Cu film.
The Cu/Ta stack, by contrast, shows the formation of three new peaks at 34.08◦, 36.85◦,
and 38.56◦ for annealing temperatures above 600 ◦C, in addition to the characteristic Cu
peaks mentioned earlier. This is compatible with the diffusion of Ta from the interface
to the surface of the Cu film, as initially hypothesized by the corresponding SEM image
analysis. Furthermore, in [20], the authors identified TaSi2 as the first phase forming at
Cu/Ta interfaces after annealing at 600 ◦C, with the formation of other Cu and Ta silicides
also being compatible with the new peaks highlighted in Figure 7b [21].
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Figure 7. X-ray diffractograms of the Cu/Co-W (a) and the Cu/Ta (b) stacks in different anneal-
ing conditions.

3.3. Transmission Electron Microscopy

In Figure 8, the results of bright-field (BF) TEM of the FIB milled lamellae are shown.
It is possible to notice how the vacuum annealing treatments affected the Cu film surface,
with the annealed samples showing larger Cu grains.

Figure 8. BF TEM images of the Cu/Co-W layers in the as-deposited (a), after annealing at 600 ◦C
(b), and of the Cu/Ta system in the as-deposited (c) and after annealing at 600 ◦C (d).

The higher magnification images visible in Figure 9 show that while the Cu layers
exhibited crystallinity in some regions, as evidenced by the highlighted lattice fringes, the
substrate Co-W and Ta layers remained mostly amorphous after annealing at 600 ◦C, as
confirmed by the fast Fourier transform (FFT).
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Figure 9. HR BF TEM images of the Cu/Co-W (a) and Cu/Ta (c) in the as-deposited, and after
annealing at 600 ◦C, with FFT of the highlighted area on the inset, for the Cu/Co-W (b) and Cu/Ta
(d) systems. Arrows indicate the location where lattice fringes can be seen.

Improved contrast imaging for the measurement of the average film thickness of
all films was achieved using HAADF STEM images, partially shown in Figure 10. In
Figure 10a,c, it is possible to see a Cu surface with small thickness variation throughout
the observable length, but the images visible in Figure 10b,d and corresponding to the
annealed samples, show variation in Cu film thickness.

It is important to note that the annealed Cu/Ta interface lacks as an accurate defini-
tion of the contours of the films as the other observed conditions, possibly reflecting the
occurrence of some Ta diffusion at the respective temperature of 600 ◦C, as suggested by
the SEM BSE imaging shown earlier.

Both substrate films exhibit a rather columnar amorphous structure in the as-deposited
condition, which was reduced by the annealing treatments, as seen in Figure 10. Changes
to mean Cu film thickness in both systems are attributed to different main reasons, namely
lateral Cu diffusion to sustain the growing grains deposited over the Cu/Co-W film,
as explained by Thompson in [22], and a loss in contrast at the upper edges of the Ta
film, associated with Ta diffusion toward the Cu film above, for the Cu/Ta system. The
thicknesses of the various films displayed in Figure 10 are shown in Table 1. Analysis of
the variation in Cu film thickness for both substrate materials further reinforces the higher
dewetting tendency of the Co-W system when compared to the Ta adhesion layer.
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Figure 10. HAADF STEM images of the Cu/Co-W sample in the as-deposited state (a), after annealing
at 600 ◦C (b), as well as of the as-deposited Cu/Ta (c) and after 600 ◦C vacuum annealing (d).

Table 1. The film thickness of the various samples analyzed bHAADF STEM imaging.

Film Mean Thickness (nm) Std. Deviation

Co-W (as-deposited) 26.9 1.8

Co-W (annealed 600 ◦C) 24.0 2.4

Cu (Co-W, as-deposited) 42.4 2.5

Cu (Co-W, 600 ◦C) 35.7 5.1

Ta (as-deposited) 23.0 1.2

Ta (annealed 600 ◦C) 17.8 2.3

Cu (Ta, as-deposited) 39.8 2.0

Cu (Ta, 600 ◦C) 41.0 2.6

The EDX mapping of the Cu/Co-W system in Figures 11 and 12 shows that the barrier
layer was effective at inhibiting diffusion from any of the elements present to upper or lower
layers, with no discernible formation of any compounds at any of the visible interfaces.
The Cu regions visible in Figures 11a and 12a appear constricted to their original locations,
as do the Co and W maps visible in Figures 11b, 12b and 11c, Figure 12c, respectively.
However, the top of the barrier layer seems slightly enriched in Co after annealing, as
shown in Figure 12b. This is possibly the result of a change in Co miscibility of the film for
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this atomic ratio at the temperature range studied. The apparent presence of Si atoms at
the barrier layer in Figures 11d and 12d is attributed to the overlap of the W M peak with
the Si K peak at 1.774 and 1.739 keV, respectively, even though the W signal was collected
using only the L α energy at 8.396 keV.

Figure 11. EDX mapping of Cu (a), Co (b), W (c), and Si (d) for the as-deposited Cu/Co-W system.

Figure 12. EDX mapping of Cu (a), Co (b), W (c) and Si (d) for the Cu/Co-W system after annealing
at 600 ◦C.
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The EDX mapping of the as-deposited Cu/Ta stack seen in Figure 13 shows a well-
delineated interface between the Cu and the Ta signals.

Figure 13. HAADF image of the Cu/Ta sample in the as-deposited state (a); EDX mapping of Cu (b),
and Ta (c) for the corresponding observable area.

The 600 ◦C annealing temperature proved high enough to affect the original structure
of the Cu/Ta interface, as indicated by the loss in atomic number contrast at the interface
of the Ta and Cu films visible in Figure 14a. The Cu film did not seem to diffuse towards
the substrate, as seen in Figure 14b. However, the Cu/Ta interfacial evaluation of the
annealed films exhibited a residual infiltration of Ta onto the bottom of the Cu film, as seen
on Figure 14c. This suggests the early stages of Ta diffusion, as reinforced by the serrated
geometry the interface has developed, as seen in the HAADF image.

Figure 14. HAADF image of the Cu/Ta sample after vacuum annealing at 600 ◦C (a); EDX mapping
of Cu (b) and Ta (c) for the corresponding observable area.

3.4. Electrical Characterization

As interconnects are downscaled, the contribution of the barrier layer system to the
overall resistivity also increases. A low electrical resistivity is of paramount importance for a
barrier layer material, particularly when dealing with films of very small thicknesses, since
the overall resistivity of the barrier layer/liner-interconnect system is adversely affected
by a decrease in total thickness, due to increases in diffuse electron scattering [23–25]. The
results of electrical sheet resistance measurements are shown in Figure 15.
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Figure 15. The sheet resistance of the Cu/Co-W and Cu/Ta stacks as a function of vacuum anneal-
ing temperature.

The sheet resistance of both materials decreases for the first two temperatures was
evaluated as the copper films gradually undergo grain growth and diffuse electron scat-
tering decreases as a consequence of a reduction in total grain boundary scattering. The
minimum sheet resistance measured for the Cu/Co-W system was 7.07 × 10−6 Ω/sq,
measured at the system annealed at 450 ◦C. Above 450 ◦C, the Cu/Co-W system has an
increase in resistance as the overall Cu film thickness decreases and diffuse electron surface
scattering becomes more pronounced. Sheet resistance rises as dewetting of the copper
layer progresses for higher annealing temperatures, as shown in Figure 15 above 550 ◦C.
Meanwhile, the growth of the existing Cu grains is increasingly hampered by the decrease
in film thickness due to the progress of dewetting. From this stage onwards, the total
amount of Cu grains capable of carrying the electron current is decreasing and becoming
farther apart, thus inhibiting efficient electron current flow along the surface of the film.

The Cu/Ta system displayed superior performance across all investigated tempera-
ture ranges, with its best resistance value of 6.03 × 10−6 Ω/sq found after annealing at
450 ◦C, with all remaining sheet resistance values measured not exhibiting considerable
changes in behavior. It is important to note that the absence of the less electrically con-
ductive barrier layer of TaN in the adhesion layer used in this work contributes to the
overall system performance, which is not an accurate representation of the systems used in
practical applications.

The d parameter used for resistivity calculation, representing the total metallic film
thickness, was taken as the sum of the average values in Table 1 for both Cu and barrier
films in each condition. Calculation of the electrical resistivity of each sample was achieved
by multiplying the respective sheet resistance with said thickness value, with the results
visible in Table 2.

Table 2. Electrical resistivity values for the calculated mean thickness values.

System
Electrical Resistivity (Ω·cm)

25 ◦C 600 ◦C

Cu/Co-W 1.09 × 10−5 5.01 × 10−6

Cu/Ta 4.92 × 10−6 3.51 × 10−6

Considering that TaN can exhibit resistivity values of 0.3 Ω·cm at 2 nm thickness [26]
or the 1.5689 × 10−3 Ω·cm for a 97.64 nm thick film [27], it is worth noting that a Cu/TaN
system is bound to exhibit higher resistivity values at similar thicknesses. In this way, while
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this Cu/Ta system displayed lower values than the Cu/Co-W alternative, a conventional
dual-layer system comprised of a Ta adhesion layer with a TaN barrier layer should yield a
higher sheet resistivity than that observed for the Co-W system at equivalent thickness due
to the aforementioned TaN electrical properties. In this way, Co-W shows the potential to
become a viable material for integration as a substrate for Cu interconnects. The presence
of a lower resistivity diffusion barrier layer such as Co-W replacing TaN should meet
the requirements for continuous Cu interconnect miniaturization. As the thickness of the
diffusion layers decreases, the resistivity becomes increasingly more important to sustain
the energy efficiency of the systems.

Choi et al. [28] have shown that for nanometric W films, both the Mayadas–Shatzkes
and the Fuchs–Sondheimer equations fail to accurately predict the electrical resistivity
at a specific thickness. Some authors have shown that for films of thickness closer to or
greater than the material’s electron mean-free path, the dominant mechanism contributing
to resistivity should be most affected by grain boundary scattering, as opposed to surface
scattering [29–33]. In [33], the author affirms that the resistance of very thin lines should be
proportional to λ × ρ0, where λ represents the element electron mean free path (mfp) and
ρ0 its bulk resistivity. At room temperature, the electron mfp of Cu is 39.9 nm, whereas Co
has an mfp value between 7.77–11.8 nm and W 15.5 nm [33]. As the Co and W electrons’
mean-free paths are well below the thickness of the barrier layer deployed, the predominant
mechanism for diffuse electron scattering in this layer should be mostly independent of
barrier layer thickness and rather predominantly a result of grain boundary scattering. In
this way, a decrease in sheet resistance of films at the observed Cu thickness range of 40 nm
should be attributed to grain growth, whilst rises in resistance should be associated with
a decrease in Cu film thickness and potential increases in surface roughness [34]. This is
supported by the fact that grain size tends to continuously grow as temperatures rise, whilst
dewetting induces a decrease to film thickness, which in turn lead to higher resistivity
values due to a considerable increase in electron–surface scattering. The minimum vacuum
level of 1.20 × 10−3 Pa registered during annealing should minimize surface oxidation and
its consequent increase in impurity scattering, which can be considerable for films of such
reduced thickness as the ones studied [35]. However, for the 650 ◦C Cu/Ta sample, this
did not prove to be the case. Both BSE SEM imaging and XRD results show that the purity
level of the Cu film has been compromised by the presence of different chemical species,
leading to an increase in the overall electrical resistivity even when copper dewetting did
not seem to occur to the same extent as observed on the Cu/Co-W stack.

4. Conclusions

The findings in this work contribute to further the understanding of the performance
of the Co-W system as an alternative material for diffusion barrier layer applications. The
investigation results show that:

• From a Cu surface stability perspective, the Co-W system performed worse than the
Ta film, with dewetting of the Cu layer in the 300–450 ◦C range;

• The Ta film revealed superior Cu dewetting resistance, with no discernible agglomera-
tion at the surface after annealing for the studied temperature ranges;

• The Cu/Co-W system exhibited diffusion resistance up to 700 ◦C, whereas the Cu/Ta
system failed in the 600–650 ◦C range, with Ta diffusion through the Cu layer;

• Co-W displayed structural continuity and integrity throughout the temperature
range used;

• The sheet resistance of the Cu/Co-W was minimized after annealing at 450 ◦C, at
7.07 × 10−6 Ω/sq;

• The Cu/Ta system showed a minimum sheet resistance value of 6.03 × 10−6 Ω/sq
after annealing at 450 ◦C. However, the need for the inclusion of a high resistance
diffusion barrier layer such as TaN suggests an overall inferior electrical performance
of the Cu/Ta/TaN system in comparison to the Cu/Co-W system.
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