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Polymorphism information generated by next-generation sequencing (NGS) technologies has enabled ap‐
plications of genome-wide markers assisted breeding. However, handling such large-scale data remains a
challenge for experimental researchers and breeders, calling for the urgent development of a flexible and
straightforward analysis tool for NGS data. We developed “IonBreeders” as bioinformatics plugins that
implement general analysis steps from genotyping to genomic prediction. IonBreeders comprises three
plugins, “ABH”, “IMPUTATION”, and “GENOMIC PREDICTION”, for format conversion of genotyping
data, preprocessing and imputation of genotyping data, and genomic prediction, respectively. “ABH” converts
genotyping data derived from NGS into the ABH format, which is acceptable for our further plugins and with
other breeding software tools, R/qtl, MapMaker, and AntMap. “IMPUTATION” filters out non-informative
markers and imputes missing marker genotypes. In “GENOMIC PREDICTION”, users can use four statisti‐
cal methods based on their target trait, quantitative trait locus effect, and number of markers, and construct a
prediction model for genomic selection. IonBreeders is operated in Torrent Suite, but can also handle geno‐
type data in standard formats, e.g., Variant Call Format (VCF), by format conversion using free software or
our provided scripts.
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Introduction

Next-generation sequencing (NGS) data are now widely
utilized in studies related to genetics and breeding with
advantages of a reduction of sequencing costs and analyti‐
cal support owing to the development of various analysis
platforms (Phan and Sim 2017). For example, genetic anal‐
yses now predominantly focus on the identification of
insertion-deletion polymorphisms (Indel) and single
nucleotide polymorphism (SNP) markers developed by
genome resequencing and genotyping by sequencing (GBS)
rather than on ordinary simple sequence repeat (SSR)
markers (Kim et al. 2016, 2017). Identification of genome-
wide markers enables detailed quantitative trait locus
(QTL) analysis and genome-wide association studies
(GWAS) (Wang et al. 2016) to isolate genes and identify
closely related markers for agronomically important traits,
leading to significant progress in the field of breeding sci‐
ence.

However, the markers derived from QTL analysis or
GWAS still do not have sufficient explanatory power for
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obtaining the desired phenotypes in marker-assisted breed‐
ing on polygenic traits (Bernardo 2008). Alternatively,
genomic selection (GS) was developed as a new breeding
technology for genome-wide prediction using all available
markers (Bhat et al. 2016, Meuwissen et al. 2001). This
technique establishes prediction models in a training popu‐
lation using both phenotype and marker genotype data,
resulting in predicted genetic values for individuals based
only on marker genotype information. For instance, the
genomic prediction has been applied to maize, wheat, rice,
soybean, rapeseed, buckwheat, and tomato in plants
(Crossa et al. 2014, Matei et al. 2018, Spindel et al. 2015,
Würschum et al. 2014, Yabe et al. 2018, Yamamoto et al.
2017). However, the technique is not familiar to breeders.

One of the main limitations of the practical application
of GS is the lack of a suitable bioinformatics infrastructure
for analysis that is easy to use for people who are unfamil‐
iar with informatics. In particular, limited graphical user
interface (GUI)-based free software tools are available for
handling NGS data. Galaxy is one of the most popular GUI
tools for genome data analysis (Afgan et al. 2018) and
comprises various pipelines for NGS analysis, including
prediction of genomic breeding values (Juanillas et al.
2019). However, Galaxy is a web-based system and cannot
be used locally without introduction of complicated system
settings. Moreover, although the representative NGS plat‐
forms such as Illumina (e.g., MiSeq and MiniSeq) and
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IonTorrent (e.g., IonPGM, Ion S5) provide output data as
short reads, it remains a challenge to convert these large-
scale genotyping data to file formats that are acceptable for
downstream genetic analysis and interpretation.

To solve this problem, we developed a new analysis
plugin named “IonBreeders” to facilitate analyses of geno‐
typing and genome data for genomic prediction. The main
goal of IonBreeders is to enable obtaining genotype data
and conducting genomics-assisted breeding with only basic
knowledge of NGS and genetics, without bioinformatics,
machine learning, and more specialized skills. By integrat‐
ing IonBreeders with another NGS analysis tool, users can
convert the data to a genotyping format, impute missing
genotyping data, and perform genomic prediction with sev‐
eral available statistical models.

Materials and Methods

IonBreeders was developed as a series of plugins for the
Torrent Suite, which is a GUI-based analysis software in
the IonTorrent system (maintained by Thermo Fisher
Scientific) and is operated on the Ion PGM, GeneStudio
S5/S5 Plus/S5 Prime sequence system (Thermo Fisher Sci‐
entific), Ion Torrent Server (Thermo Fisher Scientific), or

Linux virtual machine (Fig. 1). Torrent Suite software
and IonBreeders can be downloaded from Github (Fig. 1).
After installation of Torrent Suite, users can download
IonBreeders and test data from Github at https://github.
com/DEMETER298/IonBreeders, and install the program
on Torrent Suite. Detailed instructions are provided on the
IonBreeders wiki page (Fig. 1, Supplemental Text 1).

Results

IonBreeders is a program comprising three plugins: “ABH”,
“IMPUTATION”, and “GENOMIC PREDICTION”
(Fig. 1). Since each plugin is performed automatically,
users just provide an output file from the previously run
plugin as an input for the next plugin based on the analysis
step to use IonBreeders. We could confirm that format
conversion by the ABH plugin worked properly and the
IMPUTATION plugin filtered out and imputed data reason‐
ably (Ishikawa et al. 2018, Marubodee et al. 2015, Uga et
al. 2013, Zhao et al. 2010). The GENOMIC PREDICTION
plugin could generate the predicted values with reasonable
accuracy. Furthermore, we have also confirmed the op‐
eration of the plugins in genetic analysis of F2 and RIL
population with SSR and amplicon markers to show that

Fig. 1. Workflow of genotyping by purpose using IonBreeders plugin in IonTorrent platform. The plugin names are in bold and underlined.
IonBreeders is consist of three plugins, “ABH”, “IMPUTATION” and “GENOMIC PREDICTION”. The dark grey arrows show the input/output
of the plugins.
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they work in palaeopolyploid soybean (in preparation).
IonBreeders can be used in both English and Japanese, and
the user can conveniently switch the language of preference
on the screen plugin. Each of these plugins is described in
detail below.

ABH: format converter
In the Ion Torrent system, variant detection was per‐

formed by the Variant Caller plugin (one of the Torrent
Suite software) (Fig. 1). By specifying hotspot (marker site)
information, Variant Caller plugin can detect the presence
or absence of variants on the site. The Variant Caller plugin
output genotype data in a Variant Call Format (VCF) and as
a Torrent Variant Caller (TVC) output. In these files, vari‐
ants are shown as the same (“0/0” and “Absent” in VCF
and TVC output), different (“1/1” and “Homozygous”) or
heterozygous (“0/1” and “Heterozygous”) compared to the
reference genome. The ABH plugin uses only the genotype
data on the hotspot site. The ABH plugin can convert a file
format of polymorphism detection obtained by Variant
Caller output with hotspot analysis to formats with either
A/B/H or reference/homo/hetero information. When there
is no information for polymorphic regions or sites (marker
position), a hotspot file can be generated from the TVC
output of Variant Caller plugin for subsequent variant
detection. If the genotypes (bi-allelic sites) of both parents
are known, genotypes of their segregation population are
established in the ABH formatted genotype data (A = par‐
ent 1 allele, B = parent 2 allele and H = Hetero) based on
the input of parent genotypes by ABH plugin (Supplemen‐
tal Text 1). The ABH genotype file is output in the
Comma-Separated Value (CSV) format (“csvr” format in
R/qtl; http://www.rqtl.org/sampledata/ [Broman et al.
2003]). This file can be used as input file for R/qtl software
for mapping QTL, “IMPUTATION” and GENOMIC PRE‐
DICTION plugins in IonBreeders. Of the three plugins in
IonBreeders, the ABH plugin handles only Ion Torrent
data. For other two plugins, several types of genotype data
are acceptable (“csvr” format in R/qtl from ABH plugin
output and other platforms, e.g. SSR, array and other NGS
data) as input files (Fig. 1, Supplemental Text 1). Since the
input file for IMPUTATION and GENOMIC PREDIC‐
TION plugin is in the CSV format, users can also construct
the genotype file using their genotype data, e.g., SSR mark‐
ers, in the Excel platform (Microsoft Inc.). In case that only
genotype file in the Variant Call Format (VCF) from the
Genome Analysis toolkit (McKenna et al. 2010) and the
bcftools (http://github.com/samtools) is available, users
need to convert from VCF to ABH format using either pub‐
lic tools, e.g. TASSEL (Bradbury et al. 2007) or our Perl
scripts (VCF2ABH.pl: https://github.com/DEMETER298/
genotyping_illumina). If the genotypes of both parents are
unknown, genotypes of their segregation population are
established in ABH formatted genotype data based on the
reference genome (Supplemental Text 1). Even if we use a
population with unrelated individuals (e.g. genetic

resources) instead of segregating populations, the plugin
can also be applied to reference genome-based genotyping
so that the output file can be used to perform genomic pre‐
diction or discover new alleles.

IMPUTATION: data processing and complementation of
missing data

After the genotyping using NGS data, preprocessing of
the genotypes is indispensable step. For example, missing
data and non-informative markers should be excluded from
the genotyping dataset in the process of genomic predic‐
tion. The step is necessary to improve not only the quality
of genotype data but also the accuracy of the further analy‐
sis. The plugin “IMPUTATION”, that is followed by the
former plugin “ABH” in the IonBreeders, either excludes
low quality/non-informative sites or imputes genotypes for
subsequent genetic analysis. Based on the thresholds, each
site is defined as either reliable sites, low quality/non-
informative sites and imputed sites in the following strat‐
egy. First, heterozygosity rate and missing rates are
calculated for each site. Then, from the calculated rates and
the threshold users set up, the sites are grouped into either
low quality sites or imputed sites. Finally, perfectly linked
markers detected from the same NGS reads or within a
close genetic distance are integrated as a single polymor‐
phism. The “IMPUTATION” plugin is constructed by nine
processed and partially a wrapper of several functions
implemented in R/qtl (Broman et al. 2003, Supplemental
Text 1).

To conduct the plugin, users prepare either the output file
from the former plugin, “ABH” or the CSV-formatted file
with ABH formatted genotype data along with genetic dis‐
tance information (Supplemental Text 1), and returns the
output file in the same format. Thus, the user can follow
and monitor the process in Excel. This plugin can impute
missing genotype using neighbor polymorphism informa‐
tion and genetic distances. The output files (“.csv” and
“.raw” files) of the plugin can also be applied to other con‐
ventional widely used genetic analysis tools for breeding
applications, such as MapMaker (Sharma and Kaur 2014),
AntMap (Iwata and Ninomiya 2006), and R/qtl (Broman et
al. 2003). Therefore, the plugin mainly supposes popula‐
tions with highly related individuals such as F2 and RIL
populations in data preprocessing for linkage analysis, QTL
analysis, and genomic prediction (Supplemental Text 1).

The IMPUTATION plugin is preferable for data analysis
of genotyping sequences from specific regions/sites with a
sufficient read depth (at least 10X coverage), such as
amplicon sequences, including Amplicon-seq with a two-
step tailed PCR (Cruaud et al. 2017, Ishikawa et al. 2018),
GT-seq (Campbell et al. 2015), MTA-seq (Onda et al.
2018), AmpliSeq (in preparation), and GRAS-Di (Hosoya
et al. 2019). While on the other hand, this plugin does not
fully support data analysis of GBS/RAD-seq/ddRAD-seq,
which is known for a high rate of missing genotypes and
genotyping errors (Andrews et al. 2016, Davey et al. 2013,
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Schweyen et al. 2014). This plugin does not support the
function of error correction. Therefore, we recommend
conducting error correction and imputation of missing data
for GBS/RAD-seq/ddRAD-seq data using tools such as
Beagle (Browning et al. 2018), LinkImpute (Money et al.
2015), ABHgenotypeR (Furuta et al. 2017), Genotype-
Corrector (Miao et al. 2018) before using this plugin.

GENOMIC PREDICTION: construction of a model for
phenotype prediction from genotype data

Finally, users can perform the genomic prediction analy‐
sis with the “GENOMIC PREDICTION” plugin. The
plugin can predict phenotype from marker genotype data
using genomic prediction models. Users must prepare mark‐
er genotype and phenotype data for training the prediction
model (i.e., training data), and marker genotype data of the
current breeding population for predicting the genotypic
values of the selection candidates (i.e., test data). For the
genotyping data, the output files derived from either the
ABH or IMPUTATION plugin (AA/BB/AB genotype) and
ABH formatted genotype file in a CSV format (R/qtl “csvr”
format) are acceptable. Genotype datasets with missing
data are also acceptable, and users can then set a threshold
proportion of missing data to filter out for each marker. In
the GENOMIC PREDICTION plugin, the user has a choice
among four kinds of statistical models (Table 1) (Endelman
2011, Friedman et al. 2010, Tibshirani 1996). Each model
has preferable conditions according to the number of QTLs,
QTL effects, and number of markers (Desta and Ortiz
2014). Users can select an optimal model based on the prior
knowledge about the target trait and the number of markers
the input data includes (Table 1). For example, users can
select ‘LASSO’ when users expect the target trait is con‐
trolled by just a few QTLs, whose positions are unknown,
and users can prepare data of a number of markers to select
the effective markers. If it is difficult to select an optimal
prediction model, we recommend that users try all predic‐
tion models and select good genotypes based on the sum‐
mary of the results. Using the model constructed from the
training data, users can then predict the genetic value (i.e.,
performance explained by genotype) from the marker geno‐
type data of test data. The output file provides predicted
genetic values for each genotype in CSV format.

Discussion

The ability to handle the large amounts of accumulating
NGS data remains a significant barrier for most breeders
and experimental researchers to apply genome information
to the breeding field. Despite the vast array of publicly
available genetic analysis tools, these data are difficult to
handle as the program input and output files are typically
not compatible. Thus, the users need to convert the data
files to suitable formats, which requires some prior knowl‐
edge on bioinformatics and statistics, necessitating further
support from bioinformaticians or other experts. Indeed,
GUI-based software has been developed for other research
applications, including sequence homology searches and
phylogenetic analyses, such as BLAST and Clustal W/X
(Johnson et al. 2008, Larkin et al. 2007), which are now
widely used even by non-bioinformatics experts. Thus,
IonBreeders extends such user-friendly applications by pro‐
viding a tool for researchers in the breeding sciences to
analyze whole-genome data independently. By integrating
the IonBreeders plugin to Torrent Suite in the Ion Torrent
system (Thermo Fisher Scientific), users can quickly obtain
a large amount of genotype data simultaneously and predict
the phenotypic value by genomic prediction.
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