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Background: Technological innovation is a key component of orthopaedic surgery. With the integration of powerful technologies
in surgery and clinical practice, artificial intelligence (AI) may become an important tool for orthopaedic surgeons in the future.
Through adaptive learning and problem solving that serve to constantly increase accuracy, machine learning algorithms show
great promise in orthopaedics.

Purpose: To investigate the current and potential uses of AI in the management of anterior cruciate ligament (ACL) injury.

Study Design: Systematic review; Level of evidence, 3.

Methods: A systematic review of the PubMed, MEDLINE, Embase, Web of Science, and SPORTDiscus databases between their
start and August 12, 2020, was performed by 2 independent reviewers. Inclusion criteria included application of AI anywhere along
the spectrum of predicting, diagnosing, and managing ACL injuries. Exclusion criteria included non-English publications, con-
ference abstracts, review articles, and meta-analyses. Statistical analysis could not be performed because of data heterogeneity;
therefore, a descriptive analysis was undertaken.

Results: A total of 19 publications were included after screening. Applications were divided based on the different stages of the
clinical course in ACL injury: prediction (n ¼ 2), diagnosis (n ¼ 12), intraoperative application (n ¼ 1), and postoperative care and
rehabilitation (n ¼ 4). AI-based technologies were used in a wide variety of applications, including image interpretation, automated
chart review, assistance in the physical examination via optical tracking using infrared cameras or electromagnetic sensors,
generation of predictive models, and optimization of postoperative care and rehabilitation.

Conclusion: There is an increasing interest in AI among orthopaedic surgeons, as reflected by the applications for ACL injury
presented in this review. Although some studies showed similar or better outcomes using AI compared with traditional techniques,
many challenges need to be addressed before this technology is ready for widespread use.

Keywords: anterior cruciate ligament; imaging and radiology; general; physical therapy/rehabilitation; injury prevention;
gait analysis

Artificial intelligence (AI) is a branch of computer science
that involves human-like learning systems. The term was
first defined during a conference in 1956 by John McCarthy
who referred to this technology as “the science and engi-
neering of making intelligent machines.”12,13 This new the-
ory came with dozens of different subfields, including
machine learning (ML), whereby algorithms acquire
knowledge via exposure to historical examples.12,13,18 This
knowledge acquisition can happen using either supervised
or unsupervised algorithms. Supervised learning involves
training an algorithm using previously labeled data to form
associations, whereas unsupervised algorithms search for
complex novel associations within unlabeled data.12,13,18

Both forms of ML have garnered widespread application
over the past decade, with common applications including
search engine optimization and facial recognition
software.12,13,18
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In medicine, AI can be applied either virtually using com-
puters or physically using robots.12 Over the past decade,
the development of AI applications in orthopaedics has
focused primarily on diagnostics, mostly image interpreta-
tion.12,13,18,23 A recent study by Chen and Asch 9 demon-
strated that a convolutional neural network (CNN), a type
of ML algorithm, outperformed general orthopaedic sur-
geons at detecting and classifying proximal humeral frac-
tures while performing similarly to subspecialized shoulder
surgeons. In a similar investigation, a CNN was developed
to interpret hand, wrist, and ankle radiographs with an
accuracy matching that of senior orthopaedic staff.31

In orthopaedic sports pathology, close to half of all inju-
ries involve the knee.30 Of these injuries, tears of the ante-
rior cruciate ligament (ACL) are frequently encountered,
with noncontact ACL injuries making up to 78% of all
sport-related knee pathology.26 Although common, the
diagnosis of clinically significant ACL injuries can be chal-
lenging for clinicians. ML may facilitate this by providing
ways of addressing the variability of certain clinical tests,
such as the pivot shift, while improving the diagnostic accu-
racy of magnetic resonance imaging (MRI).4,36 However,
along with improving diagnostics, AI may also serve to pro-
vide more robust solutions to other issues relating to the
management of ACL tears. The accurate prediction of indi-
viduals at risk of ACL injury or reinjury, the identification
of complex anatomic landmarks intraoperatively, and the
optimization of pain control and rehabilitation protocols
postoperatively present unique challenges that are well
suited to ML modalities.14,34,39,43 The purpose of this sys-
tematic review was to present how ML, with its ability to
assess complex nonlinear relationships, has been used to
address and improve the detection, treatment, and rehabil-
itation of individuals with ACL injuries.

METHODS

A systematic review was performed according to the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines.28 The search was performed
in PubMed, MEDLINE, Embase, Web of Science, and
SPORTDiscus databases between their start and August
12, 2020. The keywords used in the search were “knee
ligament” OR “ACL” OR “anterior cruciate ligament” AND
“Artificial intelligence” OR “machine learning” OR “learning
algorithms” OR “deep learning” OR “learning machines.”
Inclusion criteria included application of AI anywhere along
the spectrum of predicting, diagnosing, and managing ACL
injuries. Exclusion criteria included non-English publica-
tions, conference abstracts, review articles, and meta-
analyses. After duplicate records were excluded, 2 reviewers
(J.C. and J.P.L.) screened titles and abstracts for eligibility.
All remaining manuscripts were then reviewed. Additional
publications were selected by screening the reference lists of
included articles. The AI models used in the selected studies
are briefly explained in Figure 1.

Because of the heterogeneity in the data and the vari-
ability in study methods, statistical analyses of outcomes
were not possible. A comprehensive review of the clinical

applications and feasibility of AI with regard to ACL injury
is presented.

RESULTS

The systematic search resulted in 184 articles. After remov-
ing duplicates, 121 articles were screened based on title and
abstract. After reviewing the bibliography of each paper, 3
more articles were found to be eligible for this review. A total
of 19 articles remained relevant based on the inclusion and
exclusion criteria. The studies were divided based on the
different stages of the clinical course: prediction (n¼ 2), diag-
nosis (n ¼ 12), intraoperative application (n ¼ 1), and post-
operative care and rehabilitation (n ¼ 4). A flowchart of the
study inclusion process is shown in Figure 2, and a summary
of the 19 included studies is available in Appendix Table A1.

Prediction

Johnson et al16 developed an ML algorithm capable of pre-
dicting the risk of knee injury. Their pretrained CNN
assessed 3-dimentional (3D) knee joint movements associ-
ated with ACL injury using marker-based motion capture
while athletes performed 3 sport-related movements (walk-
ing, running, and sidestepping). This technology was com-
pared with traditional biomechanical assessment using
embedded force plates and a linear regression analysis. A
high degree of correlation was observed, with the strongest
correlation (r ¼ 0.8895) occurring during the initial stance
phase of sidestepping. The authors proposed that the ability
to accurately predict knee joint movements from motion
data may serve as an initial step in developing methods for
real time on-field risk assessment for knee injuries, includ-
ing ACL tears.

Pedoia et al35 generated an AI algorithm capable of
extracting and comparing differences in the tibial and the
femoral bony morphology between normal ACL and ACL-
injured knees. Using 3D MRI-based statistical shape mod-
eling, they concluded that the relative distance between the
condyles and the tibial plateau slope was a reliable land-
mark to differentiate normal and ACL-injured knees. The
results, which are consistent with previously known mor-
phological risk factors, highlight the potential for statistical
shape-modeling algorithms to accurately detect anatomic
risk factors for ACL injury, which may have implications
for risk assessment in the future.

Diagnosis

Multiple investigations have applied ML to optimize both
clinical and radiographic diagnosis of ACL injury.§ Pertain-
ing to clinical assessment, Labbe et al19 developed support
vector machines (SVM) able to objectively grade the pivot-
shift phenomenon using algorithms that measure the rela-
tive movement of sensors placed on the femur, tibia, and
iliac crest. These were compared with clinical grading by
experienced surgeons using the International Knee

§ References 5, 7, 19, 21, 22, 27, 29, 38, 42, 47, 48.
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Documentation Committee criteria. The results showed a
significant agreement among clinicians in grading the pivot
shift subjectively (k ¼ 0.83, considered “almost perfect”) as
well as a significant agreement using the SVM-established
grades (k ¼ 0.81). There was also a near perfect agreement
between surgeons’ grading and the SVM-established
grades (k ¼ 0.83, 0.79, and 0.82 for clinicians 1, 2, and 3,
respectively). Furthermore, the SVMs were able to distin-
guish grades 0 and 1 from grades 2 and 3, with a sensitivity
of 86% and specificity of 90%. The use of SVMs to interpret
the pivot-shift test allows for an objective reference point
for a test that is subject to a high degree of variability,
especially in the hands of less experienced clinicians.41 Li
et al21 developed another method to detect ACL injury
using plantar pressure monitoring during the gait analysis.
A 2-m pressure carpet with 16,384 sensors was used to
record pressure data from both normal and ACL-deficient
knees. A total of 100 data sets were collected, and 80 of
these were used to develop an SVM. The remaining 20 were
used to test and evaluate the accuracy of the SVM. In the
final identification test, the overall accuracy of the SVM to
identify ACL injury was 50% when considering both legs:
76% for the left leg and 62% for the right leg.

Despite several investigations examining the role of ML
to optimize clinical assessment, a larger body of research

has focused on the application of AI to assist in radiologic
diagnosis. Bien et al5 used a deep learning algorithm to
diagnose ACL and meniscal injuries or detect general
abnormalities on MRI scans. The model was trained using
1130 knee MRIs, fined-tuned, and then tested against an
internal validation set of 120 examinations. The final pro-
totype had a specificity of 0.968 for detecting ACL tears,
similar to that achieved by general radiologists (0.933).
However, the model had a lower sensitivity (0.759) com-
pared with radiologists (0.906). In the detection of meniscal
tears, general radiologists had significantly greater sensi-
tivity compared with the model (0.892 vs 0.741). When clin-
icians used the model to assist in diagnosis, there was a
statistically significant improvement in specificity for iden-
tifying ACL tears (P < .001), with a mean increase in spec-
ificity (0.048). In the proposed validation model that
included 62 examinations, this translates clinically to 3
fewer patients potentially being indicated for surgery
because of a false-positive diagnosis of an ACL tear. More-
over, all 120 models were analyzed within 2 minutes, com-
pared with 3 hours required for radiologists.

Chang et al7 tested a similar model by using a CNN to
first crop the MRI scan to localize the ACL and then iden-
tify the presence or absence of ACL tears. The model’s accu-
racy was studied using 1, 3, and 5 slices per knee. The

Ar�ficial Intelligence:
Broad category including every machine capable of 

solving problems in an “intelligent” manner.

Machine learning:
Subset of ar�ficial intelligence that learns/improves 

from experience. It is not explicitly programmed. 

Support vector 
machine:

Type of supervised 
learning that analyzes 
data based on their 
classifica�on and on 
regression analyses.

Alterna�ng 
decision trees:

Type of supervised 
learning that analyzes 
data based on their 
classifica�on and on 
regression tasks.

Deep learning:
Subset of machine 
learning that works 
similarly to the neural 
network of a human 
brain. 

Random forest model:
Ensemble of 
supervised learning 
method used for 
classifica�on, 
regression, and 
building of different 
decision trees.

Bayesian network:
Commonly used in a 
supervised learning 
environment. Defined 
as a probabilis�c 
model that captures 
the condi�onal 
dependence between 
2 random variables. 

Convolu�onal neural network:
Supervised learning machines 
commonly referred to as regularized 
version of mul�layer perceptron. Used 
for its image and video recogni�on and 
image classifica�on abili�es.

Mul�layer perceptron:
Type of supervised learning inside the 
category of ar�ficial neural network. 
Capable of performing classifica�on or 
regression, depending on its ac�va�on 
tasks.

Recurrent neural network:
Similar to the convolu�onal neural 
network for its supervised 
characteris�c and its u�lity. The 
“coding” of this technology includes a 
“rela�onship” between the input and 
the output. In other words, the output 
will influence the next input.

Figure 1. Description of the commonly used artificial intelligence models in the management of anterior cruciate ligament (ACL)
injury.
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results illustrated that the algorithm performance
improved in proportion to the number of input slices. The
corresponding sensitivity, specificity, positive predictive
value, and negative predictive value of the 5-slice model
were 0.940, 0.890, 0.895, and 0.937, respectively. Similarly,
Liu et al22 used 2 CNNs to isolate the ACL on MRI images
and identify the presence of a complete ACL injury tear.
The reference for the final diagnosis was determined using
arthroscopy. The results revealed that there was no statis-
tically significant difference in the detection of ACL tears
between the designed algorithm (sensitivity, 0.96; specific-
ity, 0.96) and the 5 radiologists (sensitivity, 0.96-0.98; spec-
ificity, 0.90-0.98). ML may also serve to answer more
complex diagnostic questions regarding ACL injury.
Štajduhar et al40 developed an SVM capable of detecting
the presence of milder and complete ACL rupture. The sta-
tistical analysis results demonstrated that the SVM had an
area under the curve of 0.894 for the injury detection prob-
lem and 0.943 for the complete rupture detection problem.
These results suggest a potential role for computer-aided
decision making not only for detecting ACL rupture but
also for distinguishing between complete and partial tears.

Along with the diagnosis, AI has also been used to assist
with establishing imaging protocols. Richardson38 used
CNNs to demonstrate that the use of ML can be an

acceptable surrogate to human readers when performing
a protocol optimization study for assessing the ACL tears
on knee MRI scans. Two different types of MRI scans were
used as input into the CNN: non–fat saturated (NFS) and
fat saturated (FS). The receiver operating characteristic
area under the curve for NFS and FS CNNs was 0.9983
and 0.9988, respectively. Specificity was identical for both
NFS and FS images (0.993). There was a statistically sig-
nificant difference in FS and NFS sensitivity (0.98 and 0.88,
respectively; P ¼ .0253). Based on these results, the author
concluded that a CNN could serve as a reliable surrogate for
a human reader when assessing the large number of scans
needed for MRI protocol development, while eliminating the
potential for bias and fatigue.38

Intraoperative Application

As of the date of the most recent search conducted for this
review, a single ML application has been developed for
intraoperative use in knee arthroscopy. To provide addi-
tional contextual awareness for surgeons, an algorithm
capable of automatic segmentation of the arthroscopic
frame was developed by Jonmohamadi et al.17 The algo-
rithm, “U-NET,” is a CNN that was specifically created for
the segmentation of biomedical images. This technology
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Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.
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uses the arthroscopic video as an input parameter to pro-
duce a segmented image of the structures seen in real time
by the surgeon. Using 3868 images collected from 4 cadav-
eric experiments and 5 knees, the authors programmed it to
recognize key structures seen during knee arthroscopy: the
femur, the ACL, the meniscus, and the tibia. The results
obtained from this study were promising, with mean Dice
similarity coefficients for the femur, the tibia, the ACL, and
the meniscus of 0.78, 0.50, 0.41, and 0.43, respectively. The
authors suggested that automated segmentation and tissue
labeling could have important implications for both human
surgical training and tool tracking in future robotic arthro-
scopic applications.17

Postoperative Care and Rehabilitation

Several studies focusing on ML applications for postopera-
tive care and rehabilitation after ACL reconstruction have
been conducted.2,37,39,43 Rashkovska et al37 generated an
ML algorithm to predict internal knee temperature during
therapeutic cooling (cryotherapy) after ACL surgery, which
can be highly variable among patients. Using computer
simulation, they were able to develop a model that could
predict internal knee temperature using 4 temperature
sensors placed on the skin. When their algorithm was
tested using real external knee temperatures recorded dur-
ing an earlier investigation, there was strong agreement
between the internal knee temperatures predicted using
ML and their actual in vivo measurements. This study
highlights a potential role for AI to assist in determining
the efficacy of postoperative cryotherapy, which may be
used to develop personalized cooling protocols.37

Another predicting modeling tool was used by Anderson
et al2 to identify patients at a high risk of prolonged opioid
use (>90 days postoperatively) after an ACL reconstruc-
tion. Using the patients’ charts, they developed 4 models:
logistic regression, random forest, Bayesian belief network,
and gradient boosting machine. Based on the area under
the curve and the Brier score, the gradient boosting
machine model was considered the most accurate algorithm
for this prediction. Results showed that it had a Brier score
of 0.10 (95% confidence interval, 0.09-0.11) and an area
under the curve of 0.77 (95% confidence interval, 0.75-
0.80). Clinically, this prediction tool can improve shared
decision making by providing a single, objective score that
can be easily understood by the patient and the surgeon
regarding the risk of excessive postoperative opioid use.
Education about controlling postoperative pain before
opioids along with recognizing those who may benefit from
other pain control adjuncts could reduce the problem of
opioid abuse, especially in patients at risk.2

Tighe et al43 examined the ability of ML algorithms to
predict which patients would require a femoral nerve block
(FNB) post-ACL reconstruction. Several different ML clas-
sifiers were developed to identify a variety of pre- and peri-
operative factors present in patients’ charts (eg, sex,
tobacco use, perioperative nonsteroidal anti-inflammatory
drugs, and ketamine use) and determine their association
with postoperative pain and need for FNB. Using the
receiver operating characteristic analysis, it was found that

each algorithm outperformed the standard logistic regres-
sion, with an alternating decision tree having the greatest
area under the curve (0.7), demonstrating a potential novel
application of this technology for assessing patients who
may benefit from FNB.

The potential of ML to assist with rehabilitation after ACL
reconstruction has also been examined. Richter et al39 used 8
cameras and 2 force platforms to objectively classify move-
ment patterns between rehabilitating athletes after ACL
reconstruction and athletes without ACL injury. Their goals
were 2-fold: (1) find exercises that can accurately differenti-
ate knees with reconstructed ACLs from normal knees and
(2) determine the most appropriate type of ML for analyzing
biomechanical data. They concluded that the double-leg drop
jump had the highest classification accuracy (81%) and best
predicted ACL injury using patternet, a neural network.
These results suggest that AI algorithms are capable of inter-
preting complex biomechanical data from motion analysis to
identify knees that have undergone ACL reconstruction,
which may have important implications for postoperative
ACL rehabilitation.

DISCUSSION

AI, and ML specifically, has the potential to revolutionize
the field of orthopaedic surgery.13 Nonetheless, only a
handful of studies have examined applications for the man-
agement of ACL injuries. Presently, only 1 study17 exam-
ining the intraoperative application of AI for knee
arthroscopy has been published. However, future avenues
for applications in ACL reconstruction exist, some of which
are explored in greater detail in this section. The delayed
adoption of this technology is likely multifactorial, with
high development costs, complexity of use in absence of
exposure or experience, and ethical considerations all play-
ing a role.9 Moreover, there is evidence suggesting that
both health care providers and patients may distrust AI use
in the health care setting.18,23

The focus of this systematic review was to provide readers
with a summary of these investigations that have examined
the application of AI in the management of ACL injury. As
exemplified by the present review, much of the focus of ML
applications for managing ACL injuries has been on improv-
ing diagnostic accuracy. Although seemingly trivial, the
diagnostic reliability of some clinical tests is suboptimal.
This was highlighted in a meta-analysis by Benjaminse
et al,4 in which a pooled analysis of 28 investigations dem-
onstrated that the pivot-shift test had a sensitivity of only
24%. Furthermore, it was demonstrated that despite a high
sensitivity and specificity for assessing chronic ACL injury,
the sensitivity and specificity of the anterior drawer test
decreased to 49% and 58%, respectively, when assessing
acute tears.4 In addition to these findings, there was only
moderate interobserver reliability for the Lachman, anterior
drawer, and pivot-shift tests when performed by profes-
sionals who are not orthopaedic surgeons.36 This is impor-
tant, as many of these individuals are the first to assess
these patients and they are frequently responsible for initi-
ating further work-up and expert consultation. The ML
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applications presented here, such as the work of Labbe
et al19 that employed SVMs to accurately grade pivot-shift
tests, demonstrate the ability for these algorithms to intro-
duce a higher degree of objectivity to the physical examina-
tion of the knee, especially for physicians and other medical
professionals who are less familiar with this test.

Although there is little published literature on the inte-
gration of ML in clinical diagnosis, AI has been more exten-
sively researched to aid in the interpretation of radiologic
images, such as MRI.13 Despite being heavily relied on for
diagnosis and preoperative planning, MRI findings regard-
ing ACL injury can be subject to a high degree of inaccu-
racy.32 Multiple investigations presented in this review
demonstrated the ability to train algorithms capable of not
only assisting human diagnosis but also independently
diagnosing ACL injury and other knee pathology with a
high degree of accuracy.5,22,40,48

Deep learning also shows promise in MRI protocol optimi-
zation.38 Protocol development usually requires radiologists
to read multiple images at timed intervals to limit bias.
Despite this, bias can still be introduced by the physician’s
personal preferences for certain protocols.20 With increasing
demands on productivity and efficiency, it can be difficult for
radiologists to take part in time-consuming protocol optimi-
zation studies. To address this, Richardson38 successfully
trained a CNN as a surrogate reader to diagnose ACL tears
from MRI scans with different pulse frequencies to success-
fully assist with protocol development. The rapid data inter-
pretation purported by ML algorithms has also been
highlighted by Bien et al5 who reported a 90-fold increase
in speed of MRI image interpretation compared with stan-
dard radiologists. This example highlights the potential for
ML to assist in the diagnosis of ACL injury, minimize the
time delay between image acquisition and interpretation,
and theoretically accelerate diagnosis and treatment.

A potential application of AI could be in the assessment
of graft status and integrity in the context of revision ACL
reconstruction. In the event of a suspected graft failure, the
decision to proceed with revision surgery can be challeng-
ing. In fact, it has been shown that physical examination,
MRI, and arthroscopic evaluation do not always correlate
when assessing graft integrity and failure,44,45 further com-
plicating decision making for the treating surgeon. ML
applications could thus be used to integrate all of these
data, create algorithms capable of improving diagnostic
accuracy, and ultimately serve to facilitate surgical deci-
sion making in revision ACL surgery.

Despite significant advances in the implementation of ML
in diagnosis, a more important role for AI may lie in risk
prediction for ACL injury. The true power of this technology
likely lies in its ability to form predictions from large preex-
isting data sets, lending itself well to prognostication using
biomechanical data.9 There is a significant body of literature
examining the role of biomechanical factors and kinematic
parameters in pathogenesis of ACL tears, some of which have
been used to identify at-risk individuals.15 However, because
of the ability of ML algorithms to pick up complex, nonlinear
relationships, this technology has the potential to extract
even more important anatomic and biomechanical features
that may predispose athletes to noncontact ACL injury.

Presently, there are only 2 studies in the literature using
ML in this manner. Although the work of Johnson et al16

focused on monitoring all knee injuries, it is a good example
of a CNN that can be used for the gait analysis to predict
injuries. The imaging study by Pedoia and colleagues35 also
deviated from the theme of diagnosis by developing a statis-
tical shape modeling algorithm capable of determining char-
acteristic 3D bony features of the tibia and the femur in
patients who sustained an ACL injury, which could be used
for injury prediction. Ultimately, the parameters could be
used to develop risk assessment tools to identify athletes who
may benefit from validated ACL injury prevention programs
focusing on quadriceps, hamstring, and core activation exer-
cises, such as FIFA11þ.1 Furthermore, this technology could
be used to counsel young athletes on their individual risk of
ACL injury when participating in a particular sport based on
their knee characteristic and could also help teams selecting
athletes based on the risk analysis.

At the present time, only 1 intraoperative application of
AI for knee arthroscopy has been developed. This may be
explained, in part, by the difficulty of performing a study
with this technology in a complex environment, such as the
operating room, which requires efficient and user-friendly
equipment that must be easily integrated into a sterile envi-
ronment. Nevertheless, there is still a need for tools that can
aid in objective intraoperative assessment. The algorithm
developed by Jonmohamadi et al,17 which was capable of
identifying key anatomic features, including the ACL and
menisci, is an important first step toward automated identi-
fication of complex anatomic landmarks during ACL recon-
struction. For example, it has been found that the placement
of tibial and femoral tunnels during ACL reconstruction is
significantly different from the native anatomic footprint
identified on MRI scans, suggesting that surgeons have dif-
ficulty identifying these landmarks intraoperatively.14,34

Deep learning algorithms could potentially be trained to
analyze the preoperative imaging to identify these land-
marks, and this information could be merged with the
arthroscopic video to suggest an optimal tunnel placement.
Other intraoperative challenges that may benefit from deep
learning include determining visual signs of optimal ACL
graft tensioning and overconstraint of the lateral tibio-
femoral joint in anterolateral ligament reconstruction. While
these applications have yet to be explored, we believe that
deep learning has the potential to help address some of these
complex intraoperative challenges in ACL reconstruction.

Prediction of postoperative outcomes can be a valuable
metric for optimizing patient care and management of
patient expectations. One important postoperative consider-
ation is pain control. A systematic review performed by Wer-
ner et al46 demonstrated that the level of pain experienced
by patients can be predicted from preoperative data. After
ACL reconstruction, nerve blocks can be a useful adjunct to
help patients manage their postoperative pain. However,
routine use of nerve blocks for all patients is not ideal due
to the potential risk of complications and prolonged rehabil-
itation secondary to undesired motor blockade.24,25 Thus, a
method for identifying individuals who have lower pain
thresholds and may benefit from postoperative nerve blocks
could be advantageous. To address this, Tighe et al43
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developed an ML classifier using only preoperative data as
its input and showed promising results in the prediction of
FNB, as discussed earlier. These findings may have impor-
tant implications, as FNBs have been demonstrated to
not only reduce postoperative pain but also to reduce opioid
intake.10 Future studies should focus on patient selection for
saphenous nerve blocks, which are gaining in popularity
because of their theoretical advantage in avoiding quadri-
ceps motor blockade but may still be associated with compli-
cations, including unexpected muscle weakness.6

The studies highlighted in the present review also dem-
onstrate the potential role of ML in the rehabilitation phase
after ACL reconstruction. Cryotherapy, an adjunctive pain
control technique that is used primarily in the setting of
rehabilitation, is one potential target. By reducing tissue
swelling, inflammation, and hematoma formation, it has
also been shown to help improve range of motion of the
knee.11 A known limitation of this technique is the uncer-
tainty of the inner knee temperature during the cooling
period, which can vary significantly among patients. Rash-
kovska et al37 proposed an ML algorithm to overcome this
limitation by employing sensors placed on the skin to pre-
cisely predict the inner knee temperature. Using accurate,
individualized temperature readings, the authors proposed
that “smart” cooling devices could be developed to optimize
patient care and expedite rehabilitation.37

Another important concern during rehabilitation after
ACL reconstruction is the risk of reinjury, which is reported
as up to 15 times higher than that for uninjured controls.33

An important consideration in recurrent ACL tears after
reconstruction is premature return to sports. Currently, there
is no single objective measure that can identify athletes who
have returned to their preinjury level in order to guide ter-
mination of a rehabilitation program.39 It is now clear, how-
ever, that biomedical data, with the help of ML, can
differentiate between a knee with a reconstructed ACL and
a normal, uninjured knee.39 The algorithm devised by Richter
et al39 was able to differentiate between these 2 groups, with
an accuracy of >70% at up to 9 months postoperatively. The
data suggested that ML algorithms could be used during the
rehabilitation phase by identifying asymmetries in the biome-
chanics of injured knees. Physical therapists and athletic
trainers could then alter training regimens to objectively
target these asymmetries during the rehabilitation process
to deliver tailored, sport-specific therapy.

Although ML holds much promise in the field of orthopae-
dic surgery, it has limitations. First, the high capital cost of
ML has been identified as a potential barrier to widespread
adoption in medicine.13 The cost related to the calibration
and the maintenance of the ML algorithms can also be per-
ceived as excessive. Therefore, the overall cost of AI needs to
be decreased to make this technology more accessible. Sec-
ond, to train AI algorithms, large data sets are often needed.
This means that important ethical considerations need to be
tackled to avoid breaching patient confidentiality and con-
sent.8,13 Regulatory agencies would need to implement
extensive precautionary measures to overcome this limita-
tion and would need to adapt to the evolving technology.
Furthermore, an inherent property of ML algorithms is their
capacity to acquire knowledge, which may lead to an

unexpected agency or authority in medical decision making.8

According to Char et al,8 this degree of autonomy would not
only require stricter regulation but also may necessitate a
change in how we presently conceptualize medical ethics and
liability in clinical practice. Third, ML is known to exhibit a
“Black Box” phenomenon, whereby little or no information is
given regarding the output generated.8,9 This limitation
could lead to false discoveries, where the classifier is devel-
oped using a data set that has an incorrect association, mak-
ing it of little use when applied to real cases.9 Conversely,
algorithms could also be trained to contain certain biases
that may serve to favor decisions that benefit private inter-
ests instead of patients.8 The development of algorithms
capable of providing some justification for the output they
generate would be of particular interest to ML applications
in medicine and surgery.3 Ultimately, to address these and
other limitations presented by the adoption of ML in ortho-
paedic surgery, surgeons will need to work in close collabo-
ration with data scientists to fully understand the proper
way to evaluate the validity of the output provided by the
algorithms and to ensure it is done in an ethical manner.

CONCLUSION

Despite the potential for AI to improve clinical practice, it has
yet to deliver on those promises in a meaningful way. The
ability of AI algorithms to simulate objective human thinking
while constantly improving its accuracy by integrating more
data can help facilitate surgical outcomes and clinical man-
agement of many injuries, such as ACL tears. Our systematic
review has demonstrated that ML, a subfield of AI, is capable
of aiding in the diagnosis of ACL tears, determining risk fac-
tors, and predicting the development of this injury in addition
to being able to assist in the pre- and postoperative decisions
for patient management. With simultaneous improvements
in other related technologies, we anticipate that the current
limitations may be overcome in the near future. As orthopae-
dic surgeons, we are poised to play a pivotal role in developing
ways to practically and safely integrate this technology into
our surgical and clinical workflow with the aim of improving
safety, efficiency, and outcomes.
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of anterior cruciate ligament injury from MRI. Comput Methods Pro-

grams Biomed. 2017;140:151-164.

41. Swain MS, Henschke N, Kamper SJ, et al. Accuracy of clinical tests in

the diagnosis of anterior cruciate ligament injury: a systematic review.

Chiropr Man Therap. 2014;22:25.

42. Tedesco S, Crowe C, Ryan A, et al. Motion sensors-based machine

learning approach for the identification of anterior cruciate ligament

gait patterns in on-the-field activities in rugby players. Sensors

(Basel). 2020;20(11):3029.

43. Tighe P, Laduzenski S, Edwards D, et al. Use of machine learning

theory to predict the need for femoral nerve block following ACL

repair. Pain Med. 2011;12(10):1566-1575.

44. Van Dyck P, Zazulia K, Smekens C, et al. Assessment of anterior

cruciate ligament graft maturity with conventional magnetic reso-

nance imaging: a systematic literature review. Orthop J Sports Med.

2019;7(6):2325967119849012.

45. Waltz RA, Solomon DJ, Provencher MT. A radiographic assessment of

failed anterior cruciate ligament reconstruction: can magnetic resonance

imaging predict graft integrity? Am J Sports Med. 2014;42(7):1652-1660.
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APPENDIX

TABLE A1
Summary of Included Studies About AI in the Management of ACL Injurya

Lead Author
(Year) Input Feature Goal Type of System/AI

Primary Outcome
Measure/Output Result

Prediction

Pedoia35 (2015) Imaging: MRI Develop 3D MRI-based
statistical shape
modeling and apply it
in knee MRIs to
extract and compare
relevant shapes of the
tibia and the femur in
patients with and
without acute ACL
injuries.

From 3D MRI, a shape
model was extracted
for the tibia and the
femur using a
statistical shape
modeling algorithm
based on a set of
matched landmarks
that are computed in
a fully automatic
manner.

With modes of variation
of all the surfaces
from the mean surface
(principal component
analysis)

The relative distance
between the condyles
and the elevation of
the anteromedial
tibial plateau was
observed to be
significantly different
between the injured
and control groups.

Johnson16

(2019)
Physical exam:

gait analysis
Generate a machine

learning algorithm
capable of an on-field
knee injury
assessment using
deep learning in lieu
of laboratory-
embedded force
plates.

Pretrain a CaffeNet
CNN model and
a multivariate
regression of marker-
based motion capture
to 3D knee-joint
movement.

Compare the knee-joint
movement predicted
by the CaffeNet
regression model with
those calculated by
inverse dynamics
(force plate).

Of the single fine-tune
investigations and the
double cascade, the
strongest mean knee-
joint movement
correlation was found
for the left stance limb
during sidestepping
(r ¼ 0.9179 and
0.9277, respectively).

Diagnosis

Wolf47 (2007) Physical exam:
passive knee
motion

Incorporate all 6 DOF of
the knee motion and
represent it as a set of
instantaneous screw
parameters using
optical tracking,
which are then used to
classify knee motion.

Placement of optical
trackers on both the
tibia and the femur.
Then, both bones were
scanned using CT.
The data were then
analyzed using a
support vector
machine.

Accuracy of the SVM to
identify the difference
between ACL-
deficient and normal
knee.

For the healthy,
ruptured ACL and
combined ACL and
PCL rupture, the
accuracy was 77 ± 4.9,
83 ± 4.7, and 94 ± 1.9,
respectively.

Labbe19 (2011) Physical exam:
gait analysis

Develop a system that
will objectively grade
the pivot-shift test
based on recorded
knee joint kinematics
using electromagnetic
motion sensors.

The induced pivot shift
was graded by the
orthopaedist, and a
second-degree
polynomial SVM
algorithm was
reading the data.

Interrater agreement
and accuracy of the
SVM to correctly
match the right pivot
shift with the grade

Agreement between the
subjective grades and
the SVM-established
grades was k ¼ 0.83,
0.79, and 0.82 for
clinicians 1, 2, and 3,
respectively.

Zarychta48

(2015)
Imaging: MRI Finding the feature

vectors of the ACL
and PCL to make it
easier to diagnose
them

Location and
analyzation of the
ACL and PCL were
based on the entropy
and energy measures
of fuzziness and Fuzzy
C-Means algorithm.

Feature vector has to
include the surface
area and the skeleton
(B-length/A-length
ratio) of the extracted
structures.

Correct detection of the
ACL and PCL was
achieved in 89%.
Differences in the
surface area and the
B-length/A-length
ratio between healthy
and injured ligaments
is further described in
the study.

(continued)
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Table A1 (continued)

Lead Author
(Year) Input Feature Goal Type of System/AI

Primary Outcome
Measure/Output Result

Li21 (2016) Physical exam:
gait analysis

Introduces machine
learning algorithm
into clinical diagnosis

By introducing ML, the
Fuzzy C-Means
clustering algorithm
was used to cluster
the sample set and
create a set of models,
and then the SVM
algorithm was used
to identify the new
samples.

Accuracy of the SVM to
identify the difference
between ACL-
deficient and normal
knee

The final identification
accuracy was 50%. In
the second and third
experiments, the left
and right plantar
pressure data were
analyzed, and the
accuracy was 76% and
62%, respectively.

Matić27 (2016) Physical exam:
gait analysis

Objective test definition
for unstable knee
diagnosis was based
on real measurements
by using infrared
cameras and adequate
software.

A logistic regression
determined the
severity of the ACL
injury using AP
translation and IR/ER
kinematics

The ACL deficiency
classification was
performed by
applying a binary
logistic regression,
which also
determined the
significance of the AP
translation and IR/ER
values.

A higher exponential (U)
for the AP translation
and for the IR/ER
increased the
likelihood of ACL-
deficient knee by
1.1758 and 2.2516
(95% CI), respectively.

Štajduhar40

(2017)
Imaging: MRI Evaluate a decision-

support model for
detecting the presence
of milder ACL injuries
and complete ACL
ruptures from
sagittal-plane MRI.

MRIs were preprocessed
using a HOG or a
scene spatial envelope
descriptor. After
classification was
done, the support
vector machine and
random forests model
classified them.

Rank the various
methods in relation to
their quantitative
measurement of the
robustness of the
models learned

Experimental results
suggest that a linear-
kernel SVM with
HOG descriptors was
the best, with an AUC
of 0.894 and 0.943 for
the injury detection
and complete rupture
detection,
respectively.

Bien5 (2018) Imaging: MRI Assess the ability of deep
learning model to
detect general
abnormalities and
specific diagnoses
(ACL tears and
meniscal tears) on
knee MRI exams.

MRNet, a convolutional
neural network
followed by a logistic
regression model

The effect of providing
the model’s
predictions to clinical
experts during
interpretation

Model predictions
significantly
increased general
radiologists and
orthopaedic surgeons’
specificity in
identifying ACL tears
(P < .001); final
sensitivity of 0.76 and
specificity of 0.97.

Chang7 (2019) Imaging: MRI Demonstrate the
feasibility of a fully
automated tool for
detection of complete
ACL tears.

Multiple CNN
architectures were
implemented.

Type of CNN algorithm
with the highest
accuracy

Accuracy of the 5-slice
network (0.915) was
better than that of the
3-slice (0.865) or
single-slice (0.765).
Sensitivity, specificity,
PPV, and NPV of the
5-slice were 0.940,
0.890, 0.895, and
0.937, respectively.

Liu22 (2019) Imaging: MRI Investigate the
feasibility of using a
deep learning-based
approach to detect an
ACL tear within the
knee joint at MRI.

A fully automated deep
learning-based
diagnosis system was
developed with 2
CNNs to isolate the
ACL and detect
structural
abnormalities within
the isolated ligament.

The sensitivity and
specificity of the
neural network

The sensitivity and
specificity of the ACL
tear detection system
at the optimal
threshold were 0.96
and 0.96, respectively.

(continued)
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Table A1 (continued)

Lead Author
(Year) Input Feature Goal Type of System/AI

Primary Outcome
Measure/Output Result

Mohr29 (2019) EMG Characterize abnormal
muscle activity from
EMG of 5 leg muscles
that were recorded
during treadmill
walking for young
adults with and
without a previous
knee injury.

Classification was
achieved using a
principal component
analysis followed by a
support vector
machine.

Affected or unaffected
leg in previously
injured and
previously injured vs
uninjured leg

Classification rates of
83% were obtained for
all patients, 100% for
female patients only.
It was not possible to
discriminate between
patterns belonging to
the previously injured
legs or dominant legs
of controls.

Richardson38

(2021)
Imaging: MRI Demonstrate, using ACL

tears, that a properly
trained CNN can
provide an acceptable
surrogate for human
readers when
performing a protocol
optimization study.

Convolutional neural
network models were
trained for both the
FS and the matched
set of NFS.

Predict the presence or
absence of ACL tear in
the corresponding
testing sets.

AUC for NFS ¼ 0.9983
and for FS ¼ 0.9988.
Specificity was
identical (0.993) for
both CNN images. FS
sensitivity (0.98) and
NFS sensitivity (0.88)
were statistically
significantly different
(P ¼ .0253).

Tedesco42 (2020) Physical exam:
gait analysis

Investigate the ability of
a set of inertial
sensors to
differentiate between
healthy and post-ACL
groups during a
change of direction.

The different ML used in
this study included
k-nearest neighbors,
naı̈ve Bayes, support
vector machine,
gradient boosting
tree, multilayer
perceptron, and
stacking.

Accuracy and sensitivity
of different types of
ML to differentiate
healthy vs post-ACL
injury leg

A 73.07% accuracy was
obtained using the
multilayer
perceptron, an 81.8%

sensitivity using the
gradient boosting, and
a 74.5% specificity
using the support
vector machine.

Intraoperative application

Jonmohamadi17

(2020)
Imaging:

arthroscopy
video

Automatic segmentation
of multiple structures
in knee arthroscopy
using deep learning

Automatic segmentation
of multiple structures
in knee arthroscopy
using deep learning

Segmented image from
the arthroscope

The mean Dice
similarity coefficients
for femur, tibia, ACL,
and meniscus were
0.78, 0.50, 0.41, and
0.43 using the U-net
and 0.79, 0.50, 0.51,
and 0.48 using the
U-netþþ.

Postoperative care and rehabilitation

Tighe43 (2011) Chart review Prediction of
postoperative FNB
requirement after
ACL reconstruction

ML classifiers based on
logistic regression,
BayesNet, multilayer
perceptron, support
vector machine, and
ADTree algorithms
were then developed.

The difference in
prediction for FNB of
simple logistic
regression with other
ML classifiers
(BayesNet, multilayer
perceptron, SVM,
ADTree)

The ROC area was the
greatest using the
ADTree classifier
(0.7), and SVM had
the highest kappa
value (0.242). Logistic
regression
outperformed other
classifiers with 77.7%
accuracy.

(continued)
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Table A1 (continued)

Lead Author
(Year) Input Feature Goal Type of System/AI

Primary Outcome
Measure/Output Result

Rashkovska37

(2015)
Predictive

model
Estimate the deep

temperature from the
noninvasively
measured data using
predictive models
constructed with the
help of machine
learning algorithm.

The ML used includes
simple methods, such
as linear regression
and regression trees,
as well as more
complex methods,
such as model trees.

Estimated temperature
of the center of the
knee (ie, in the
intercondylar notch)

The model trees for
scenario 2 was the
best based on the
small number of
variables, with the
correlation coefficient
and the mean
absolute error of
0.6541 ± 0.002117 and
1.2122 ± 0.004176,
respectively.

Richter39 (2019) Physical exam:
gait analysis

Develop and test a data-
driven framework
(based on no expert or
prior knowledge) to
classify movement
patterns of normal
and rehabilitating
athletes using only
biomechanical data.

Motion analysis using 8
cameras synchronized
with 2 force platforms.
Identification of the
best machine learning
and the best exercise
was performed.

Classify movement data
into normal, operated
ACL tear (ACLOP),
and contralateral leg
of ACL tear
(ACLNoOP) without
expert knowledge.

The best exercise was
the double-leg drop
jump, with an
accuracy of 81% and
when considering only
for the ACLOP and
ACLNoOP class (84%).
All were done using
the neural network.

Anderson2

(2020)
Chart review Build a cross-validated

model that predicts
risk of prolonged
opioid use after a
specific orthopaedic
procedure (ACL
reconstruction).

Logistic regression,
random forest,
Bayesian belief
network, and gradient
boosting machine
models

Likelihood of prolonged
opioid use, defined as
any opioid
prescription filled
> 90 d after ACL
reconstruction

Gradient boosting
machine: the final
model is accurate,
with a Brier score of
0.10 (95% CI, 0.09-
0.11) and the AUC of
0.77 (95% CI, 0.75-
0.80)

aACL, anterior cruciate ligament; ADTree, alternating decision tree; AI, artificial intelligence; AUC, area under the curve; AP, antero-
posterior; CT, computed tomography; CNN, convolutional neural network; DOF, degree of freedom; EMG, electromyography; exam, exam-
ination; FS, fat-saturated; FNB, femoral nerve block; HOG, histogram of oriented gradients; IR/ER, internal/external rotation; ML, machine
learning; MRI, magnetic resonance imaging; MRNet, a convolutional neural network for classifying MRI series and combined predictions from 3
series per exam using logistic regression; NFS, non–fat saturated; NoOP, non-operated knee, contralateral to the operated limb; NPV, negative
predictive value; OP, operated limb; PCL, posterior cruciate ligament; PPV, positive predictive value; ROC, receiver operating characteristic; SVM,
support vector machine; 3D, 3-dimensional.

12 Corban et al The Orthopaedic Journal of Sports Medicine



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


