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A B S T R A C T   

There is an evident requirement for a rapid, efficient, and simple method to screen the authen
ticity of milk products in the market. Fourier transform infrared (FTIR) spectroscopy stands out as 
a promising solution. This work employed FTIR spectroscopy and modern statistical machine 
learning algorithms for the identification and quantification of pasteurized milk adulteration. 
Comparative results demonstrate modern statistical machine learning algorithms will improve the 
ability of FTIR spectroscopy to predict milk adulteration compared to partial least square (PLS). 
To discern the types of substances utilized in milk adulteration, a top-performing multi
classification model was established using multi-layer perceptron (MLP) algorithm, delivering an 
impressive prediction accuracy of 97.4 %. For quantification purposes, bayesian regularized 
neural networks (BRNN) provided the best results for the determination of both melamine, urea 
and milk powder adulteration, while extreme gradient boosting (XGB) and projection pursuit 
regression (PPR) gave better results in predicting sucrose and water adulteration levels, respec
tively. The regression models provided suitable predictive accuracy with the ratio of performance 
to deviation (RPD) values higher than 3. The proposed methodology proved to be a cost-effective 
and fast tool for screening the authenticity of pasteurized milk in the market.   

1. Introduction 

Pasteurization is a milk preservation method primarily reliant on heat treatment to eliminate or deactivate potentially harmful 
microorganisms [1]. The process yields pasteurized milk, a product renowned for its rich nutritional content and its delightful, fresh, 
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and unadulterated flavor. It stands as the foremost choice for liquid milk consumption in many developed nations boasting thriving 
dairy industries. However, it is also a target for illicit tampering by unscrupulous milk vendors and traders. 

Water is a frequently encountered adulterant in milk, serving to increase its volume but at the cost of diluting its nutrient content. 
Consequently, unscrupulous traders often resort to the addition of substances like melamine, urea, sucrose, and milk powder to mask 
the resultant loss of nutrients, density, and sweetness [2]. Melamine is a nitrogen-rich toxic compound frequently employed to arti
ficially boost the apparent protein content of milk [3]. Excessive melamine consumption can result in severe health consequences, 
including renal failure and even fatality [4]. The maximum residue limits (MRL) for melamine residues in milk fluctuate, ranging from 
0.05 mg/kg to 2.5 mg/kg, contingent upon local regulations. For instance, the European Union (EU), the European Food Safety Au
thority (EFSA), and Canada have set the MRL at 2.5 mg/kg [5–7], while the World Health Organization (WHO) recommends a more 
stringent MRL of 1 mg/kg [8]. Urea is another adulterant utilized to inflate the apparent protein content, consistency, and shelf life of 
milk [9,10]. However, excessive urea in milk places a considerable strain on the kidneys [11], particularly when urea adulteration 
reaches 500 mg/L [12]. The inclusion of sucrose is often intended to enhance the density and sweetness of milk. The reconstitution of 
milk refers to the practice of incorporating skim or whole milk powder into milk, either partially or as a complete replacement. This 
deceptive tactic helps to gain economic benefits due to the extended sell-by date of powdered milk, and its cost-effective storage and 
transportation compared to milk. While sucrose and milk powder adulteration in milk may not present direct threats to human life, 
they can severely impact the economy and undermine consumer confidence in the dairy industry. 

Various analytical methods have been developed to uncover milk adulteration, encompassing electrophoresis technology [13], 
chromatography technology [14], and mass spectrometry. While these methods often show lower detection limits and high accuracy, 
they suffer from being time-intensive, intricate, and costly in terms of equipment and testing expenses. Fourier transform infrared 
(FTIR) spectroscopy emerges as a promising remedy to address the deficiencies of conventional detection techniques. Its advantages, 
such as minimal preprocessing requirements, cost-effectiveness, rapidity, non-destructiveness, environmentally friendliness, and 
real-time capability, make it a standout candidate [15]. Numerous studies have been conducted to identify the presence of water, milk 
powder, starch, formaldehyde, sucrose, melamine, urea, and sodium bicarbonate in milk through the analysis of FTIR spectroscopy [2, 
16,17]. The subjects of these investigations primarily encompass raw milk, milk powder, ultra-high-temperature milk (UHT), and 
mixed liquid milk. 

The infrared spectroscopy has wide bands and severe overlap between bands [18]. Consequently, the application of machine 
learning technology becomes imperative for effective data mining. While machine learning and multivariate analysis have found 
extensive utility in detecting milk adulteration, the predominant modeling techniques are linear methods including linear discriminant 
analysis (LDA), multiple linear regression (MLR), principal component regression (PCR), and partial least squares (PLS), making them 
less suitable when a nonlinear relationship exists between the predicted traits and spectral data. Research has underscored that in cases 
of low adulteration level, a nonlinear relationship exists between melamine and urea content and the spectral data [6,19,20]. Random 
forests, gradient boosting machines, bayesian regularized artificial neural networks, and multi-layer perceptrons are representative of 
nonlinear modeling algorithms, and are likewise important components of modern statistical machine learning algorithms, which can 
unveil intricate relationships between predictor variables and predictive features, potentially enhancing the accuracy of trait pre
dictions. Notably, Balabin et al. [19] first ventured into applying five algorithms, which included artificial neural networks, for 
FTIR-based detection of melamine adulteration in dairy products. However, the study primarily focused on a quantitative model. 
Hence, this study aims to address three primary objectives: (1) Investigate the feasibility of utilizing FTIR spectroscopy for both 
quantitative and qualitative detection of pasteurized milk adulteration with melamine, urea, sucrose, water, and milk powder by 
employing an array of modern statistical machine learning techniques. (2) Evaluate parameters across various models to demonstrate 
the superior performance of models developed using modern statistical machine learning algorithms in comparison to PLS. (3) 
Compare the performance of models established using different spectral preprocessing techniques and modeling algorithms on the 
validation set to identify the best model. These models should enable fast, sensitive, reliable, and robust detection of adulterated 
pasteurized milk, identify the adulteration substances, and accurately predict their concentration. 

2. Materials and methods 

2.1. Preparation of the adulterated milk samples 

Two brands of pure pasteurized milks (PPM) were bought from supermarkets in Hubei, China, which are officially authorized, 
including Mengniu pure milk (Mengniu Dairy Co., Ltd., Inner Mongolia) and Guangming pure milk (Bright Dairy & Food Co., Ltd., 
Shanghai). The origin of all samples was guaranteed by the suppliers. A total of seventy PPM were purchased and confirmed not to be 
adulterated. Immediate after purchase, the fresh milk samples were conveyed to the laboratory at Huazhong Agricultural University 
and stored at a temperature of 4 ◦C. 

Adulteration mixtures were concocted by intentionally introducing varying level of melamine, urea, sucrose, distilled water, and 
milk powder into the PPM samples. Each mixture was spiked with one of five adulterants. Nescafe milk powder was purchased from a 
local supermarket and has been confirmed to be melamine-free. In pursuit of practical applicability and considering the real situations 
of the dairy industry, the mixing concentration of adulterants was determined based on the reality. Police investigations in Brazil 
revealed that adulterated liquid milk often contained 10–15 % (v/v) added water [21]. Consequently, the concentration of water in 
this study ranged from 5 to 50 % (v/v). In the case of urea, it was estimated that over 120 mg/L needed to be added to fresh milk to raise 
the nitrogen content by 1 %, which is economically feasible [21]. Therefore, the concentration of urea in this study spanned from 100 
to 1000 mg/L (0.1–1 g/L), encompassing the critical threshold of 500 mg/L, known to be capable of inducing cancer and kidney 
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failure. Considering the pronounced health risks associated with melamine and the fact that EU and EFSA have imposed a limit of less 
than 2.5 mg/L5,7 and WHO [8] has set a stringent limit of less than 1 mg/kg. Accordingly, the melamine adulteration levels in this 
study were established within the range of 1–500 mg/L. Table 1 presents the distribution range and sample quantities for the con
centration of adulterants in milk. 

2.2. Spectral measurements 

All samples were vortexed for 5 s to mix the adulterant well with the milk and ensure homogeneity prior to spectroscopic deter
mination. Spectral data for PPM and adulterated pasteurized milk samples were collected by the MilkoScan FT+ (Foss, Hillerød, 
Denmark) instrument. The spectral data for each sample contained information on 1060 wave points, representing the infrared light 
absorption of the milk sample in the infrared region of 5, 008–925 cm− 1. 

2.3. Statistical analysis 

All statistical analyses were performed using R software version 4.2.2. The model developing process has five main steps: spectral 
preprocessing, selection of modeling bands, division of the data set, model building using algorithms, and model performance 
evaluation. 

2.3.1. Data pre-processing 
The spectra were preprocessed before developing the prediction model. Four of the most commonly used spectral preprocessing 

algorithms were used in this study, i.e., first-order derivative (1D), second-order derivative (2D), standard normal variable (SNV) and 
Savitzky-Golay convolutional smoothing (SG), and the R package that performs these preprocessing algorithms is prospectr. 

The regions from 2, 968 to 5, 008 cm− 1 and 1, 692 to 1, 604 cm− 1 were considered noisy and removed from the dataset, and the 
region from 1, 773 to 2, 802 cm− 1 did not contain valuable information and was similarly removed [22]. Finally, the remaining 244 
wavepoints were used for subsequent analyses (2, 968 to 2, 802 cm− 1, 1, 773 to 1, 692 cm− 1, and 925 to 1, 604 cm− 1) [23]. The 
pre-processed spectral data were scaled before modeling. 

2.3.2. Calibration models 
Firstly, The dataset was randomly split into two subsets: a calibration set (comprising 80 % of the total samples) and a validation set 

(comprising 20 % of the total samples). The calibration set is used to develop the prediction model and the validation set is used to 
evaluate the performance of models. It was ensured that at least one negative sample was included in the validation set. The dividing of 
dataset was conducted using the createDataPartition( ) function from the R package caret. 

Secondly, prediction models were developed using the preprocessed FTIR spectroscopy (244 wavepoints) as explanatory variables 
and the type of adulterant present in the PPM or adulterant level in PPM samples as predictive traits. Two types of models were 
involved in this study: (1) multi-classification model: to determine if a sample was adulterated or not and to identify which adulterant 
was in the sample. (2) regression model: To quantitatively predict adulterant level in milk samples. 8 classification machine learning 
algorithms were used, including partial least squares discriminant analysis (PLSDA), support vector machine (svmLinear and 
svmRadial), gradient boosting machine (GBM), Random Forest (RF), extreme gradient boosting (XGB), and multi-layer perceptron 
(MLP), and decision tree (DT). Thirteen regression machine learning algorithms, including partial least squares regression (PLSR), SVM 
(svmLinear and svmRadial), spike and slab regression (SSR), projection pursuit regression (PPR), bayesian regularized neural networks 
(BRNN), RF, GBM, XGB, ridge regression (RR), least absolute shrinkage and selection operator (LASSO), elastic net regression (EN), 
and DT. Among them, svmRadial, GBM, RF, XGB, MLP, PPR BRNN and DT belong to nonlinear modelling algorithms and PLS, SSR, 
svmLinear, RR, LASSO and EN belong to linear modelling algorithms. All the machine learning algorithms used in this study use R 
package caret. 

The maximum number of PLS latent variables was set to 20. The number of the hidden layer for the BRNN was varied from 1 to 4. 
The number of the mtry for the RF was 3, 10, 20, 50, 100, 300, 700, 1000, and 2000. The computation of SVM was based on support 

Table 1 
Distribution of the levels of adulterants in milk samples and the number of samples analysed according to the adulterant added.  

Groupa N1 N2 The range distribution of the concentration of the adulterants 

Melamine Urea Sucrose Water Milk powder 

Control – 70 – – – – – 
A 5 350 1–500 mg/L – – – – 
B 5 350 – 0.1–1 g/L – – – 
C 5 350 – – 0.2–5 % (w/v) – – 
D 5 350 – – – 5–50 % (v/v) – 
E 4 280 – – – – 5–50 % (w/v) 

N1=Number of adulterant concentration levels; N2=Number of samples. a Control represents pure milk; A represents melamine-adulterated milk 
samples; B represents urea-adulterated milk samples; C represents sucrose-adulterated milk samples; D represents water-adulterated milk samples; E 
represents milk powder-adulterated milk samples. 
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vector machine with kernel or radial basis function kernel and was implemented using the method = “svmLinear” or“svmRadial” as 
arguments in the train function of the CARET package. For “svmLinear”, the tested C values were 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 
1.25, 1.5, 1.75, 2, and 5. For the “svmRadial” kernel, the tested C values were 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and 
5; the sigma values were 0.01, 0.02,0.03, 0.04, 0.05, 0.06, 0.07,0.08, 0.09, 0.1, 0.25, 0.5, 0.75,0.90. The parameters of the other 
algorithms are randomized using the “tuneLength = 10” function in Caret. 

2.3.3. Model performance evaluation and optimal model selection 
For problems involving multi-class classification, model performance evaluation relies on model accuracy. 
For quantitative models, the coefficient of determination of calibration (RC

2), the coefficient of determination of validation (RV
2), the 

root mean square error of calibration (RMSEC), the root mean square error value of validation (RMSEV) and the ratio of performance to 
deviation (RPD) were used as model performance assessment metrics. Tamaki et al. [24] summarised the various performance pa
rameters of the quantitative regression model: an R2 of 0.66–0.80, 0.81–0.90 and > 0.90 indicate fair, good and excellent model 
predictions respectively. Williams [25] used RPD to grade the performance of the model: very poor prediction (RPD <2.3), poor 

Fig. 1. (a)Average spectra of all pure and adulterated (highest adulteration level) milk samples. (b)Absolute values of the difference between the 
spectra of pure milk and the adulterated milk samples at the highest level. Spectral region used in the models is marked by the dashed squares. 
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prediction (2.4 < RPD <3.0), fair prediction (3.1 < RPD <4.9), good prediction (5.0 < RPD <6.4), very good prediction (6.5 < RPD 
<8.0) and excellent prediction (RPD >8.0). Therefore, a robust and accurate quantitative prediction model should have an RPD value 
greater than 8.0, an R2 value close to 1 and the smallest possible prediction error value. 

RMSE was calculated according to Eq. (1), where n is the number of samples in the dataset, yi is the true value, and ŷi is the 
predicted value. RPD was calculated by Eq. (2), where SD is the standard deviation of the true value. In addition, to assess the pre
diction error of the model for each adulteration concentration, the percentage absolute error (PAE) was used and was calculated as Eq. 
(3) [20]. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)2

n

√

(1)  

RPD=
SD

RMSEV
(2)  

PAE(in%)=
|yi − ŷi|

yi
× 100 (3)  

3. Results and discussion 

3.1. FTIR spectroscopy of pure and adulterated milk 

The FTIR spectroscopy of milk consists of 1060 individual spectral points in the range of 925 to 5008 cm− 1, which are divided into 
short-wavelength infrared region (SWIR), mid-wavelength infrared region (MWIR), and long-wavelength infrared region (LWIR). In 
more detailed terms, it is divided into five regions: SWIR (5010 to 3673 cm− 1), SWIR-MWIR (3669 to 3052 cm− 1), MWIR-1 (3048 to 
1701 cm− 1), MWIR-2 (1698 to 1585 cm− 1), and MWIR-LWIR (1582–925 cm− 1) [26]. 

Fig. 1 displays the average spectra and difference spectra of PPM and adulterated milk. In comparison to PPM, milk samples 
adulterated with sucrose exhibit an increase in peak amplitude, while milk samples adulterated with water display a decrease. The 
peak amplitudes of milk samples adulterated with melamine, urea, or milk powder remain relatively unchanged. In this study, it was 
found that the spectral differences between PPM and adulterated milk mainly existed in the MWIR-1, MWIR-2, SWIR-MWIR and 
MWIR-LWIR regions. The MWIR-2 and SWIR-MWIR regions are associated with water absorption, and these spectral features increase 
the variability of absorbance between milk samples. These two regions are often excluded when predicting milk compositions and 
cow’s physiological status [27]. Upon eliminating the water absorption region, the most significant differences become apparent 
within MWIR-LWIR region, corresponding to sugar absorption (1141–972 cm− 1) and milk protein absorption (1640–1500 cm− 1). The 
main absorption peaks in the MWIR-1 region are the C–H, C––O, C–N and N–H bonds [28], all of which are related to the milk fat 
content. In this region, a number of peaks with large differences in absorbance were detected. The first significant spectral region was 
located at 2993 to 2802 cm− 1, which is related to the C–H bond vibration of Fat-B [29], and the second significant spectral region was 
located at 1778 to 1692 cm− 1, which is related to the carbonyl vibration of Fat-A [29]. 

3.2. Multi-classification model used for distinguishing adulterant types 

The focus on identifying the presence of adulterants takes precedence over quantification [3]. To address this, a multi-classification 
model, using FTIR spectroscopy from 1401 milk samples, was established to determine if a sample was adulterated or not and to detect 
adulterant types in pasteurized milk. The detailed discrimination results for the samples in the validation set are presented in Table 2. 

Table 2 
Accuracies for all classes and each individual class (pure, melamine, urea, sucrose, water, and milk powder) in validation set for multi-classification 
models.  

Index Number PLS LSVM RSVM GBM RF XGB MLP DT 

Pretr.a - SG SNV None 1D 1D 1D 1D None 
Total accuarcyb 349 0.937 0.788 0.725 0.968 0.957 0.963 0.974 0.906 
Pure 16 0.875 0.688 0.813 0.750 0.813 0.813 0.938 0.545 
Melamine 69 1.000 1.000 0.826 1.000 1.000 0.986 1.000 1.000 
Urea 73 0.973 0.507 0.219 0.986 1.000 0.986 1.000 0.965 
Sucrose 70 0.986 0.971 1.000 1.000 1.000 1.000 1.000 0.971 
Water 70 0.786 0.957 1.000 0.814 0.886 0.914 0.943 0.886 
Milk powder 51 0.961 0.451 0.529 0.980 0.922 0.961 0.922 0.802 

PLS = partial least squares; LSVM = svmLinear (support vector machine with kernel); RSVM = svmRadial (support vector machine with radial basis 
function kernel); RF = random forest, and GBM = gradient boosting machine; XGB = eXtreme gradient boosting; MLP = multi-layer perceptron; DT =
Decision Tree; 1D = first-order derivative; 2D = second-order derivative; SNV = standard normal variate; SG = Savitzky–Golsy convolution 
smoothing. 

a Pretr. means pretreatment method of FTIR spectroscopy. Only the best spectral pre-processing results are shown. 
b Accuracy refers to the proportion of category A that is correctly predicted to be category A, i.e. Sensitivity and Specificity. 
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The results revealed that for multi-classification tasks, the GBM, RF, XGB, and MLP algorithms outperformed the PLS algorithm, 
improving the classification accuracy in validation set by 3.1 %, 2.0 %, 2.6 %, and 3.7 %, respectively. SVM algorithm exhibited the 
weakest performance. SVM was originally designed as a binary classification tool and is therefore better suited for binary classification 
problems [19]. In addition, we find that ensemble technique such as XBG and RF outperform DT algorithms. The optimal model 
achieved a prediction accuracy of 97.4 % through the MLP modeling algorithm combined with the 1D spectral preprocessing tech
nique. Notably, this model misclassified only nine milk samples in the validation set (Table 3). Interestingly, the misclassification 
pattern occurred between PPM, milk powder-adulterated milk, and water-adulterated milk (Table 3), indicating that the spectral 
features of these 3 sample types are difficult to extract, leading to potential confusion in predictions. 

In the interest of safeguarding consumer health, stringent control measures are placed on false negative results (samples incorrectly 
predicted as unadulterated) to prevent adulterated milk from infiltrating the market. Conversely, false positive results, where the 
model erroneously identifies an unadulterated sample as adulterated, are less concerning, as all positively identified samples can be 
further verified through reference methods [2]. From Table 2, it can be seen that the MLP algorithm is the best predictor for pure milk, 
with 93.8 % of the pure milk samples correctly classified (i.e., model specificity is 93.8 %). In addition, this model also predicts 
adulterated milk very well with 99.7 % of the adulterated milk samples correctly classified (i.e., model sensitivity is 99.7 %). From 
Table 3, it can be seen that there is one false negative and one false positive in the prediction results of the validation set, with false 
negative rates (false negative samples/actually positive samples) and false positive rates (false positive samples/actually negative 
samples) of 0.3 % and 6.2 %, respectively. The performance of the model application needs to be verified by more data. 

In a previous study by Santos et al. [30], FTIR spectroscopy and SIMCA were used to detect six adulterants in milk, achieving 
multi-classification accuracy of 90 % for pure milk and 98 % for urea [30]. In another study by Gondim et al. [31], similar technology 
was employed to detect more than ten adulterants in milk, but the multi-classification model only achieved classification accuracies of 
66 % for pure milk and 38 % for sucrose. 

3.3. The quantitative regression model of predicting adulteration level 

Regression models were established using thirteen machine learning algorithms to predict the levels of adulterants in pasteurized 
milk. With the exception of the regression model used to predict the adulteration levels of milk powder, which was trained on 280 
samples and validated on 70 samples, the modeling and validation sets for the other adulterant levels prediction models consisted of 
336 and 84 samples, respectively. Table 4 provides an overview of the prediction performance for each machine learning algorithm 
under the optimal spectral preprocessing method. The spectral data underwent various preprocessing techniques, with many models 
achieving their best performance using SG or SNV. 

For models predicting the level of adulterated melamine, urea, sucrose, or milk powder in milk, the performance of linear modeling 
algorithms was consistently similar to the PLS algorithm, while nonlinear modeling algorithms consistently outperformed them, 
especially BRNN, RF, GBM, and XGB (Table 4). However, when predicting the level of water added to pasteurized milk, a different 
pattern emerged: RF, GBM, DT, and XGB, which had consistently performed well, now performed worse than the six linear modeling 
algorithms, and RSVM also underperformed LSVM (Table 4). This suggests a potential linear relationship between FTIR spectroscopy 
and the level of water added, but a nonlinear relationship between FTIR spectroscopy and the level of adulterated melamine, urea, 
sucrose, and milk powder in milk. Similar patterns have been observed in research using Raman spectroscopy and near-infrared 
spectroscopy to predict milk adulteration containing melamine and urea [6,19,20]. In most cases, the DT algorithm is always 
worse than the three ensemble techniques (RF, GBM and XGB). Out of the thirteen modeling algorithms, BRNN consistently 
demonstrated superior prediction performance, even when the trait being predicted was the level of water added, which may exhibit a 
linear relationship with FTIR spectroscopy. Research has indicated that compared to PLS, neural networks (NN) can offer improved 
predictions [32]. 

The selection of the best model was based on the criteria of having the lowest RMSEV, the highest RV
2 and RPD. The optimal model 

for predicting sucrose level in pasteurized milk was established using the XGB modeling algorithm and the 1D spectral preprocessing 
method. This model exhibited remarkable predictive accuracy, with a near-zero RMSE, slopes and RV

2 approaching 1, and an 
extraordinarily high RPD value. For predicting the level of adulterated water in pasteurized milk, the model established using the PPR 
algorithm and SNV spectral preprocessing method also demonstrated excellent predictive capabilities. It achieved an RMSEV of 1.248 
% (v/v), an RV

2 of 0.995, and an RPD of 14.087. In the case of predicting the level of adulterated melamine or urea in pasteurized milk, 
the most effective models were established using the BRNN modeling algorithm and the SG spectral preprocessing method. The 

Table 3 
Classification matrix of validation set for a MLP (Multi-Layer Perceptron) multiclass classification.  

Real Predicted 

Pure Melamine Urea Sucrose Water Milk powder 

Pure 15 0 0 0 0 1 
Melamine 0 69 0 0 0 0 
Urea 0 0 73 0 0 0 
Sucrose 0 0 0 70 0 0 
Water 1 0 0 0 66 3 
Milk powder 0 0 0 0 4 47  
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Table 4 
Statistical parameters of regression models from FTIR spectroscopy data for the quantitative prediction of adulterated melamine, urea, sucrose, water 
and milk powder content in pasteurized milk.  

Adulterant Modeling Pretr.a Calibration set Validation set 

RMSEC RC
2 RMSEV RV

2 RPD 

Melamine PLSR SNV 21.478 0.985 22.079 0.985 8.121 
LSVM SG 21.188 0.996 21.000 0.986 8.538 
RSVM SG 16.043 0.996 11.506 0.997 15.584 
SSR SNV 23.481 0.982 21.649 0.985 8.282 
PPR SNV 1.254 1.000 6.033 0.999 29.719 
BRNN SG 1.792 1.000 4.437 0.999 40.414 
RF SNV 7.742 0.998 5.094 0.999 35.195 
GBM SNV 11.279 0.996 7.544 0.998 23.768 
XGB 1D 0.001 1.000 6.158 0.999 29.114 
DT None 12.548 0.995 14.869 0.993 12.059 
RR SNV 24.715 0.981 23.175 0.983 7.737 
LASSO SNV 25.476 0.979 23.343 0.983 7.681 
EN SNV 21.338 0.986 21.022 0.986 8.529 

Urea PLSR None 0.107 0.910 0.111 0.902 3.201 
LSVM SNV 0.108 0.911 0.118 0.889 3.010 
RSVM SG 0.047 0.984 0.054 0.978 6.644 
SSR SNV 0.118 0.891 0.112 0.905 3.169 
PPR None 0.044 0.985 0.096 0.929 3.707 
BRNN SG 0.023 0.996 0.049 0.981 7.330 
RF None 0.036 0.991 0.053 0.979 6.689 
GBM None 0.006 1.000 0.061 0.971 5.862 
XGB None 0.001 1.000 0.051 0.980 6.983 
DT SG 0.071 0.960 0.074 0.958 4.794 
RR 1D 0.121 0.886 0.114 0.898 3.132 
LASSO SNV 0.096 0.927 0.109 0.905 3.257 
EN SG 0.107 0.909 0.109 0.906 3.257 

Sucrose PLSR 2D 0.071 0.998 0.054 0.999 32.548 
LSVM None 0.085 0.998 0.081 0.998 21.831 
RSVM SNV 0.106 0.997 0.117 0.996 15.078 
SSR 2D 0.069 0.998 0.048 0.999 36.421 
PPR 1D 0.017 1.000 0.043 0.999 41.021 
BRNN SNV 0.013 1.000 0.023 1.000 76.526 
RF 1D 0.008 1.000 0.018 1.000 98.449 
GBM 2D 0.000 1.000 0.017 1.000 105.281 
XGB 1D 0.000 1.000 0.000 1.000 29487.494 
DT SG 0.017 1.000 0.022 1.000 79.888 
RR 2D 0.072 0.998 0.052 0.999 33.819 
LASSO 2D 0.074 0.998 0.052 0.999 33.982 
EN 1D 0.073 0.998 0.054 0.999 32.680 

Water PLSR 1D 1.693 0.991 1.407 0.994 12.500 
LSVM 1D 1.853 0.989 1.474 0.993 11.929 
RSVM 1D 1.544 0.993 1.896 0.988 9.276 
SSR 2D 2.040 0.987 1.616 0.992 10.881 
PPR SNV 0.274 1.000 1.248 0.995 14.087 
BRNN None 1.379 0.994 1.373 0.994 12.813 
RF 1D 0.866 0.998 1.607 0.992 10.943 
GBM 1D 0.263 1.000 1.769 0.990 9.939 
XGB 2D 0.011 1.000 1.865 0.989 9.428 
DT 2D 1.128 0.996 1.738 0.990 10.778 
RR 2D 2.157 0.985 1.760 0.990 9.991 
LASSO 1D 1.938 0.988 1.528 0.992 11.510 
EN 1D 1.760 0.990 1.378 0.994 12.763 

Milk powder PLSR SG 5.279 0.912 6.069 0.889 2.950 
LSVM SNV 5.293 0.912 6.714 0.862 2.667 
RSVM SNV 1.662 0.993 4.731 0.936 3.784 
SSR SNV 6.036 0.888 6.941 0.848 2.579 
PPR SNV 0.872 0.998 5.598 0.904 3.199 
BRNN SG 2.566 0.979 4.295 0.944 4.168 
RF SNV 3.040 0.984 5.833 0.917 3.070 
GBM SNV 0.153 1.000 5.630 0.905 3.180 
XGB SNV 0.051 1.000 6.665 0.870 2.686 
DT None 8.336 0.780 8.501 0.786 2.106 
RR SNV 5.966 0.890 7.042 0.844 2.543 
LASSO None 5.121 0.917 6.183 0.887 2.896 
EN None 5.337 0.910 6.247 0.884 2.866 

C. Chu et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e32720

8

melamine content prediction model exhibited RMSEV, RV
2, and RPD values of 4.437 mg/L, 0.999, and 40.414, respectively. The model 

for predicting the adulterated urea in milk yielded RMSEV, RV
2, and RPD values of 0.049 g/L, 0.981, and 7.330, respectively. Moreover, 

the above combined methods (BRNN modeling algorithm and the SG spectral preprocessing method) also delivered the best results for 
predicting the level of adulterated milk powder in pasteurized milk. While the prediction performance was good, with RMSEV, RV

2, and 
RPD values of 4.295 % (w/v), 0.944, and 4.168, respectively, the accuracy was slightly lower compared to the models used for 
predicting the spiked contents of melamine, urea, sucrose, and water. In a word, the order of FTIR spectroscopy prediction perfor
mance for the five adulterants from high to low was sucrose, melamine, water, urea, and milk powder (Table 4). The RV

2 values for the 
optimal prediction models of melamine, sucrose, and water adulteration levels all exceeded 0.99, with RPD values surpassing 8. 
Manley [33] suggested that prediction models with RPD values greater than 8 are valuable for various analytical applications. The RPD 
of the best prediction model for adulterated urea level, while slightly lower at 7.33, still indicates its usability for process control [34]. 
This slight variation can be attributed to the complex composition and properties of milk, as milk naturally contains urea, with 
concentrations ranging from 180 to 400 mg/L11. Consequently, adulterated urea predictions are inherently more challenging using 
FTIR spectroscopy. Detecting milk powder in fresh milk is also a formidable analytical task due to the similar chemical composition of 
milk powder and milk. Nevertheless, the optimal model established in this study for predicting the level of milk powder added ach
ieved an Rv

2 higher than 0.90, an RPD exceeding 3, and an RMSE smaller than the added ratio. These statistical parameters indicate that 
the model can provide reasonably accurate predictions of the level of milk powder added. However, this model is only suitable for 
screening purposes [34]. 

Scatter plots of observed vs. predicted values obtained from the best model for detection of adulterated melamine, urea, sucrose, 
water, and milk powder in milk were plotted (Fig. 2). These plots display an evident relation between the predicted and observed 
adulterant levels. The scatter plots of all five best models have a regression line that basically coincides with y = x, with slope close to 1 
(the intercept and deviation are negligible), further demonstrating the superior performance of the regression model. 

PLSR=Partial least squares regression; LSVM = svmLinear (support vector machine with kernel); RSVM = svmRadial (support vector machine with 
radial basis function kernel); SSR= Spike and Slab Regression, PPR= Projection Pursuit Regression; BRNN=Bayesian Regularized Neural Networks; 
RF= Random Forest; GBM = Gradient Boosting Machine; XGB = eXtreme Gradient Boosting; RR= Ridge Regression; LASSO = Least Absolute 
Shrinkage and Selection Operator; EN = Elastic net Regression; DT = Decision Tree; 1D = first-order derivative; 2D = second-order derivative; SNV =
standard normal variate; SG = Savitzky–Golsy convolution smoothing. RC

2 = coefficient of determination for calibration; RV
2 = coefficient of deter

mination for external validation; RMSEC = root mean square error of calibration; RMSEV = root mean square error of external validation; RPD = the 
ratio of performance to deviation; RPD = Residual predictive deviation. 

a Pretr. means pretreatment method of FTIR spectroscopy. Only the best spectral pre-processing results are shown. 

Fig. 2. The optimal regression model curves for training (circles) and validation (triangle) data milk sets spiked with melamine, urea, sucrose, water 
and (e) milk powder. The inset shows a zoomed view of the plots in the lower concentration ranges (0–20 mg/L). Blue circle: validation set; red 
triangle: calibration set; blue dashed line: trend line in validation set; black dashed line: y = x. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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To date, there is a noticeable absence of literature employing FTIR spectroscopy for the exclusive investigation of pasteurized milk 
adulteration, and this work marks an initial step in leveraging FTIR spectroscopy technology for such purposes. Moreover, to our 
knowledge, this article represents the first endeavor to combine FTIR spectroscopy with a diverse array of modern statistical machine 
learning algorithms, facilitating the simultaneous quantitative and qualitative detection of adulterants like melamine, urea, sucrose, 
water, and milk powder in pasteurized milk. Past studies have predominantly utilized Raman spectroscopy and Near infrared (NIR) 
spectroscopy for predicting milk adulterants [20,34–39]. The FTIR model developed in this study shows superior predictive capa
bilities when compared to Raman spectroscopy and NIR spectroscopy. The mid-infrared (MIR) spectroscopy is the most important 
region in FTIR spectroscopy [40]. Crucial distinctions between MIR and NIR spectroscopy influence their adeptness at detecting 
specific adulterants. Generally, NIR detection is more challenging due to the markedly lower absorbance intensity in NIR spectra in 
comparison to MIR. Moreover, NIR exhibits less sensitivity since its absorption bands are wider and tend to overlap [41]. Santos et al. 
[42] similarly ascertained that the MIR system outperforms the NIR system in discerning milk adulteration. Currently, several studies 
aim to employ FTIR spectroscopy for assessing milk adulteration levels. The prediction error for adulterated sucrose content was 0.202 
% (w/v) [43]. The prediction error for adulterated urea content predictions spanned from 0.245 g/L to 3.03 g/L [10,44,45]. Pre
dictions for milk powder content exhibited an error rate of 3 % (w/v) [46]. Except for the milk powder content prediction model, the 
models introduced in this study surpass earlier literature and provide markedly improved predictive performance. The strength of this 
study lies in its relatively large data size and the endeavor to explore an array of modeling algorithms and spectral preprocessing 
techniques, thereby uncovering valuable information within FTIR spectroscopy and constructing a robust prediction model. 

Table 5 
Comparison of the Limit of detection (LOD) of the developed technique with previous ones reported in literature.  

Reference Analytical approach Data analysis technique LODa 

Melamine 
This work FTIR spectroscopy BRNN 13.311 mg/L 
Hilding-Ohlsson et al. [49] cyclic voltammetry K nearest neighbors 85.0 mg/L* 
Hu et al. [6] Raman spectroscopy Linear regression model 0.265 mg/L 
Wu et al. [36] NIR spectroscopy PLS 100 mg/L* 
Yang et al. [50] 2D IR/NIR correlation spectra multi-way PLS 10 mg/L* 
Nieuwoudt et al. [34] Raman spectroscopy PLS 100~260 mg/L 
Nieuwoudt et al. [35] Raman spectroscopy PLS 154~522 mg/L 
Chen et al. [4] NIR spectroscopy one-class PLS 10 mg/L* 
Barreto et al. [51] fluorescence spectroscopy Parallel factor analysis 120.6 mg/L 
Jin et al. [52] 2T2D auto-correlation spectra least squares support vector machine 10 mg/L* 
Urea  
This work FTIR spectroscopy BRNN 0.147 g/L 
Hilding-Ohlsson et al. [49] cyclic voltammetry K nearest neighbors 0.12 g/L* 
Santos et al. [30] MIR microspectroscopy SIMCA 0.78 g/L* 
Jha et al. [45] ATR-FTIR spectroscopy SIMCA 0.1 g/L* 
Khan et al. [20] Raman spectroscopy PLS 0.5 g/L* 
Nieuwoudt et al. [34] Raman spectroscopy PLS 0.12–0.49 g/L 
Nieuwoudt et al. [35] portable mini-Raman PLS 0.136–0.498 g/L 
De Toledo et al. [53] diffuse reflectance spectroscopy unknow 0.0066 g/L 
Mabood et al. [12] NIR spectroscopy PLS 1 g/L* 
Huang et al. [54] Temperature-perturbed 2D correlation spectra multi-way PLS 0.0002 g/L* 
Sharifi et al. [55] Vis-SWNIR artificial neural networks 2 g/L 
Tan et al. [10] ATR-FTIR spectroscopy Discriminant Analysis 5 g/L* 
Sucrose 
This work FTIR spectroscopy XGB Close to 0 % w/v 
Nieuwoudt et al. [34] Raman spectroscopy PLS 0.72–2.5 % w/v 
Nieuwoudt et al. [35] Raman spectroscopy PLS 0.70–3.6 % w/v 
Gondim et al. [31] MIR spectroscopy SIMCA 0.54 %*w/v 
Balan et al. [43] FTIR spectroscopy SIMCA 0.480 % w/v 
Water  
This work FTIR spectroscopy PPR 3.744 % v/v 
Kasemsumran et al. [56] NIR spectroscopy PLS 1 % v/v* 
Gondim et al. [31] MIR spectroscopy SIMCA 15 % w/v* 
Kamboj et al. [38] NIR spectroscopy PLS 5 % v/w* 
Milk powder  
This work FTIR spectroscopy BRNN 12.885 % w/v 
Guan et al. [57] Tryptofan fluorescence values unknow 10 % w/v* 
Du et al. [46] FTIR spectroscopy PLS 0.5 % w/v* 
Nikolaou et al. [9] electro-analytical cyclic voltammetry test PLS 5.8 % v/v 

FTIR spectroscopy = Fourier-transform infrared spectroscopy; 2D IR/NIR correlation spectra = Two-dimensional hetero-spectral mid-infrared and 
near-infrared correlation spectroscopy; NIR spectroscopy = near-infrared spectroscopy; MIR spectroscopy = mid-infrared spectroscopy; 2T2D auto- 
correlation spectra = two-trace two-dimensional auto-correlation spectra; ATR-FTIR = Attenuated total reflection-Fourier transform infrared spec
troscopy; Vis-SWNIR = visible to short-wave near infrared; PLS = partial least squares; SIMCA = Soft Independent Modeling of Class Analogy; BRNN 
= bayesian regularized neural network; XGB = extreme gradient boosting.a * indicates that LOD is calculated as the lowest value detectable by the 
classification model. 
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Limits of detection (LOD) corresponds to the lowest amount of analyte in the sample, which can be detected but not necessarily 
quantitated under stated experimental conditions [47]. Certain studies have suggested that, for multivariable regression models like 
PLSR, the LOD can be roughly estimated as 3 × RMSEP [34,48]. In light of these considerations, the LODs for the best prediction 
models developed in this article were determined to be 13.311 mg/L for melamine, 0.147 g/L for urea, 0 % (w/v) for sucrose, 3.744 % 
(v/v) for water, and 12.885 % (w/v) for milk powder. Table 5 provides a summary of LOD comparisons between the model established 
in this article and the detection limits reported in prior literature. In most cases, the detection limits in this study are notably lower than 
those of other spectroscopic analysis methods, such as Raman spectroscopy and NIR spectroscopy. 

Furthermore, it is worthwhile to investigate the variations in predictive model performance across samples with differing adul
teration concentrations. The PAE, denoting the prediction error between the predicted and actual values, serves as a valuable metric in 
this context. The adulterant content significantly influences the regression model’s prediction accuracy. Notably, the PAE diminishes 
as the adulterant concentration increases, observed in both the calibration and validation sets (Table 6). With the exception of sucrose, 
the remaining four adulterants exhibit higher PAEs at very low concentrations (level 1), indicating that the relative uncertainty of 
predictions is higher. This increase in PAE may be attributed to a relatively weaker signal-to-noise ratio at lower concentrations. This 
pattern aligns with finding from Khan et al. [20], who revealed that the performance of Raman spectroscopy in identifying adulterated 
milk correlates positively with the adulterated solution’s concentration. In sum, the regression models presented in this article can 
successfully predict adulteration level with an accuracy exceeding 90 % (a PAE of less than 10 %) for melamine >100 mg/L, urea >0.5 
g/L, sucrose >0.2 %, water >5 %, and milk powder >50 %. 

The models developed in this study allow for large-scale screening of pasteurized milk sold in the market for adulteration. 
Compared to previous studies, this study not only has an advantage in terms of data volume, but also generates a more accurate 
predictive model by comparing different combinations of spectral preprocessing algorithms and machine learning algorithms. 
However, the models developed in this study were based on only two brands of (more popular) pasteurized milk, which means it is 
likely not applicable to other brands of pasteurized milk. Therefore, a more comprehensive dataset to sample variations in type 
(broader calibration data) is also needed to build a more general model to predict adulteration of pasteurized milk. In addition, the 
predictive performance of the model is unknown when multiple adulterants are added to the milk, which is a shortcoming of this study. 
In most cases, there may be more than one adulterant in milk. 

4. Conclusion 

In this work, we demonstrate the feasibility of FTIR spectroscopy in conjunction with modern statistical machine learning algo
rithms in the identification and quantification of adulteration of pasteurized milk by the addition of melamine, urea, sucrose, water, 
and milk powder. In contrast to traditional linear methods like PLS, modern non-linear statistical machine learning algorithms exhibit 
high predictive performance, with BRNN standing out. The established models in this work are not limited to laboratory FTIR spec
trometers but can also be integrated with portable spectrometers or sensors for on-farm self-inspections and regulatory authorities’ 
random inspections, thus bolstering milk safety testing efforts on a larger scale. Furthermore, the development of software, applica
tions, and online service platforms holds the potential to enhance transparency and openness in adulteration detection, fostering 
consumer trust, bolstering confidence in the dairy industry, and serving as a deterrent to adulteration by dairy farms and producers. 
Future studies should expand scopes by encompassing a broader range of adulteration concentrations, encompassing various 
pasteurized milk brands and production batches, and examining scenarios involving the simultaneous adulteration of milk with 
multiple adulterants. This approach will enhance the understanding of FTIR spectroscopy patterns of milk, and also align more closely 
with real-world production conditions. 
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