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Sample Size Requirements of 
Glaucoma clinical trials When 
Using combined optical coherence 
tomography and Visual field 
endpoints
Zhichao Wu1,2,3,4 & felipe A. Medeiros1,2*

Glaucoma clinical trials using visual field (VF) endpoints currently require large sample sizes because 
of the slowly-progressive nature of this disease. We sought to examine whether the combined use of 
VF testing and non-invasive optical coherence tomography (OCT) imaging of the neuroretinal tissue 
could improve the feasibility of such trials. To examine this, we included 192 eyes of 121 glaucoma 
participants seen at ≥5 visits over a 2-year period to extract real-world estimates of the rates of change 
and variability of Vf and oct imaging measurements for computer simulations to obtain sample size 
estimates. We observed that the combined use of VF and OCT endpoints led to a 31–33% reduction in 
sample size requirements compared to using VF endpoints alone for various treatment effect sizes. 
For example, 189 participants would be required per group to detect a 30% treatment effect with 90% 
power with combined VF and OCT endpoints, whilst 276 and 285 participants would be required when 
using Vf and oct endpoints alone respectively. the combined use of oct and Vf endpoints thus has the 
potential to effectively improve the feasibility of future glaucoma clinical trials.

Due to the slowly progressive nature of glaucoma, there have been concerns that short-term clinical trials of new 
treatments compared to current treatments would have prohibitively large sample size requirements when using 
visual field endpoints. This is especially the case given the known variability of perimetry1–4, where its progressive 
changes can require many years to detect at the individual level5.

Optical coherence tomography (OCT) imaging has emerged in recent years as a powerful technique to mon-
itor progression in glaucoma eyes, through enabling the neuroretinal tissue to be non-invasively visualized and 
quantified. There has been an accumulating body of evidence that suggests how structural measurements on OCT 
imaging have been associated with the future development of visual field abnormalities or visual field progres-
sion6–14. Given its prognostic value and biological plausibility (i.e. providing a direct estimate of retinal ganglion 
cell loss in glaucoma), neuroretinal measures on OCT imaging show promise as a useful outcome measure that 
could be used in conjunction with visual field endpoints to improve the feasibility of glaucoma trials15,16.

We have also previously observed two methodological aspects that could reduce sample size requirements 
in glaucoma trials. First, we showed that using a between-group trend-based analysis of the outcome measures 
instead of the conventional individual-based event-based analysis, resulted in major reductions in the required 
sample size17. Second, we used a testing paradigm that clustered visits at the bookends of the trial period (as 
originally suggested by Crabb et al.18), as opposed to evenly-spacing the tests, and these changes in the analytical 
methods and trial design further reduced sample size requirements19.

This study therefore sought to determine whether the combined used of visual field and OCT imaging end-
points could improve the feasibility of future glaucoma clinical trials by reducing the sample size requirements 
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compared to using conventional visual field endpoints alone, when incorporating the two abovementioned meth-
odological aspects.

Results
participant characteristics. A total of 192 eyes from 121 participants with glaucoma were included to 
obtain estimates of the rates of visual field mean deviation (MD) and global retinal nerve fiber layer (RNFL) 
thickness change and its measurement variability, and had a mean ± standard deviation (SD) baseline age of 
68 ± 11 years (range, 34 to 85 years), and were seen over 5.8 ± 1.5 visits over the 2-year follow-up period. The 
median (interquartile range [IQR]) baseline MD and pattern standard deviation (PSD) of these eyes was −2.73 
decibels (dB; −7.44 to −0.40 dB) and 2.89 dB (1.83 to 8.09 dB) respectively, and their average global RNFL thick-
ness was 75 ± 18 μm (range, 34 to 123 μm). For the eyes included in the simulations (having a baseline MD ≥ −10 
dB), their median rate of MD change was −0.09 dB/year (−0.75 to 0.30 dB/year) and mean rate of global RNFL 
thickness change was −0.5 ± 1.8 μm/year.

Sample size requirements using different outcome measures. The sample size needed per group 
to identify different treatment effects using the visual field MD and OCT global RNFL thickness values as the 
outcome measure in isolation or combined is shown in Table 1. Using both outcome measures together reduced 
the sample size requirements by 31–33% compared to using visual fields alone, and by 33–35% compared to using 
OCT alone.

Figure 1 shows the power to detect a statistically significant beneficial treatment effect plotted against sample 
size per group for the different outcome measures used, for a 30% new treatment effect, illustrating the increased 
power provided by using both visual field and OCT imaging as outcome measures together.

Discussion
In this study, we demonstrated that the combined use of visual field and OCT imaging endpoints reduced sample 
size requirements by 31–33% compared to the conventional use of visual field endpoints alone in a short-term 
glaucoma clinical trial scenario. These findings underscore the potential value of including OCT imaging as an 
outcome measure in future glaucoma trials to improve their feasibility.

This is the first study to our knowledge that has evaluated the value of including OCT imaging as an out-
come measure in addition to conventional visual field testing. A recent report by Garway-Heath and colleagues20 

New Treatment 
Effect

Sample Size Required Per Group

VF Only OCT Only VF and OCT

20% 647 669 449

30% 276 285 189

40% 146 148 98

50% 86 91 59

Table 1. Sample size requirements for identifying statistically significant treatment effects using visual field 
(VF) or optical coherence tomography (OCT) in alone or when combined.

Figure 1. The power to detect a statistically significant beneficial treatment effect plotted against the sample 
size included per group for a 30% new treatment effect, illustrating how using both the visual field (VF) mean 
deviation and optical coherence tomography (OCT) global retinal nerve fiber layer thickness measurements as 
outcome measures (black solid line) performed better than using either the VF (light gray solid line) or OCT 
(dark gray dashed line) measures alone.
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evaluated a method of using OCT imaging data to guide the analysis of visual field progression in glaucoma eyes. 
When compared to a standard event-based analysis of the visual field data, this method did not reduce the sample 
size requirements. The authors thus concluded that there was no evidence that OCT imaging and analytical meth-
ods used would enable more expedient or smaller trials. The differences in the observations about the potential 
value of OCT imaging for glaucoma clinical trials may be explained by a few potential factors. Most importantly, 
the OCT imaging data was used to guide the visual field progression analysis in the recent report20, rather than 
being used independently as an outcome measure. This approach may not have fully capitalized on the informa-
tion on disease progression provided by OCT imaging. Furthermore, time-domain OCT was used in the previous 
study20 compared to the spectral-domain OCT imaging in this study, and latter has been reported to outperform 
the former at detecting disease progression in glaucoma eyes21.

It should be noted that the value of OCT imaging for reducing the sample size requirements in this study was 
achieved by using the standard global circumpapillary RNFL thickness measure. However, recent studies have 
revealed how neuroretinal parameters in the macula and posterior pole (outside of the peripapillary region) could 
also provide important information about disease progression10–14,22,23 that could be exploited to further improve 
the power to detect a significant treatment effect. Furthermore, analytical methods that limit the evaluation of 
progression within regions of established glaucomatous damage (to minimize the contribution of measurement 
variability from non-damaged regions) could further reduce sample size requirements23–26.

 It is also important to acknowledge the potential limitations of using OCT imaging as an outcome measure in 
glaucoma trials; these have been discussed in detail elsewhere15,16. Whilst neuroretinal measures show strong bio-
logical plausibility for representing the retinal ganglion cells that are lost in glaucoma, they do not directly reflect 
“how a patients feels, functions or survives”27, being the definition of a clinical endpoint. Given that neuroretinal 
measures have been shown to be an important predictor of relevant functional outcomes in glaucoma, they could 
reasonably be considered as a surrogate endpoint. However, validation of surrogate endpoints is a complex issue 
and a significant effect in predicting the clinically relevant outcome is only part of the requirement of valid surro-
gates28. In addition, the effect of a proposed treatment on the surrogate must capture a sufficiently large propor-
tion of the effect of the treatment on the clinically relevant endpoint29,30. Nonetheless, there is only currently some 
evidence about the validity of neuroretinal measures as a surrogate endpoint in intraocular pressure lowering 
treatments in glaucoma31, but this evidence in neuroprotective therapies is still not available yet. This is crucial 
to consider, as it is possible for a novel neuroprotective therapy to preserve neuroretinal tissue without showing a 
meaningful effect on preserving relevant functional outcomes15,16. The interpretation of the efficacy of a potential 
treatments based on combined OCT and visual field endpoints therefore requires recognition of this important 
limitation.

It is interesting to observe that sample size requirements for visual fields used in isolation were very similar 
to those when OCT was used in isolation. This is a surprising finding that seems to go against the common 
notion that objective testing by OCT would capture disease progression much better than subjective visual field 
testing. For instance, a previous study suggested that OCT RNFL thickness measurements had a longitudinal 
signal-to-noise ratio (a normalized measure to enable fair comparisons between different techniques) nearly 
twice that of visual field MD32. This difference may be attributed to the differences in the rate of change of these 
parameters between different populations. Regardless of this finding, our results show that the combined use of 
OCT and visual field results as endpoints significantly reduced sample size requirements.

These findings build on our previous body of work that demonstrated that the feasibility of future glaucoma 
clinical trials could be improved by using different analytical methods17 and testing paradigms19. It is important 
to note when interpreting the results of this study that our primary aim was to report the relative value provided 
by including OCT imaging as an outcome measure in addition to visual field tests, rather than the provision of 
the actual estimates itself. This is because the actual sample size estimates will vary based on the characteristics of 
the participants included and the design of the clinical trial (such as the number of tests included, and the testing 
paradigm used, or whether to include both eyes), or the methods used to obtain the outcome measures (such as 
the scanning protocol used for OCT imaging).

In conclusion, this study revealed that the combined use of visual field and OCT imaging endpoints reduced 
the sample size requirements by approximately a third when compared to using visual field endpoints alone. 
These findings demonstrate how OCT imaging has the potential to markedly improve the feasibility of future 
glaucoma clinical trials when used as an additional outcome measure.

Methods
participants. The participants included in this study were evaluated in a longitudinal study that evalu-
ated structural and functional changes in glaucoma. Institutional review board approval by the University of 
California, San Diego was obtained for this study, and it adhered with the Declaration of Helsinki and Health 
Insurance Portability and Accountability Act. All participants also provided written informed consent after 
receiving an explanation of the test procedures.

All participants in this study underwent a comprehensive ophthalmologic examination at each visit, includ-
ing a medical history review, visual acuity measurements, visual field testing, OCT imaging, optic disc stereo-
photography, slit-lamp biomicroscopy, ophthalmoscopic examination, intraocular pressure measurements and 
gonioscopy. Participants were all required to have a best-corrected visual acuity of 20/40 or better, open angles 
on gonioscopy and be 18 years of age or older. This study only included eyes with glaucoma, defined on the basis 
of masked grading of the optic nerve appearance on optic disc stereophotographs as described previously33. Eyes 
were also considered to have glaucoma if there was evidence of progressive change on masked grading of the 
optic disc stereophotographs34, or if they had a history of three or more consecutive abnormal visual field tests 
(defined as having a glaucoma hemifield test being outside normal limits or a pattern standard deviation value at 
P < 0.05)35. Participants with any other ocular or systemic disease other than glaucoma that could affect the visual 
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field and OCT imaging results were excluded from this study. This study also included only eyes with at least five 
reliable and good quality visual field tests and OCT imaging results (as described further below) over a two-year 
follow-up period.

Visual field testing. All visual field tests were performed using the 24–2 strategy with the Swedish 
Interactive Thresholding Algorithm, Standard on the Humphrey Field Analyzer II-i (Carl Zeiss Meditec, Inc., 
Dublin, CA, USA). The results were evaluated for the presence of testing artifacts, including fatigue or learning 
effects, inattention, improper fixation or rim or eyelid artifacts, and were excluded if such artifacts were present. 
Glaucoma eyes with visual field results that were suggestive of another disease (e.g. homonymous hemianopia) 
were also excluded from this study. Any visual field test with >33% fixation losses or false negative errors (except 
for false negative errors when visual field MD was < −12 dB), or with >15% false positive errors were considered 
unreliable and also excluded.

optical coherence tomography imaging. OCT imaging was performed using the Spectralis 
HRA + OCT (Heidelberg Engineering GmbH, Heidelberg, Germany) device, with a circle scan having a diame-
ter of 12° centered on the optic disc obtained from all eyes. These scans contained 1536 A-scans (high-resolution 
mode), and were acquired using the Automatic Real-time Tracking mode, averaging at least nine scans at the 
same location. Each scan during the follow-up visits from baseline were taken at the same retinal location using 
the image registration and eye tracking software of the device. Only scans with a quality score ≥ 15 and without 
imaging artifacts (e.g. clipping) were included.

To account for the normal age-related changes when evaluating progression on OCT imaging36 (described 
further below), data from 519 tests from 200 eyes of 114 healthy participants who underwent the same OCT 
imaging were evaluated. These participants were on average 62.7 ± 14.1 years old (range, 21 to 96 years old), and 
the mean global RNFL thickness change over time was −0.27 μm/year (95% confidence interval = −0.36 to −0.17 
μm/year) for these healthy eyes, estimated using a linear mixed model.

Data analysis. Overview. To simulate progression scenarios necessary for sample size calculations, this 
study used longitudinal visual field and OCT imaging data from glaucoma eyes under routine clinical care 
to obtain estimates of their rates of change and measurement variability. The sample size estimates were then 
obtained by comparing two groups in a simulated clinical trial using linear mixed models (LMMs), which we 
have demonstrated recently to substantially reduce sample size requirements compared to survival analysis of 
endpoints based on event-based analysis (such as the Guided Progression Analysis [GPA]; Carl Zeiss Meditec, 
Inc., Dublin, CA, USA)17.

Computer simulations. To reconstruct “real-world” visual field and OCT imaging results, a computer simulation 
model was developed in a similar manner as described recently5. Briefly, estimates of the baseline and rates of 
visual field MD and global RNFL thickness change over time (the “signal” component) were obtained from the 
intercept and slopes of ordinary least squares linear regression models fitted to these values over time respectively 
for each eye. Note that the baseline and rates of visual field MD and OCT global RNFL thickness change over time 
obtained from each eye were always used together in the simulations described further below to account for their 
correlations within the same eye of a participant. Estimates of measurement variability (the “noise” component) 
were then obtained from the residuals of these linear regressions, by subtracting the measured value from the 
fitted values. The residuals were then grouped into 1-dB bins for visual field MD and 10-μm bins for global RNFL 
thickness, based on their respective fitted values. These components were then used to reconstruct “real-world” 
results by first calculating the “true” visual field MD and global RNFL thickness at each time point by using their 
estimated slopes and intercepts of each eye. Measurement error was then introduced by randomly selecting a 
residual based on the “true” value to be added at each time point. The simulations were only performed using 
eyes with a baseline MD ≥ −10 dB, to recreate a clinical trial scenario in eyes with the early to moderate stages 
of glaucoma. This cut-off was also chosen since global RNFL thickness values tend to become asymptotic (i.e. 
reach a floor effect) for MD values approximately below −10 dB37, and this outcome measure would thus be less 
effective for eyes with this severity of glaucoma. An example of this simulation for both visual field MD and global 
RNFL thickness is shown in Fig. 2.

Clinical trial scenario. The testing protocol used in these simulations is based on a novel clustered paradigm 
that we described in our recent study19 and a previous study18. However, the testing protocol used in this study 
was modified to include only 11 tests over a 2-year follow-up period, including 4 tests each at baseline and trial 
end, and 1 test each at the 6-, 12- and 18-month follow-up time points. The cluster of tests at the bookends of the 
trial period maximizes the power to detect change18, whilst the intermediary visits ensure that there is sufficient 
opportunity to detect progression throughout the trial period. Progression was evaluated at each follow-up time 
point for visual fields and OCT imaging using ordinary least squares linear regression models. Progression was 
considered to have occurred on visual field testing if a statistically significant (P < 0.05) negative slope for MD 
values was detected at two consecutive visits. For OCT imaging, progression was considered to have occurred if 
a statistically negative slope for global RNFL thickness values relative to the mean rate of age-related change was 
also detected at two consecutive visits. Eyes meeting this progression criterion were excluded for the remainder 
of a simulated trial, since such eyes typically require a change in their clinical management in a real-world clinical 
trial scenario.

This study then simulated visual field and OCT imaging results in a clinical trial scenario where a new treat-
ment was added to one of two groups that were both under routine clinical care with currently available therapies. 
Sample size requirements were then determined for a new treatment that slowed the rate of visual field MD and 
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OCT global RNFL thickness change over time by 20%, 30%, 40% and 50%. Sample size estimates were obtained 
by simulating 1000 sequences of clinical trials that included between 10 to 1000 participants per group. For each 
simulated trial, eyes with different baseline and rates of change of visual field MD and global RNFL thickness 
were randomly selected without replacement from the clinical cohort. The same eyes were included in the two 
treatment arms in order to match the characteristics of the two groups.

Analysis of outcome measures. During each simulated clinical trial, the difference in the rate of visual field 
MD or global RNFL thickness change over time between the treatment groups were evaluated using LMMs, 
specifying random intercepts and random slopes to account for the individual-specific deviations from the 
population-average change. The statistical significance of this difference was determined by evaluating the inter-
action between the treatment group variable and time, which represents the difference in the rate of change 
between the two groups. A significant beneficial treatment effect was considered to be present evaluated using 
visual fields or OCT imaging alone if the average rate of change of the new treatment group was more positive 
(or slower) compared to the control group, at a two-tailed significance level of P < 0.05. In a clinical trial scenario 
where both measures are used, a Hochberg procedure was used account for false discovery rates with multiple 
testing38. Since only two measures were evaluated in this study, a significant beneficial treatment effect was con-
sidered present if the highest P-value or second highest P-value associated with a reduction in the rate of change 
in the new treatment group was less than 0.05 and 0.025 respectively.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 19 September 2019; Accepted: 19 November 2019;
Published: xx xx xxxx

Figure 2. Illustration of the method used to simulate visual field mean deviation (top) and optical coherence 
tomography (OCT) global retinal nerve fiber layer (RNFL) thickness (bottom) values. For each example, the 
“true” values were estimated at each time point based on the slope and intercept estimates from linear regression 
analysis of an eye in the clinical cohort. Measurement variability (or the “noise” component) was then randomly 
added to each of these “true” values.
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