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Abstract

Objectives. Conventional value-of-information (VOI) analysis assumes complete uptake of an optimal decision. We
employed an extended framework that includes value-of-implementation (VOM)—the benefit of encouraging adop-
tion of an optimal strategy—and estimated how future trials of diagnostic tests for HIV-associated tuberculosis
could improve public health decision making and clinical and economic outcomes. Methods. We evaluated the clini-
cal outcomes and costs, given current information, of 3 tuberculosis screening strategies among hospitalized people
with HIV in South Africa: sputum Xpert (Xpert), sputum Xpert plus urine AlereLAM (Xpert+AlereLAM), and
sputum Xpert plus the newer, more sensitive, and costlier urine FujiLAM (Xpert+FujiLAM). We projected the
incremental net monetary benefit (INMB) of decision making based on results of a trial comparing mortality with
each strategy, rather than decision making based solely on current knowledge of FujiLAM’s improved diagnostic
performance. We used a validated microsimulation to estimate VOI (the INMB of reducing parameter uncertainty
before decision making) and VOM (the INMB of encouraging adoption of an optimal strategy). Results. With cur-
rent information, adopting Xpert+FujiLAM yields 0.4 additional life-years/person compared with current practices
(assumed 50% Xpert and 50% Xpert+AlereLAM). While the decision to adopt this optimal strategy is unaffected
by information from the clinical trial (VOI = $ 0 at $3,000/year-of-life saved willingness-to-pay threshold), there is
value in scaling up implementation of Xpert+FujiLAM, which results in an INMB (representing VOM) of $650 mil-
lion over 5 y. Conclusions. Conventional VOI methods account for the value of switching to a new optimal strategy
based on trial data but fail to account for the persuasive value of trials in increasing uptake of the optimal strategy.
Evaluation of trials should include a focus on their value in reducing barriers to implementation.
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Highlights

� In conventional VOI analysis, it is assumed that the optimal decision will always be adopted even without a
trial. This can potentially lead to an underestimation of the value of trials when adoption requires new
clinical trial evidence. To capture the influence that a trial may have on decision makers’ willingness to adopt
the optimal decision, we also consider value-of-implementation (VOM), a metric quantifying the benefit of
new study information in promoting wider adoption of the optimal strategy. The overall value-of-a-trial
(VOT) includes both VOI and VOM.

� Our model-based analysis suggests that the information obtained from a trial of screening strategies for
HIV-associated tuberculosis in South Africa would have no value, when measured using traditional methods
of VOI assessment. A novel strategy, which includes the urine FujiLAM test, is optimal from a health
economic standpoint but is underutilized. A trial would reduce uncertainties around downstream health
outcomes but likely would not change the optimal decision. The high VOT (nearly $700 million over 5 y) lies
solely in promoting uptake of FujiLAM, represented as VOM.

� Our results highlight the importance of employing a more comprehensive approach for evaluating
prospective trials, as conventional VOI methods can vastly underestimate their value. Trialists and funders
can and should assess the VOT metric instead when considering trial designs and costs. If VOI is low, the
VOM and cost of a trial can be compared with the benefits and costs of other outreach programs to
determine the most cost-effective way to improve uptake.
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Introduction

Clinical trials are considered the gold standard in testing
health care interventions and informing clinical practice,
including in tuberculosis (TB) and HIV care. However,
the costs of designing, conducting, and analyzing trials
can be prohibitive.1 Value-of-information (VOI)—a deci-
sion analytic method of quantifying the benefit of collect-
ing new data—can aid trialists and funders by informing
their decision making around whether a study will pro-
vide valuable information.2

Standard VOI analysis assumes that the optimal strat-
egy based on pretrial evidence is fully implemented and,
likewise, that the posttrial optimal strategy, taking into
account the evidence from the trial, will also be fully
implemented. In reality, one or both of these assumptions
may be incorrect.3–7 An additional benefit of clinical
trials is to prove the value of clinical strategies considered
optimal based on pretrial evidence but for which uptake
is limited by the lack of clear trial-based evidence of
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value. Value-of-implementation (VOM)—a metric that
complements VOI—can quantify the benefit of the trial
in encouraging wider adoption of the optimal care strat-
egy.3,5–9

TB is the leading cause of death of people with HIV
(PWH) globally. Although TB is curable, it is often
difficult to detect. New TB diagnostic tests have been
developed in recent years, and others are under develop-
ment.10 Many of these tests have improved performance
characteristics, such as sensitivity or specificity, but
higher costs compared with older tests. Health care deci-
sion makers may not be satisfied with evidence of
improved test sensitivity or specificity; they may instead
demand direct evidence that adopting a new TB diagnos-
tic test will improve downstream health outcomes, such
as mortality.11

Urine lipoarabinomannan (LAM) tests are relatively
new assays that can detect TB, particularly in PWH.12

Whereas many patients cannot provide a sputum speci-
men for traditional TB testing, nearly all can provide a
urine specimen. The World Health Organization has rec-
ommended an early-generation LAM assay, AlereLAM,
due partly to trial evidence that its use as a TB screening
tool in hospitalized PWH in sub-Saharan Africa may
reduce mortality at 2 mo.13–15 Despite this recommenda-
tion, uptake of AlereLAM in TB- and HIV-endemic
regions has been low.16 A newer LAM test, the FujiLAM
assay, has higher sensitivity than the AlereLAM assay,
but at higher cost.17–19 To date, there are no published
studies of the impact on mortality of using FujiLAM for
TB screening in hospitalized PWH, although a trial is
underway.20

Our objective was to employ a comprehensive
approach based on VOI and VOMmethods to determine
the overall value-of-a-trial (VOT) examining 2-mo mor-
tality associated with various TB screening strategies
among hospitalized PWH in South Africa. The VOT
comprises both the benefit of a trial in reducing uncer-
tainty in the degree to which improved sensitivity of
FujiLAM translates to better outcomes for patients (tra-
ditional VOI) and the benefit from improving uptake of
the optimal intervention that may occur with the results
of a trial (VOM).

Methods

Analytic Overview and Outcomes

We first performed a model-based cost-effectiveness
analysis to project the clinical and economic outcomes
associated with different TB screening strategies. This
included a probabilistic sensitivity analysis (PSA) to

examine how uncertainty in input parameters translated
to uncertainty in outcomes, without additional informa-
tion from a trial. The strategy with the highest expected
net monetary benefit (NMB), defined as (life-expectancy)
3 (willingness-to-pay per life-year) – expected lifetime
costs, is the pretrial optimal strategy. Next, we deter-
mined conventional VOI, that is, the difference between
posttrial and pretrial NMB based on the optimal strategy
in each scenario. We considered both the expected value
of partial perfect information (EVPPI) and expected
value of sample information (EVSI), defined as the incre-
mental NMB (INMB) of eliminating (EVPPI) and reduc-
ing (EVSI) uncertainty in some parameters before
decision making, respectively. Details about the defini-
tions are in the supplement. Then, because conventional
VOI analysis assumes perfect uptake of the optimal strat-
egy, both before and after the trial, we incorporated
improved—but imperfect—uptake of the optimal post-
trial strategy into our VOI and VOM estimates, where
VOM is the INMB of encouraging wider adoption of the
optimal pretrial strategy. Furthermore, we considered
VOI and VOM together to constitute the VOT (where
VOT = VOI + VOM). We compared VOI with VOM
to assess the value driven by information versus imple-
mentation from the trial. Finally, we performed sensitiv-
ity analyses to understand how VOT might change under
different assumptions around population size, level and
pace of uptake of the new optimal strategy, and discount
rate.

Simulation model and cost-effectiveness analysis. We used
the Cost-Effectiveness of Preventing AIDS Complications
(CEPAC)–International model, a validated and widely
published microsimulation of HIV- and TB-related dis-
ease and treatment.19,21 Initially, the model draws ran-
domly from user-defined characteristics, such as CD4
count and TB status.22 The model tracks clinical out-
comes and health care costs as each individual transitions
through various ‘‘states’’ of HIV and TB disease and
treatment (Supplementary Figure S1). Details about the
CEPAC model, TB module, validation, and treatment
parameters are in the supplement and in previously pub-
lished work.19,21–25

The population of interest was adults with HIV hospi-
talized in medical units in South Africa. We considered 3
TB screening strategies, applied to all regardless of symp-
toms or CD4 count: 1) sputum Xpert MTB/RIF, a poly-
merase chain reaction test, alone (Xpert); 2) sputum
Xpert plus a first-generation urine LAM test
(Xpert+AlereLAM); and 3) sputum Xpert plus a
newer-generation urine LAM test with higher sensitivity
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and cost (Xpert+FujiLAM). We assumed that the stan-
dard of care (Status Quo) comprised Xpert for 50% of
individuals and Xpert+AlereLAM for 50% of individ-
uals, in line with a reported estimate of AlereLAM pol-
icy adoption.16

Simulated PWH enter the CEPAC model after TB
screening and are tracked monthly until death. Those
with a positive screening test (including ‘‘false-positives’’
who do not truly have TB) start treatment for TB. In the
case of negative microbiological tests, empiric treatment
can be initiated according to patterns in local practice
and published trials.14

We included 10,000 iterations (sets of input para-
meters) for each screening strategy. To attain stable per-
person results, each iteration of the CEPAC model com-
prised a cohort of 2 million individuals.

Model and cost-effectiveness outcomes. Model outcomes,
calculated across 10,000 iterations, included mean and
95% uncertainty interval for all-cause mortality at 2 mo,
per-person life-years, and lifetime HIV- and TB-related
costs from the health system perspective. The incremen-
tal cost-effectiveness ratio (ICER) between 2 screening
strategies was calculated as the difference in mean life-
time health care costs divided by the difference in life
expectancy.

We considered a willingness-to-pay (WTP) threshold
of US$3,000 per year of life saved (YLS), which is
approximately 50% of South Africa’s per-capita annual
gross domestic product and similar to a reported South
Africa–specific opportunity cost–based threshold.26 In
addition, we explored a range of WTP thresholds, from
$500 to $6,000 per YLS, to provide context of the VOT
in settings with different availabilities of resources. The
pretrial optimal strategy is the one with the highest
expected NMB at the chosen WTP.

We examined the impact of parameter uncertainty on
the cost-effectiveness of the screening strategies, as sug-
gested by Briggs et al.27 For each iteration of the para-
meter set, the strategy with the highest NMB is the most
cost-effective. To illustrate the probability of a strategy
having the highest NMB across the iterations, we created
a cost-effectiveness acceptability curve (CEAC) across
the entire range of WTP thresholds of interest (Figure 1).

VOI and VOM Analysis

Generalized additive model–based approach for estimating
VOI. We applied PSA outcomes to a VOI framework,
assuming that parameter uncertainty could be reduced
through a trial. Supplementary Figure S2 details how

trial results would update parameters in the CEPAC
model. VOI outcomes of interest included EVPPI and
EVSI. We employed a generalized additive model
(GAM) to estimate EVPPI and EVSI based on the struc-
ture of CEPAC, the likelihood of the input parameters,
and the distribution of the simulated study outcome.28,29

Previously, 3 VOI case studies were performed using the
CEPAC model; VOI estimates based on the GAM
approach closely matched those of the conventional
nested approach based on simulating outcomes with the
full model.30 Details about the different approaches for
estimating VOI outcomes are in the supplement.

The GAM regresses NMB outcomes obtained from
CEPAC on the target parameters (the uncertain para-
meters for which information would be gained from a
trial, for EVPPI) or study outcomes (for EVSI).31 For
EVPPI, the target parameter was 2-mo all-cause mortal-
ity, which was obtained from the results of the CEPAC
model. For EVSI, we considered a simulated 2-arm
clinical trial that compares 2-mo all-cause mortality
associated with the 2 urine LAM-based strategies:
Xpert+AlereLAM and Xpert+FujiLAM. We assumed
a sample size of 2,600 individuals per strategy, similar to
that in the Rapid Urine-based Screening for Tuberculosis
to Reduce AIDS-related Mortality in Hospitalized
Patients in Africa (STAMP) trial.14,32 The corresponding
study outcome was the number of strategy-specific
observed deaths in the clinical trial, which we simulated
using a binomial distribution.

For each PSA iteration, we estimated each strategy’s
expected NMB conditional on the value of target para-
meters (for EVPPI) or simulated study outcomes (for

Figure 1 Cost-effectiveness acceptability curve.
LAM, lipoarabinomannan; NMB, net monetary benefit; USD, 2017

US dollars; YLS, year of life saved.
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EVSI) using the GAM-based approach and thereby
selected the optimal posttrial strategy for each realization
of model parameters. The average of the NMBs of each
posttrial decision (i.e., each iteration of target parameter
or study outcome) was the posttrial expected NMB,
which we then compared with the pretrial expected NMB
to determine VOI.

Ten thousand iterations of the CEPAC model were
sufficient for VOI estimates to converge (Supplementary
Figures S3 and S4). All GAM-fitted NMBs were vali-
dated to ensure normality and the absence of structural
patterns. Details are in the supplement (Supplementary
Figures S5 and S6).

VOM. We considered the value of increasing uptake of
the optimal strategy by employing a framework similar

to those reported by Andronis and Barton3 and Grimm
et al.5 The conventional VOI estimates were adjusted in 2
ways. First, we assessed the value of adopting the pretrial
optimal strategy rather than the standard of care to
determine VOM. Furthermore, because the VOI frame-
work provides only estimates of the value of perfect
uptake of the posttrial optimal strategy, we considered
improved—rather than perfect—uptake of the posttrial
optimal strategy that might occur after the results of a
clinical trial are known. Accordingly, we discounted the
VOI and VOM estimates to account for imperfect uptake
of the posttrial optimal strategy.

Employing the methods proposed by Andronis and
Barton,3 we conceptualized 9 states, each representing a
unique combination of available information and uptake
(Table 1). We classified information as ‘‘current’’

Table 1 Different Scenarios of Information and Implementation, Building on the Framework of Andronis and Barton3

Information

Scenario Current Sample Partial Perfect

Implementation Currenta A B C
Improvedb D E F
Perfect G H I

Calculations for conventional VOI outcomesc based on states

Conventional VOI — EVSI
(H-G)

EVPPI
(I-G)

Calculations for VOT, VOI, and VOM outcomes based on states

Overall VOT (represented as the sum of VOI and VOM)
Implementation Improvedb EVM

(D-A)
EVSI&Md

(E-A)
EVPPI&Me

(F-A)
VOI = 0 VOI = E-D VOI = F-D

VOM = D-A VOM = D-A VOM = D-A
Perfect EVPM

(G-A)
EVSI&PM

(H-A)
EVPPI&PM

(I-A)
VOI = 0 VOI = H-G VOI = I-G

VOM = G-A VOM = G-A VOM = G-A

EVM, expected value of improved implementation; EVPM, expected value of perfect implementation; EVPPI, expected value of partial perfect

information; EVPPI&M, expected value of partial perfect information and improved implementation; EVPPI&PM, expected value of partial

perfect information and perfect implementation; EVSI, expected value of sample information; EVSI&M, expected value of sample information

and improved implementation; EVSI&PM, expected value of sample information and perfect implementation; LAM, lipoarabinomannan; VOI,

value-of-information; VOM, value-of-implementation; VOT, value-of-a-trial.
aThe current implementation scenario (Status Quo) reflects 50% of patients being screened by Xpert alone and 50% by Xpert+AlereLAM.
bImproved implementation assumes a linear increase in adopting the optimal strategy from 0% to 80% over 5 y.
cConventional VOI outcomes represent the expected benefits of acquiring information on the premise of perfect implementation of any decision

determined by cost-effectiveness; that is, EVPPI is the difference between the value of states I and G and EVSI between states H and G.
dThis measure differs from conventional EVSI (H-G) in 2 ways. First, when combined with conventional EVSI, it comprises the gains from

implementing the optimal pretrial decision, that is, moving from state A to H. Furthermore, this measure discounts its benefits to reflect an

improved but imperfect level of implementation resulting from new information.
eThis measure can be interpreted as applying the full benefits of gathering perfect information of the target parameter (i.e., 2-mo mortality of the

screening strategies) to a fraction of the entire population affected by the information. This could be explained by barriers to scale up, existence

of different perspectives or incentives, or asymmetries of information in the real world.
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(existing information available prior to any results from
further studies), ‘‘sample’’ (information after trial results
are available), or ‘‘partial perfect’’ (absolute certainty
about 2-mo mortality associated with the use of different
screening strategies). We expressed uptake as the propor-
tion of eligible patients receiving the optimal screening
strategy: ‘‘current’’ (Status Quo, in which 50% of eligible
individuals are screened by Xpert alone and 50% by
Xpert+AlereLAM, given that AlereLAM is guideline-
recommended but suboptimally implemented16),
‘‘improved’’ (in which uptake of the optimal strategy
increases linearly from current levels to 80% in 5 y), and
‘‘perfect’’ (in which 100% of eligible patients immediately
receive the optimal strategy).

Population-level analysis. Information from the clinical
trial would be of value every time a choice is made
between the different screening strategies for an individ-
ual. We therefore scaled per-person VOI and VOM esti-
mates to the population level, that is, individuals who
would benefit from the information. We accounted for
imperfect implementation by adjusting the annual target
population based on the uptake of the optimal strategy.

VOI and VOM outcomes. We determined the value of
each state in Table 1 based on the expected NMB of a
decision made given the state’s level of information and
uptake. For each realization of the information gained,
we considered the strategy that had the highest expected
GAM-fitted NMB. The value of each state is the average
of the highest expected GAM-fitted NMB across all rea-
lizations of the information gained. Subsequently, we
derived a series of measures of the overall VOT from
combining the values of improving either information
(VOI) or uptake (VOM) as illustrated in Table 1.

The expected value of perfect implementation
(EVPM) shows the difference between providing the best
screening strategy to the whole population (state G) and
continuing current practice (state A), under current
information (Table 1). This value represents the maxi-
mum expected gains from investing resources in the pur-
suit of better uptake of the strategy that is cost-effective
under current evidence.

The expected value of sample information and
improved implementation (EVSI&M) provides the over-
all value of conducting a trial, represented as the differ-
ence in value between a state in which sample
information from a trial is available and has changed
uptake (state E) and the ‘‘current state’’ of information
and uptake (state A) (Table 1). EVSI&M is the sum of

VOI (state E – state D) and VOM (state D – state A)
(Table 1). Alternatively, this measure can be interpreted
as applying the full benefits from adopting the optimal
strategy (the expected value of sample information and
perfect implementation, EVSI&PM) to a smaller popula-
tion that will receive the optimal intervention each year.

Input Parameters

We based our modeled population on the South African
participants in the STAMP trial,14 since the simulated
clinical trial considered the same target population
(Table 2). We derived diagnostic yields for each screen-
ing strategy accounting for nonindependence of test
results, as described previously.19

Inputs for probabilistic sensitivity analysis. To account
for parameter uncertainty, we considered joint probabil-
ity distributions for several key parameters and varied
them simultaneously. These parameters were diagnostic
yield, specificity, and cost of the 3 screening strategies;
TB prevalence; sputum provision probability; empiric TB
treatment probability (i.e., treatment in the absence of a
positive test result); loss to follow-up from TB care post-
hospitalization; and probability of death for those with
untreated TB. Diagnostic yields by strategy for patients
in the low (those with a CD4 count \200/mL) and high
(CD4 count �200/mL) cohorts, respectively, were 33%/
33% for Xpert, 62%/35% for Xpert+AlereLAM, and
69%/47% for Xpert+FujiLAM. The cost per diagnostic
test was $15 for Xpert, $3 for AlereLAM, and for
FujiLAM was drawn from a log-normal distribution
with mean $6 and standard deviation $1.20.
Distributions for other parameters are in Table 2.

Population-level inputs. In the base case, we considered
an annual target population of 500,000 PWH hospita-
lized in medical units in South Africa19 and an effective
time horizon of 5 y until newer diagnostics replace the
existing ones. Implementation levels were ‘‘perfect’’ for
partial perfect information and ‘‘improved’’ for sample
information (uptake increases linearly from current levels
to 80% in 5 y). We discounted outcomes 3%/y during
the specified time horizon (Table 2).

Population-Level Sensitivity Analysis

We assessed 2 additional scenarios (pessimistic, optimis-
tic) representing different rates of uptake of the optimal
strategy that mirror the diffusion of trial information in

6 MDM Policy & Practice 8(2)
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real-world settings.5,49–52 The optimistic scenario assumes
uptake increases linearly from 0% to 100% over 3 y,
which could correspond to situations in which trial
results suggest clear evidence that the cost-effective strat-
egy offers a favorable clinical outcome. In contrast, the
pessimistic scenario assumes uptake increases linearly
from 0% to 60% at 7 y, reflecting scenarios in which the
evidence gathered from the trial is not as favorable (e.g.,
the P value of the trial result is above or very close to the
significance level) or implementation is subpar due to
logistical reasons. In addition, we conducted additional
analyses to explore the impact of differences in the
annual number of PWH who are hospitalized and the
time horizons over which information would be useful
(Table 2).

Cost Scenario Analysis

We explored the impact of FujiLAM cost by conducting
a separate analysis for a higher cost of $20/test. We ree-
valuated model outcomes, uncertainty of pretrial optimal
decision, and VOI and VOM estimates.

Results

Cost-Effectiveness Analysis

Base-case results for alternative TB screening strategies
using current (i.e., pretrial) evidence are reported in
Table 3. Xpert would result in 9.1 life-years and lifetime
discounted health care costs of $7,320. Relative to Xpert,
adopting Xpert+FujiLAM would increase the life
expectancy of the screened population by 0.5 life-years
and increase per-person costs by $390. Adopting
Xpert+AlereLAM for all would also provide health

benefit relative to Xpert, with 0.3 life-years gained and a
$270 cost increase per person. Taken as a whole, these
findings suggest that Xpert+AlereLAM would be
weakly dominated by Xpert+FujiLAM, which would
have an ICER of $780/YLS compared with Xpert alone.

Using only current evidence, PSA (Figure 1) suggests
that the optimal strategy at a WTP threshold of $3,000/
YLS would be Xpert+FujiLAM (i.e., it is the strategy with
the highest expected NMB). Perfect uptake of this strategy
would provide an NMB of $20,960 per person, compared
with $19,860 with Xpert and $20,230 with Status Quo.

There is virtually no uncertainty regarding the pretrial
optimal decision (Figure 1). Xpert+FujiLAM would
almost certainly be the most cost-effective strategy, so
long as the WTP exceeds $810/YLS; Xpert would almost
certainly be the preferred strategy if the WTP threshold
is below $780/YLS. Only in the very narrow band where
the WTP matches our estimate of the ICER for
Xpert+FujiLAM relative to Xpert ($780/YLS) is where
there is doubt about the optimal decision.

VOI and VOM

Conventional VOI analysis. At a WTP of $3,000/YLS,
conventional VOI analysis finds no value—neither EVSI
nor EVPPI—to the information that might be obtained
from a trial evaluating the 2-mo mortality associated with
each screening strategy (Table 4). When the WTP thresh-
old is set to the ICER for Xpert+FujiLAM relative to
Xpert ($780/YLS), the EVSI and EVPPI are maximized
at $900,000 and approximately $2.056 million, respec-
tively, for a population of 500,000 people (Table 4).

VOM analysis. Immediate, perfect uptake of Xpert+
FujiLAM would provide substantial health and

Table 3 Simulation Model–Generated Clinical and Economic Outcomes for Tuberculosis Screening Strategies

Testing Strategy

2-mo Mortality,
% [95% Uncertainty

Interval]

Life-Years
per Person,

Discounted
[95% Uncertainty

Interval]

Health Care
Costs per Person,

Discounted,
USD [95%

Uncertainty Interval]
ICER,

USD/YLSa

Incremental NMB
[95% Uncertainty

Interval]

Xpert 18.0 [13.8, 23.1] 9.1 [8.6, 9.5] 7,320 [7,010, 7,630] Reference Reference
Xpert+AlereLAM 15.9 [12.9, 19.7] 9.4 [9.0, 9.8] 7,590 [7,350, 7,830] Dominated 740 [490, 1,050]
Xpert+FujiLAM 15.3 [12.5, 18.5] 9.6 [9.2, 9.9] 7,710 [7,500, 7,930] 780 1,110 [730, 1,550]
Status Quob 17.0 [13.4, 21.4] 9.2 [8.8, 9.6] 7,460 [7,180, 7,730] — —

ICER, incremental cost-effectiveness ratio; LAM, lipoarabinomannan; NMB, net monetary benefit; USD, 2017 United States dollars; YLS,

year-of-life saved. The population is hospitalized people with HIV in South Africa. The discount rate is 3% per year.
aICERs are calculated using mean life-years and mean health care costs, so there are no uncertainty intervals.
bStatus Quo reflects 50% of patients being screened by Xpert alone and 50% by Xpert+AlereLAM.

Pei et al. 9



economic benefits at the population level compared with
current practices (Table 4). Assuming a WTP of $3,000/
YLS, the EVPM would be approximately $1.685 billion;
if adoption of Xpert+FujiLAM were to grow linearly
from 0% to 80% over a 5-y time horizon, the EVM
would be approximately $654 million (Table 4). Even at
a lower WTP of $780/YLS, adopting Xpert+FujiLAM
now would still yield benefits (Table 4).

Comparative values of information and implementation.
At a WTP of $3,000/YLS, VOT—representing the overall
value for gathering sample information (EVSI&M, VOI,
and VOM both included)—is approximately $654 million
(Table 4). In a hypothetical scenario in which information
gathered from a trial is partial perfect and uptake of the
optimal strategy is perfect, VOT (EVPPI&PM) is approxi-
mately $1.685 billion. Because VOI is $ 0 for this WTP of
$3,000/YLS, all the value in these scenarios comes from
the improved or complete uptake of the optimal strategy.
On the other hand, at a WTP of $780/YLS, both

information and implementation contribute to the overall
value. At this WTP, EVSI&M would be approximately
$2.768 million, $300,000 of which comes from VOI;
EVPPI&PM would be approximately $8.287 million,
$2.056 million of which comes from VOI.

For a range of WTPs between $500 and 6,000/YLS,
we considered the ratio between VOI and VOM. Since
the VOI for most WTPs is $ 0, this ratio is also zero,
except for WTP thresholds very close to $780/YLS. At
its maximum, the ratio between VOI and VOM is 0.33
and 0.14 for perfect and sample information, respectively
(Figure 2).

Population-Level Sensitivity Analysis

Results from varying population-level inputs are in
Table 5. Using the base-case uptake scenario, the overall
value of gathering sample information (EVSI&M) varies
from $102 million when information is useful for 3 y and
affects 250,000 people per year to $2.736 billion when

Table 4 Value-of-Information and Value-of-Implementation Outcomes

Information

Current Sample Partial Perfect

Conventional VOI outcomes (in thousand USD)
WTP $780/YLS — 900

EVSI
2,056
EVPPI

WTP $3,000/YLS — 0
EVSI

0
EVPPI

Overall VOT outcomes (in thousand USD)

Implementation

WTP $780/YLS
Currenta 0 0 0
Improvedb 2,419

EVM
2,768

EVSI&M
3,217

EVPPI&M
Perfect 6,232

EVPM

7,132

EVSI&PM

8,287

EVPPI&PM

Implementation

WTP $3,000/YLS
Currenta 0 0 0
Improvedb 654,277

EVM
654,277
EVSI&M

654,277
EVPPI&M

Perfect 1,685,496
EVPM

1,685,496
EVSI&PM

1,685,496
EVPPI&PM

EVM, expected value of improved implementation; EVPM, expected value of perfect implementation; EVPPI, expected value of partial perfect

information; EVPPI&M, expected value of partial perfect information and improved implementation; EVPPI&PM, expected value of partial

perfect information and perfect implementation; EVSI, expected value of sample information; EVSI&M, expected value of sample information

and improved implementation; EVSI&PM, expected value of sample information and perfect implementation; USD, 2017 US dollars; VOI,

value-of-information; VOT, value-of-a-trial; WTP, willingness to pay; YLS, year-of-life saved. WTPs considered were $780/YLS and $3,000/

YLS. Trial sample size was 2,600, base-case population was 500,000, and time horizon was 5 y.
aCurrent (Status Quo) reflects 50% of patients being screened by Xpert alone and 50% by Xpert+AlereLAM.
bImproved uptake assumes a linear increase in adoption of the optimal strategy from 0% to 80% over 5 y.

10 MDM Policy & Practice 8(2)



information is useful for 10 y and affects 750,000 people
per year. In an optimistic uptake scenario in which
uptake increases linearly from 0% to 100% over 3 y,
VOT ranges from $255 million to $3.926 billion; in a pes-
simistic uptake scenario in which uptake increases line-
arly from 0% to 60% at 7 y, VOT ranges from $51

million to $1.753 billion. In all of these scenarios, VOT
comes entirely from improved uptake, since conventional
EVSI is $ 0 at a WTP of $3,000/YLS.

Cost Scenario Analysis

Assuming a higher cost of $20 per test for FujiLAM,
Xpert+AlereLAM is no longer weakly dominated and is
the preferred strategy for a narrow range of WTP
between $800/YLS and $810/YLS. This translates to a
higher level of uncertainty in the pretrial optimal strategy
(Xpert+AlereLAM is preferred in 56% of the simula-
tion runs at WTP of $800/YLS). At WTP of $3,000/YLS,
the pretrial optimal strategy remains Xpert+FujiLAM.
VOI remains $ 0, while EVSI&M decreases slightly to
about $642 million (Supplement).

Discussion

We used a GAM in conjunction with a microsimulation
model to estimate the value of a prospective trial of new
TB screening strategies in hospitalized people with HIV
in South Africa. We used and modified the more compre-
hensive approach developed and reported previously by
Andronis and Barton3 and Grimm et al., which expresses
the VOT in terms of both the information that the trial
would provide about optimal decision making and its
potential to improve the implementation of the optimal

Figure 2 Population-level value of different levels of
information and uptake and the ratio of value-of-information
to value-of-implementation.
EVM, expected value of improved implementation; EVPM, expected

value of perfect implementation; EVPPI, expected value of partial

perfect information; EVSI, expected value of sample information;

USD, 2017 US dollars; VOI, value-of-information; VOM, value-of-

implementation; YLS, year-of-life saved.

Table 5 Population-Level Sensitivity Analyses Showing Expected Value of Sample Information and Improved Implementation
(EVSI&M), in Thousands (USD)

Annual Number of Patients Affected

Duration over which Information Is Useful

3 y 5 y 10 y

Base-case uptake scenarioa

250,000 102,052 327,139 912,093
500,000 204,104 654,277 1,824,186
750,000 306,156 981,416 2,736,279

Optimistic uptake scenariob

250,000 255,130 577,363 1,308,556
500,000 510,259 1,154,725 2,617,111
750,000 765,389 1,732,088 3,925,667

Pessimistic uptake scenarioc

250,000 51,026 163,569 584,335
500,000 102,052 327,139 1,168,671
750,000 153,078 490,708 1,753,006

EVSI&M, expected value of sample information and improved implementation; USD, 2017 US dollars. The willingness-to-pay threshold is

$3,000 per year-of-life saved.
aThe base-case uptake scenario is a linear increase in uptake of the optimal strategy from 0% to 80% over 5 y.
bThe optimistic uptake scenario is a linear increase in uptake of the optimal strategy from 0% to 100% over 3 y.
cThe pessimistic uptake scenario is a linear increase in uptake of the optimal strategy from 0% to 60% over 7 y.
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strategy.6,7 Traditional VOI estimates assess only the
value that could be gained from decreased uncertainty
about the optimal strategy, in a context of perfect imple-
mentation. We further estimated the value of increasing
uptake of the optimal strategy either with or without new
information from the trial.

Our model results demonstrate that such a trial is
unlikely to provide information that would change the
optimal decision from a health economic standpoint.
Based on cost-effectiveness at a WTP of US$3,000 per
life-year gained, the combination of Xpert plus FujiLAM
is already the optimal strategy given current information
and its uncertainties. A trial would reduce the uncertain-
ties around factors such as the probability of sputum pro-
vision (which affects the diagnostic yield from Xpert), the
probability of empiric treatment (which affects the bene-
fit gained from a more sensitive test), and the underlying
prevalence of TB. However, the optimal decision is
highly likely to remain the same across most plausible
scenarios and trial outcomes: that Xpert plus FujiLAM
is optimal based on net monetary benefit.

However, the lack of uncertainty around the optimal
decision in the pretrial scenario does not mean that the
decision will be implemented in practice. A major
assumption underlying conventional VOI analysis is that
clinical practice follows decisions made based on cost-
effectiveness. That is, all clinicians will implement the
decision that provides the highest expected health eco-
nomic benefit, even in the absence of a statistically signif-
icant result from a clinical trial. But uptake is always
imperfect for a variety of reasons, including lack of clini-
cal evidence or official guidance, logistic or financial bar-
riers to scale up, existence of different perspectives or
incentives, or asymmetries of information. Even in the
presence of prior evidence pointing toward the benefits
of a particular strategy, policy makers may seek addi-
tional evidence from trials. For example, despite
acknowledging evidence of FujiLAM’s superior sensitiv-
ity over AlereLAM in its guidelines on LAM testing, the
World Health Organization did not provide recommen-
dations on use of FujiLAM, citing a need for additional
evidence of diagnostic accuracy, feasibility, and
acceptability.15

To address this gap, we used an approach to assigning
value to information that promotes the adoption—
whether improved (but still imperfect) or perfect—of the
optimal strategy.3–5 Evaluating VOM provides important
insights. We find high value of increasing the uptake of
FujiLAM, even in the pretrial scenario, in which there is
no uncertainty around the optimal strategy. When real-

world implementation requires a positive clinical trial,
conventional VOI may vastly underestimate the trial’s
potential value. Furthermore, if VOM is much greater
than VOI, as we find in this analysis, and if wider uptake
is not contingent on trial results, then investments in scale
up could be prioritized over investments in conducting a
trial. The VOM and cost of a trial can be compared to
the benefits and costs of other outreach programs to
determine the most cost-effective way to improve uptake.
However, wider uptake might not occur without trial
results, and thus the trial could still provide positive value
by VOM even if VOI by itself is zero or low. We did not
specifically account for costs of the trial. The value of
improving uptake from trial information would have to
exceed its associated costs to justify a trial. This is likely
to be true according to our results, where improving
uptake of FujiLAM would provide substantial value,
nearly $700 million over 5 y, much greater than estimates
of the cost of a trial in South Africa.53,54 This framework
of estimating the VOT—comprising VOI and VOM—
allows the separate, but linked, decisions regarding
investment in research and investment in implementation
activities to be made simultaneously.2

We built on methods previously described by
Andronis and Barton3 and Grimm et al.5 Our approach
differed from theirs in 2 ways. First, we projected VOI
and VOM separately. Andronis and Barton considered
the composite VOT without specifically breaking down
VOI and VOM. Explicitly distinguishing between VOI
and VOM would allow decision makers to evaluate the
separate contributions of added ‘‘information’’ and
‘‘implementation’’ that might be gained from a trial. In
particular, when VOI is low, VOM could be compared
with the value and cost of other outreach strategies.
Second, in our population-level estimates, we accounted
for incomplete penetration of the information that would
be gained from a trial. We calculated population-level
VOI and VOM as the product of the individual-level
VOI and VOM estimates and a ‘‘discounted’’ target pop-
ulation size, reflecting the population estimated to adopt
the intervention over a time horizon of interest. As such,
the same level of ‘‘imperfect implementation’’ is applied
across both VOI and VOM estimates. While the frame-
work by Grimm et al. considered VOI and VOM sepa-
rately, imperfect implementation was applied only to
VOM; the benefit of reducing uncertainty (VOI) was
assumed to apply to all eligible individuals. This could
lead to an overestimation of the trial’s value in reducing
uncertainty because VOI would be applied to some peo-
ple who do not stand to benefit from the information.
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There are no empirical studies comparing levels of
implementation based on modeling alone compared with
clinical trial evidence. Furthermore, the level of imple-
mentation of clinical trial evidence is often imperfect and
unclear. More research is needed to understand this.
Although data-informed implementation levels are lim-
ited,16,55 we accounted for different levels and paces of
uptake and different target population sizes, showing
how these factors could change the value. In particular,
lower implementation levels were explored in a pessimis-
tic scenario to account for a situation in which imple-
mentation is subpar despite clear clinical evidence.

A prior study showed the budget impact of imple-
menting the Xpert and AlereLAM screening intervention
nationally and scaled to all hospitalized patients with
HIV over 5 y in South Africa.21 Health care expenditures
among screened individuals over 5 y would increase by
approximately $260 million (2.8%), and much of this
increase would be due to HIV care costs given longer sur-
vival.21 Although FujiLAM is expected to cost more than
AlereLAM, most of the increase in health care expendi-
tures would still likely be related to longer survival.

The results of our analysis, like any model-based anal-
ysis, are influenced by model structure and assumptions.
Parameter uncertainty in the model comes from the dis-
tributions that we set, although we based these distribu-
tions on evidence where available and otherwise applied
broad distributions to explore a range of potential out-
comes. Nonetheless, there are theoretical thresholds for
parameters and their distributions at which the trial
might provide greater VOI, for example, if there was even
more uncertainty around the sensitivity of FujiLAM and
the number of additional patients with TB that it would
detect. We did not consider disability adjustments in our
projections of clinical benefits, although prior TB studies
demonstrated that mortality was the major driver of
disability-adjusted life-years.56–59

Given increasing resource constraints for health care
worldwide, including funding for trials, estimating VOI
and extending that to project VOM should be underta-
ken more frequently. These extended methods can cap-
ture the VOT more comprehensively, which can guide
future trials, not only in HIV and TB care but also in
other clinical areas. They can also help prioritize funding
for trials whose results will provide the most value by
improving clinical decisions, either because the trials
reduce the uncertainty about the outcomes of alternative
clinical strategies or because trial results are critical to
the actual adoption of effective and cost-effective inter-
ventions that are suboptimally utilized, or both.
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