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We introduce a GPU-accelerated finite element forward solver for the computation of light transport in scattering media. The
forward model is the computationally most expensive component of iterative methods for image reconstruction in diffuse optical
tomography, and performance optimisation of the forward solver is therefore crucial for improving the efficiency of the solution
of the inverse problem. The GPU forward solver uses a CUDA implementation that evaluates on the graphics hardware the sparse
linear system arising in the finite element formulation of the diffusion equation. We present solutions for both time-domain
and frequency-domain problems. A comparison with a CPU-based implementation shows significant performance gains of the
graphics accelerated solution, with improvements of approximately a factor of 10 for double-precision computations, and factors
beyond 20 for single-precision computations. The gains are also shown to be dependent on the mesh complexity, where the largest
gains are achieved for high mesh resolutions.

1. Introduction

Diffuse optical tomography (DOT) is a functional imaging
modality for medical applications that has the potential
to provide three-dimensional images of the scattering and
absorption parameter distributions in vivo, from which
clinically relevant physiological parameters such as tissue and
blood oxygenation states and state changes can be derived.
Applications include brain activation visualisation [1, 2],
brain oxygenation monitoring in infants [3], and breast
tumour detection [4].

Data acquisition systems consist of an infrared light
delivery system that illuminates the tissue surface at different
locations, and detectors that measure the transmitted light at
a set of surface positions. Measurements can be performed in
continuous wave (CW) mode, in time-resolved mode using
ultra-short input pulses and time-resolved detectors, or in
frequency-domain mode, using modulated light sources and
measuring the phase shift and modulation amplitude at the
detector locations.

Due to the high level of scattering in most biological
tissues, image reconstruction in DOT is an ill-posed nonlin-

ear problem whose solution generally requires the formu-
lation of a forward model of light propagation in inhomo-
geneous scattering tissue. Frequently utilised light transport
models include stochastic models such as Monte-Carlo
simulation [5], or deterministic models such as the radiative
transfer equation (RTE) [6] or the diffusion equation (DE)
[7]. Numerical solution approaches include finite differ-
ence, finite element, finite volume, or boundary element
methods. The light transport model considered in this
paper the finite element method (FEM) for the solution
of the diffusion equation. The reconstruction problem can
be stated as a nonlinear optimisation problem, where an
objective function, defined as a norm of the difference
between measurement data and model data for a given set of
optical parameters, is minimised, subject to a regularisation
functional. Reconstruction approaches include methods that
require the availability of the forward model only, such
as Markov-Chain Monte-Carlo methods, its first derivative,
such as nonlinear conjugate gradient methods, and its second
derivative, such as Newton-type methods.

Iterative solvers require multiple evaluations of the for-
ward model for calculating the objective function and its
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gradient. The forward model itself involves the solution of a
large linear system with multiple right-hand sides. Problems
involving high-dimensional parameter spaces result in time-
consuming evaluations of the forward model, which limits
the applicability of the reconstruction methods in clinical
practice. Significant performance improvements are required
to make DOT a viable tool in medical imaging. Recent de-
velopments in computing hardware have offered the pos-
sibility to make use of parallel computation. Traditionally,
solutions have included central processing unit (CPU) based
moderately parallel systems with shared memory access
(multiprocessor and multicore implementation) and large-
scale distributed parallel systems limited by data trans-
fer between nodes (cluster CPU implementation). More
recently, the parallel architecture of graphics processing units
(GPU) has been utilised for the acceleration of general
purpose computations, including GPU methods for the
solution of dense [8, 9] or sparse [10–14] linear systems.
The latter are encountered in the implementation of the
FEM.

In the context of diffuse optical tomography and related
fields of optical imaging, GPU-accelerated computations
have been successfully employed for implementing Monte-
Carlo light transport models [15–17], which compute
independent photon trajectories and are well-suited for
parallelisation due to the lack of interprocess communi-
cation. Acceleration rates of more than 300 are possible.
Zhang et al. [18] have applied GPU acceleration to finite
element computations in bioluminescence tomography and
compared to single and multithreaded CPU performance.
They reported significant performance advantages of the
GPU version but were limited to low mesh complexity
due to memory limits. In optical projection tomography,
GPU-based reconstruction methods have been employed by
Vinegoni et al. [19]. Watanabe and Itagaki [20] have used a
GPU implementation for real-time visualisation in Fourier-
domain optical coherence tomography.

In this paper, we are investigating the potential of a GPU
implementation for the forward model in DOT. We present
a Compute Unified Device Architecture (CUDA) version
of the finite element forward solver presented previously
[21, 22], using the CUSP library [23] for sparse linear
system computation on the graphics processor. CUDA is the
computing architecture for NVidia graphics processors and
can be addressed via an application-programming interface
(API). Current GPU hardware is performance optimised
for single-precision arithmetic. We investigate the effect of
single-precision computation on the accuracy of the forward
model for different combinations of optical parameters.
We compare the performance of the GPU forward solver
with an equivalent CPU implementation. We show that
significant performance improvements can be achieved. The
evaluation of the forward model is the most time-consuming
element of iterative inverse solvers, and any efficiency gains
in the forward solver therefore directly translate into reduced
overall runtimes for image reconstruction applications and
are an important step towards making DOT a viable imaging
application in clinical practice.

2. Methodology

2.1. Finite Element Solver. We consider the diffusion approx-
imation to the radiative transfer equation [24, 25] in either
steady-state, time, or frequency domain as the forward model
for light transport in tissue. For steady-state problems, the
stationary real-valued photon density inside the medium
arising from a continuous-wave source is computed while
for frequency-domain problems, the source is amplitude
modulated, giving rise to a complex-valued solution of a
photon density wave distribution. In time-domain problems,
the source is considered a delta-pulse in time, and the
measurement consists of the temporal dispersion of the
transmitted signal. Given a compact domain Ω bounded
by ∂Ω, the diffusion equation [26] in time and frequency
domain is given by

[
−∇ · κ(r)∇ + μa(r) +

1
c

∂

∂t

]
φ(r, t) = 0

[
−∇ · κ(r)∇ + μa(r) +

iω

c

]
φ̂(r,ω) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

r ∈ Ω, (1)

respectively, where ω is the angular source modulation
frequency, κ(r) and μa(r) are the spatially varying diffusion
and absorption coefficients, respectively, where κ = [3(μa +
μs)]−1 with scattering coefficient μs. c is the speed of light in
the medium, and φ, and φ̂ are the real and complex-valued
photon density fields. For simplicity in the following, we use
φ to denote either the real or complex-valued properties as
appropriate.

A Robin-type boundary condition [27] applies at ∂Ω,

φ(ξ) + 2ζ(n)κ(ξ)
∂φ

∂ν
= q(ξ), ξ ∈ ∂Ω, (2)

where q is a real or complex-valued source distribution as
appropriate, ζ(n) is a boundary reflectance term incorporat-
ing the refractive index n at the tissue-air interface, and ν is
the surface normal at surface point ξ. The boundary operator
defining the exitance Γ through ∂Ω is given by the Dirichlet-
to-Neumann map

Γ(ξ) = −cκ(ξ)
∂φ

∂ν
= c

2ζ
φ(ξ). (3)

The set of measurements yi j from a source distribution qi
is obtained by integrating Γ over the measurement profiles
mj(ξ) on the surface

yi j =
∫
∂Ω

Γi(ξ)mj(ξ)dξ. (4)

For the time-domain problem, yi j are the temporal disper-
sion profiles of the received signal intensities while, for the
frequency-domain problem, yi j are given by the complex
exitance values, usually expressed by logarithmic amplitude
lnA and phase shift ϕ [28],

lnAij = Re
(

ln yi j
)

, ϕij = Im
(

ln yi j
)
. (5)

Given the set of forward data y = {yi j} of all measurements
from all source distributions, (1) to (4) define the forward
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model f [κ,μa] = y which maps a parameter distribution
κ,μa to measurements for a given domain geometry, mod-
ulation frequency, source distributions, and measurement
profiles.

The forward model is solved numerically by using a fi-
nite element approach. A division of domain Ω into tetra-
hedral elements defined by N vertex nodes provides a pie-
cewise polynomial basis for the parameters κ,μa, and photon
density φ. The approximate field φh(r) at any point r ∈ Ω
is given by interpolation of the nodal coefficients φi using
piecewise polynomial shape functions ui(r)

φh(r) =
N∑
i=1

ui(r)φi. (6)

Piecewise polynomial approximations κh, μha to the con-
tinuous parameters, defined by the nodal coefficients κi,
μa,i are constructed in the same way. Applying a Galerkin
approach transforms the continuous problem of (1) into
an N-dimensional discrete problem of finding the nodal
field values Φ = {φi} at all nodes i, given the set of
nodal parameters x = {κi,μa,i}. For the frequency-domain
problem, the resulting linear system is given by

S(x,ω)Φ(ω) = Q(ω), (7)

where

S(x,ω) = K({κi}) + C
({
μa,i
})

+ γA + iωB, (8)

γ = c/2ζ , K, C, A, B ∈ RN×N are symmetric sparse matrices
given by [7]

Kij =
N∑
k=1

κk

∫
Ω
uk(r)∇ui(r) · ∇uj(r)dr,

Cij =
N∑
k=1

μa,k

∫
Ω
uk(r)ui(r)uj(r)dr,

Aij =
∫
∂Ω

ui(ξ)uj(ξ)dξ,

Bij = 1
c

∫
Ω
ui(r)uj(r)dr.

(9)

And right-hand side Q is given by

Qi =
N∑
k=1

qi

∫
∂Ω

ui(ξ)dξ (10)

with qi the nodal coefficients of the basis expansion of
q(ξ). For the solution of the time-domain problem, the
time derivative in (1) at time t is approximated by a finite
difference

∂φ
(⇀
r , t
)

∂t
≈ 1

Δt

[
φ
(⇀
r , t + Δt

)
− φ

(⇀
r , t
)]
. (11)

The temporal profile of φ is approximated at a set of discrete
steps {tn} and evaluated by a finite difference approach, given
by the iteration

[
θS̃ +

1
Δt0

B
]
Φ(t0) = 1

Δt0
Q0,

[
θS̃ +

1
Δtn

B
]
Φ(tn) =−

[
(1− θ)S̃− 1

Δtn
B
]
Φ(tn−1), n ≥ 1,

(12)

where S̃ = K+C+γA, time steps tn = tn−1 +Δtn−1,n ≥ 1, and
0 ≤ θ ≤ 1 is a control parameter that can be used to select
implicit (θ = 1), explicit (θ = 0), or intermediate schemes.
The step lengths Δtn are governed by stability considerations
of the finite difference scheme. For the unconditionally stable
implicit scheme, the step length can be adjusted to the
curvature of the temporal profile, allowing increased step
length at the exponentially decaying tail of φ(t).

The solution of the FEM problem thus consists of
(i) construction of the system matrices (9), (ii) solution
of the complex-valued linear problem (7) or real-valued
sequence of linear problems (12), and (iii) mapping to
measurements (3) and (4). The main computational cost
is the solution of the linear system, in particular in the
time-domain problem, while the cost of matrix assembly
time is typically only 1–10% of the time of a single linear
solution. The linear system can be solved either with a
direct method, such as Cholesky decomposition for the
real-valued time-domain problem or LU decomposition for
the complex-valued frequency domain problem, or with
iterative methods, such as conjugate gradients for the real-
valued problem and biconjugate gradients for the complex-
valued problem. Direct methods become impractical for
large-scale problems, due to memory storage requirements
for the decomposition and increased computation time. For
3-D problems with high node density, iterative solvers are
generally employed.

2.2. GPU Implementation. The bottleneck of the reconstruc-
tion problem is the solution of the linear systems in (7) or
(12). Accelerating the linear solver is therefore an effective
method for improving the inverse solver performance. We
have embedded a graphics processor-accelerated version of
the FEM forward solver into the existing TOAST software
package [29] for light transport and reconstruction pre-
sented previously [7]. The GPU-accelerated code uses the
CUDA programming interface for NVidia graphics processor
hardware. The implementation utilises the CUSP library
which offers a templated framework for sparse linear algebra
and provides conjugate gradient (CG) and biconjugate
gradient-stabilised (BiCGSTAB) iterative solvers for sparse
linear systems. The library supports both single and double
precision computation if supported by hardware.

We use the compressed sparse row (CSR) format for
matrix storage. There are alternative storage formats such as
the coordinate, ELLPACK, or hybrid formats [11] which can
provide better parallel performance depending on the matrix
fill structure, usually at the cost of less compact storage.
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GPU/device memoryCPU/host memory

Initialise solution vectors Φi = 0

Apply boundary and measurement
operators for yi j

Copy yi j

Assemble system matrix S(μa,μs)

Define preconditioner M = diag (S)

Assemble right-hand sides qi

Copy S, qi

For all i: BiCGSTAB: solve SΦi = qi

Figure 1: Data flow between host and graphics device for solution of linear problem (7).

However, the CSR format constitutes a good compromise
between performance and versatility and is well suited for
the matrix fill distribution arising from unstructured FEM
meshes.

For the solution of the complex-valued linear problem
(7), we expand the complex N × N system into a 2N × 2N
real system of the form

⎡
⎣Sre −Sim

Sim Sre

⎤
⎦
⎡
⎣Φre

Φim

⎤
⎦ =

⎡
⎣Qre

Qim

⎤
⎦. (13)

The CUSP CG and BiCGSTAB solvers had to be modified
to account for early termination of the iteration loop due
to singularities in the intermediate results. Early termination
conditions occasionally do occur in practice in the problems
considered in this paper, in particular due to single-precision
round-off errors.

The data flow between host and graphics device memory
for a single solver step is shown in Figure 1. The system
matrix S is assembled in host memory for a given set of
parameters, together with the source vectors qi, and copied
to GPU device memory. The GPU solver is then invoked for
all right-hand-sides, after which the projected solutions yi j
are copied back to host memory.

For the finite-difference solution of the time-domain
problem, the entire iteration (12) can be evaluated on
the GPU with minimal communication between host and
graphics system, consisting of initial copying the system
matrices S̃ and B to the GPU, and returning the computed
temporal profiles yi j(t) back to the host. The data flow
diagram for the time-domain problem is shown in Figure 2.

2.3. Single-Precision Arithmetic. GPU hardware is tradition-
ally optimised for single-precision floating point operations.

Although GPU hardware with double-precision capability is
emerging, typically only a fraction of the chip infrastructure
is dedicated to double-precision operations, thus incurring
a significant performance penalty. For optimising, it is
therefore advantageous to use single-precision arithmetic
where adequate. We have implemented the FEM solver in
both single and double precision for GPU as well as CPU
platforms.

When the system matrix is represented in single preci-
sion, care has to be taken during assembly. The system matrix
is assembled from individual element contributions (9). The
global vertex contributions in the system matrix are the sum
of the local element vertex values for all elements adjacent
to the vertex. During the summation, loss of precision can
occur if the magnitude difference between the summands
is large compared to the mantissa precision of the floating
point representation. For single precision arithmetic, this can
be a problem in particular where vertices have a large number
of adjacent elements, notably in 3-D meshes with tetrahedral
elements. Loss of precision during matrix assembly can be
reduced if the contributions are sorted from smallest to
highest magnitude. However, this incurs a book-keeping
overhead that can impact on performance. Instead we have
opted to assemble the system matrix in double precision
and map the values to single precision after assembly. The
assembly step is performed on the host side, with negligible
performance impact because assembly time is generally small
compared to solve time.

To compare the results of matrix assembly in single and
double precision, we have performed an FEM forward solu-
tion from single-precision system matrices that were assem-
bled in both single and double precision. The domain was a
homogeneous cylinder of radius 25 mm and height 50 mm,
with optical parameters μa = 0.01 mm−1 and κ = 0.3 mm.
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CPU/host memory GPU/device memory

Copy yi j

Apply boundary and measurement

operators for yi j(tn)

For each time step n = 1, . . .,

Assemble system matrix ˜S(μa,μs)

Assemble mass matrix B

Define preconditioner M = diag (D1)

Calculate D0 = −(1− θ)˜S− Δt−1B

and D1 = θ˜S + Δt−1B

Assemble right-hand sides qi

Copy ˜S, B, qi

For each qi:

q(0) = qi

CG: solve D1Φ(0) = q(0)

q(n) = D0Φ(n−1)

CG: solve D1Φ(n) = q(n)

Figure 2: Data flow between host and graphics device for solution of linear problem (12).

A point source modulated at frequency ω = 2π · 100 MHz
was placed on the cylinder mantle. The mesh consisted of
83142 and 444278 tetrahedral elements.

Figure 3 shows the differences between single and double
precision forward solution in log amplitude (Figure 3(a))
and phase (Figure 3(b)) of the complex photon density field
along a line from the source position across the volume of
the cylinder. The solid lines represent the single-precision
error where the system matrix has been assembled in double
precision before being mapped to single precision, while
the dashed line is the error arising from a system matrix
assembled in single precision. It can be seen that system
matrix assembly in double precision can significantly reduce
the solution errors, in particular at large distances from the
source.

The influence of optical parameters on the single-
precision error of the forward data is shown in Figure 4.
The forward solutions were calculated for three different
combinations of absorption and scattering coefficient (i)
μa = 0.01 mm−1, μs = 1 mm−1, (ii) μa = 0.1 mm−1, μs =
1 mm−1, and (iii) μa = 0.1 mm−1, μs = 1.5 mm−1. It can
be seen that the discrepancies become more severe at higher

values of the optical parameters. The results are particularly
sensitive to an increase of the scattering parameter. Due to
attenuation, the photon density fields inside the object decay
rapidly, leading to large dynamic range in the data. Increased
absorption and scattering parameters aggravate this effect,
which impairs the accuracy of the single-precision solution,
in particular in regions far away from the source. It should
be noted, however, that, for moderate optical parameters in
a typical range for optical tomography, the single precision
solution is accurate, with maximum relative errors of 10−6 to
10−4 in log amplitude and phase, respectively.

3. Results

The graphics accelerated forward solver problems were
executed on an NVidia GTX 285 GPU. The technical specifi-
cations of the device are listed in Table 1. The device supports
double as well as single precision arithmetic, so results for
both were collected. For performance comparison, the same
model calculations were also performed with a CPU-based
serial implementation on an Intel Xeon processor clocked
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Figure 3: Effect of single-precision arithmetic on forward solutions. Shown are the differences between single and double precision solutions
for logarithmic amplitude (a) and phase (b) of the complex field computed in a cylindrical domain along a line from the source across the
cylinder. The solid line shows the solution error for a system matrix assembled in double precision and solved in single precision while the
dashed line represents the solution for a system matrix assembled and solved in single precision.
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Figure 4: Single-precision arithmetic error as a function of optical coefficients. Shown are the differences between single and double
precision results in log amplitude (a) and phase (b) along a line from the source across the cylinder, for three different combinations of
absorption and scattering parameters.

at 2.0 GHz with 4 MB cache and 12 GB main memory. The
FEM model consisted of a homogeneous cylindrical mesh
with radius 25 mm and height 50 mm at various element
resolutions. 80 sources and 80 detectors were arranged on
the surface. One of the meshes, together with the resulting
system matrix sparsity structure, is shown in Figure 5.

3.1. Frequency Domain Solver. For run-time performance
comparison between GPU and CPU implementations under
a variety of conditions, we evaluated the frequency-domain
FEM forward model using different mesh complexities. The
forward solutions were computed for both a complex-valued
problem using a modulation frequency of ω = 2π · 100 MHz
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Table 1: Computational capabilities of GPU platform.

Platform GeForce GTX 285

Global device memory 1 GB

Processor core clock 1.476 GHz

Memory clock 1.242 GHz

CUDA cores 240

Multiprocessors 30

and a real-valued steady-state problem of ω = 0. For
the complex-valued problem, the BiCGSTAB linear solver
was used to compute the linear system in (7) while, for
the real-valued problem a CG solver was used. We tested
the performance of the GPU solution as a function of the
CG and BiCGSTAB convergence tolerances, either without
preconditioner or with a diagonal preconditioner. The results
are shown in terms of the GPU performance factor, given by
the ratio of the CPU and GPU run times. Figure 6 shows
the performance factors for single precision (Figure 6(a))
and double precision (Figure 6(b)) calculations. It can be
seen that the GPU achieves a performance factor between
8 and 19 for single precision calculations, depending on
the problem type, where the real-valued BiCGSTAB solution
without preconditioner shows the highest improvement
at 14–19, while the complex BiCGSTAB solution without
preconditioner exhibits the smallest improvement at 8–11.5.
Generally, the performance factor drops for lower tolerance
limits. The performance factors for double-precision solu-
tions are significantly lower, in a range between 3.7 and
4.7. This is due to the fact that while GPU performance
drops significantly for double-precision calculations, the
CPU solver performance is generally not affected, and indeed
the CPU performance is slightly higher at double precision
because it avoids casting floating point buffers between single
and double precision. The drop in performance factor for
lower tolerance limits is not present in the double-precision
results.

The next test compares the CPU and GPU performance
as a function of the mesh node density and the resulting
size of the linear system. The performance factors for the
forward solvers applied to cylindrical meshes of different
mesh resolutions as a function of node count are shown
in Figure 7. At each mesh resolution, we solved both a
real-valued steady-state problem with the preconditioned
CG solver, and a complex-valued frequency-domain prob-
lem with the preconditioned BiCGSTAB solver, at single-
precision (Figure 7(a)) and double-precision (Figure 7(b))
resolution. All solver results are for calculating the real or
complex photon density fields for 80 sources, for a solver
tolerance fixed at 10−10. It can be seen that in all cases
GPU performance improves with increasing size of the linear
system. For the single-precision solver, the performance
factors range between 1 and 26 for mesh node counts
between 9000 and 3.3 · 105, respectively, for the steady-
state problem, and between 2 and 30 for mesh node counts
between 9000 and 2.5 · 105, respectively, for the frequency
domain problem. Note that for the frequency domain
problem, the performance factors could not be computed for

the two largest meshes due to excessive computation time
of the CPU solution. The absolute linear solver times for
selected cases are shown in Table 2. It can be seen that for the
largest mesh resolutions, forward solver times on the CPU
can take in excess of an hour. This can be prohibitive for
clinical applications in iterative reconstruction, where each
step of the reconstruction may require multiple evaluations
of the forward problem to calculate the objective function
and its gradient at the current estimate or perform a line
search along the current search direction. By comparison,
the GPU times for these problems typically require 2 to 10
minutes, which is feasible for reconstruction problems.

To provide a comparison with a CPU-based parallel
solver, we also show the performance factors of a shared-
memory thread-based version of the FEM forward solver
using up to 8 threads, compared to the single-thread serial
implementation. The thread implementation uses a coarse-
grain parallelisation strategy, dividing the solution of the
linear problems for different right-hand sides over the avail-
able worker threads. This method provided better processor
utilisation and less communication overhead for the problem
considered here than a fine-grain strategy of parallelising
the iterative solver itself. Because the CPU implementation
showed no significant performance difference between the
single and double precision solution, we present here only
the double-precision results. Figure 8 shows the performance
factors for 2, 4, and 8 threads for the real-valued problem
using a CG solver, and for the complex-valued problem using
a BiCGSTAB solver. The CG solver reaches factors between
1.5 (2 threads) and 2.8 (8 threads) while the BiCGSTAB
solver reaches factors between 1.7 (2 threads) and 4 (8
threads). The dependency on mesh complexity is not as
marked as for the GPU solver.

3.2. Time-Domain Solver. We computed the finite difference
implementation of the time-domain problem (12) over
100 time steps of 50 picoseconds for cylinder meshes
of different complexity. For these simulations, a Crank-
Nicholson scheme (θ = 0.5) was used. Signal intensity time
profiles were calculated at 80 detector position for each of
80 source locations. The performance results are shown in
Figure 9. It can be seen that the performance improvements
of the GPU implementation is again strongly dependent
on mesh resolution, ranging from a factor of 3 to 13 for
the double-precision arithmetic calculation, and from 6 to
17 for the single-precision calculation. At the highest mesh
resolution, the total forward solver run time is approximately
8 hours for the CPU implementation for both single and
double precision while the GPU run time is approximately 29
and 36 minutes for the single and double precision solutions,
respectively.

4. Conclusions

We have developed a GPU implementation of a finite element
forward model for diffuse light transport that can be used
as a component in an iterative nonlinear reconstruction
method in diffuse optical tomography. The efficiency of the
forward solver has a significant impact on reconstruction
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(a) (b)

Figure 5: Cylinder geometry for the forward and inverse solver problems, showing a mesh with 83142 nodes and 444278 tetrahedral elements
(b). The fill structure of the resulting FEM system matrix is shown on the right. The number of nonzeros is 1150264, resulting in a fill fraction
of 1.664 · 10−4.
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Figure 6: GPU performance factor as a function of linear solver tolerance for real and complex problems, using CG and BiCGSTAB solvers,
without preconditioner and with diagonal preconditioner. (a): single-precision performance, (b): double-precision performance.

Table 2: GPU run-time comparisons for FEM forward solver computations of 80 source distributions in cylindrical meshes of different
node densities. Real-valued problems were solved with a conjugate gradient solver, complex problems with a biconjugate gradient stabilised
solver. Values in parentheses are CPU solution times.

Node number Runtime [s]

Real single Complex single Real double Complex double

8987 11.07 13.43 11.1 14.4

(8.49) (26.15) (3.74) (10.46)

82517 23.24 60.03 26.85 75.42

(193.94) (678.65) (96.21) (271.9)

245917 82.56 433.89 117.41 523.76

(1789.7) (12996.8) (837.39) (2351.25)

327617 127.19 1060.42 189.06 909.45

(3258.46) (−) (1509.22) (4699.71)
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Figure 7: GPU performance factor as a function of mesh node count for a real-valued problem solved with preconditioned CG solver,
and a complex-valued problem solved with preconditioned BiCGSTAB solver. (a): single-precision performance, (b): double-precision
performance.
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Figure 8: Performance factors for CPU-threaded versus CPU-serial forward solver computations as a function of node densities. (a): CG
solver for real-valued problem, (b): BiCGSTAB solver for complex-valued problem.

performance, and the reduction of reconstruction times is
essential in making optical tomography a viable imaging
modality in clinical diagnosis.

The model presented here supports real and complex-
valued problems and can be applied to steady-state, time,
or frequency-domain imaging systems. The linear system
arising from the FEM discretisation is solved either with a

conjugate gradient or biconjugate gradient stabilised iterative
solver on the GPU device. We have shown that the GPU
solver can achieve significant performance improvements
over a serial CPU implementation in the range of factors
between 5 and 30, depending on mesh complexity, tolerance
limit, and solver type. The GPU-based forward solver pro-
vides higher performance gains than a thread-based parallel
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Figure 9: Run-time comparison for CPU and GPU forward solution of time-dependent FEM problem over 100 time steps. (a): Run-times
for single and double precision arithmetic as a function of mesh complexity; (b): performance factors.

CPU implementation that was used for comparison. Future
developments in GPU hardware are expected to increase the
performance gain even further.

We have shown that for the forward problem a single
precision linear solver can be applied for typical ranges of
optical parameters in clinical applications of optical parame-
ters. Single-precision arithmetic yields higher performance
in particular for GPU-computing platforms. However, at
very high absorption and scattering parameter values, the
linear system may become increasingly ill-conditioned and
no longer converge with single-precision arithmetic. In these
cases, double-precision computation is required.
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