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Introduction

DNA methylation plays a crucial role in normal development and 
has relevant effects on gene regulation, X chromosome inactiva-
tion and genomic stabilization through transcriptional silencing 
of repetitive elements.1 In humans, DNA methylation occurs 
mostly in cytosines within CpG dinucleotides, which are under-
represented in the genome because of their high mutation rate, 
but are especially abundant in 5' regulatory regions of genes.2

Common complex diseases with strong genetic and environ-
mental risk determinants are excellent targets for the study of 
gene methylation, which is known to link environmental fac-
tors and the genome. Moreover, most common complex diseases 
have a progressive and quantitative nature that could be partly 
explained by accumulating epigenetic variation.3 For instance, 
differences in DNA methylation levels have been identified in 
the frontal cortex of patients diagnosed with major psychotic 
symptoms, in genomic regions that had been previously linked 
to disease etiology.4

Studies in monozygotic twins have demonstrated purely epi-
genetic variation underlying complex traits, as is the case of the 
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decrease in methylation in several genes associated with systemic 
lupus erythematosus.5 SNP associations detected by genome wide 
association (GWA) studies have been revisited in order to iden-
tify parent of origin effects or differentially methylated transcrip-
tion factor binding sites and have been successful in the case of 
different diseases such as type 1 and type 2 diabetes.3 It is now 
believed that the integration of epigenomic and genomic analyses 
will help reveal novel functional determinants within associated 
loci and several associations between epigenomic perturbations 
and human diseases have been reported.6

On the other hand, several studies have provided evidence on 
the existence of hundreds of genes with differential methylation 
of their promoters in various types of cancers, and such genes 
have been shown to be consistent and reproducible across dif-
ferent data sets and publications.7 Global hypomethylation of 
the genome and hypermethylation at specific gene promoters are 
known to be partly responsible for important events in carcino-
genesis, including chromosomal instability and transcriptional 
silencing of tumor suppressor genes.8,9 Although robustly repli-
cated across studies, these methylation changes are often quanti-
tatively subtle, as in breast cancer, where the absolute differences 
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determine whether whole bisulfitome amplification and subse-
quent qMAMBA technology can be performed without produc-
ing an artifactual result.

Results and Discussion

Following the experimental design outlined in Figure 1, we com-
pared the performance of conventional genomic DNA pyrose-
quencing and qMAMBA in a methylated DNA dilution curve 
(0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5% and 100% 
methylated human DNA) for eight Pyromark methylation assays 
located in different genes (MALT1, MAP3K7, MAP3K7IP1, 
MAP3K14, NFKBIA, RELA, TNFAIP3 and TRADD), that were 
selected because of their central regulatory functions in NFκB 
and Toll-like receptor responses, and their interest in studies 
on inflammation and autoimmunity. A 9-point cubic polyno-
mial curve was plotted with the results from each of the target 
genes, with real methylation levels in the x axis and experimen-
tally obtained, Pyromark Q24 software derived values for each 
point of the curve in the y axis. Curves for all genes fitted very 
well a polynomial cubic equation (R2 > 0.975) (Table S1). For 
each experimental result, x was solved to correct for PCR bias, 
and estimated data presented b values very close to 1, confirming 
the high level of correction of PCR bias that is obtained with 
the cubic equation based correction,13 compared with the raw 
pyrosequencing results (Table 1). When these estimated values 
were plotted against the real methylation levels, linear regres-
sion showed very high coincidence with a y = x straight line  
(Fig. 2) and data-points fitted very well to the function, as shown 
by correlation coefficients (Table 1), especially for the conven-
tional pyrosequencing experiments.

Assays with a correlation coefficient higher than 0.99 in the 
estimated vs. real value linear regression (Table 1) were able to dis-
criminate clearly between all adjacent points of the 9-point meth-
ylation curves. This was the case in 7 out of 8 target genes analyzed 
with the conventional pyrosequencing method but only in 2 of 
the genes assayed with qMAMBA. In the plots with lower correla-
tion values, several adjacent points of the dilution curve (differing 
in 12.5% methylated DNA) were scored with similar estimated 
values and could not be discriminated, as highlighted in Figure 2.

Sum of squared errors were calculated in order to quantify the 
accumulated difference between real and estimated methylation 
values with different target genes and techniques. In general, sum 
of squared error values were notably higher in the qMAMBA 
results. On the other hand, variation coefficients and their stan-
dard deviations across the different curve points were also calcu-
lated and showed more variation between replicates in the case of 
qMAMBA results (Table 1).

As previously mentioned, in order to be able to assess the con-
tribution of variation in DNA methylation to human disease, 
subtle changes in methylation levels must be robustly detected 
in the wider range of disorders as possible using small amounts 
of DNA. Technical approaches such as qMAMBA could be very 
useful in methylation analyses, but they should prove to be reli-
able enough. Previous analyses of whole bisulfitome amplified 
samples addressed only extreme differences in methylation levels, 

between tumoral and normal tissues are below 5%.10 Thus, it is 
necessary to develop technologies capable of determining slight 
variations in methylation levels in an accurate and reproducible 
manner.

Clinical tissue specimens from particular stages of a disease 
are limited and often irreplaceable, making those DNA samples 
very valuable material for research. Quantitative methylation 
analysis of minute DNA amounts after whole bisulfitome ampli-
fication (qMAMBA) has been proposed as a solution for limited 
sample availability (for example, in the case of DNA extracted 
from body fluids).11,12 Taking into account that acceptable meth-
ods for epigenetic studies should ensure that subtle methylation 
differences are robustly detected, we designed a study to compare 
qMAMBA and bisulfite-treated DNA pyrosequencing in terms 
of accuracy and reproducibility.

In this work, we validate the previously proposed cubic poly-
nomial regression correction method13 and use it to fix a cutoff, 
based on a single 9-point dilution curve experiment that can 

Figure 1. Schematic representation of the experimental design.
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correlation coefficient (R2) should be higher than 0.99 when a 
linear regression between the estimated and the real methylation 
values is plotted, following cubic polynomial equation correction 
of the raw results.

Methods

DNA samples. Methylation curves were constructed combin-
ing different amounts of commercially available HeLa Genomic 
DNA (used as unmethylated DNA14) and CpG Methylated HeLa 
Genomic DNA (representing totally methylated human genomic 
DNA), both from New England Biolabs (cat. nos. N4006S and 
N4007S, respectively) (Fig. 1). The resulting methylation lev-
els of the curve where the following: 0%, 12.5%, 25%, 37.5%, 
50%, 62.5%, 75%, 87.5% and 100%, all in a final volume of  
20 μl and a DNA concentration of 100 ng/μl.

Sodium bisulfite conversion of unmethylated cytosines was 
performed in each sample of the curve using the commercially 
available Epitect Bisulfite Kit (Qiagen cat. no. 59104) as indi-
cated by the manufacturer, and column-purified into 40 μl. 
An aliquot (5 μl) of each sample was used to amplify the bisul-
fitome with the Epitect Whole Bisulfitome Amplification Kit 
(Qiagen cat. no. 59205) following the manufacturer’s instruc-
tions. Briefly, around 250 ng bisulfite treated DNA were ampli-
fied using 1 μl of REPLI-g Midi Polymerase in a final volume of  
40 μl. Reactions were incubated at 28°C for 8h, followed by 
a 95°C step of 5 min and then kept overnight at 4°C. Finally,  
30 μl each of bisulfite treated genomic and amplified samples 
were diluted 1:2 in ddH

2
O and used for PCR reactions.

Selection and pyrosequencing of the CpG islands. Eight 
predesigned, commercially available Pyromark CpG Assays 
(Qiagen) located in eight different genes (MALT1, MAP3K7, 
MAP3K7IP1, MAP3K14, NFKBIA, RELA, TNFAIP3 and 

which indeed are correctly discriminated.11,12 The present work 
is the first study to compare qMAMBA and bisulfite-treated 
genomic DNA pyrosequencing in terms of accuracy and repro-
ducibility in a systematic way, covering a wide range of methyla-
tion percentages and different target assays.

In general, our study shows that the performance of assays is 
worse when bisulfitome amplification precedes PCR and pyro-
sequencing reactions, suggesting an inflation of PCR bias in 
this technique, due to a very strong preferential amplification 
of unmethylated alleles in qMAMBA. The only exception is 
MAP3K7IP1, which shows a very similar performance by both 
conventional pyrosequencing and qMAMBA. In this work, we 
demonstrate that qMAMBA method can only be satisfactorily 
applied if the R2 value derived from the linear regression for 
the corrected vs. the real methylation values is very close to 1  
(> 0.99) and thus, dispersion of estimations from the straight 
line is small enough to avoid stretches of overlapping values in 
which methylation differences cannot be accurately calculated  
(Fig. 2). Although less frequent, the same precautions should also 
be taken with conventional pyrosequencing.

In conclusion, we use the previously proposed cubic polyno-
mial regression correction method and provide evidence on its 
efficiency in correcting the PCR bias. Moreover, we show that 
b values depart much more from 1 when calculated with uncor-
rected observed methylation values compared with corrected 
estimations, so that systematic use of the cubic regression-based 
correction enormously benefits both the accuracy and the power 
of discrimination in methylation studies.

Finally, we fix a cutoff that allows distinguishing between 
those assays that will have a satisfactory performance from those 
unable to discriminate subtle changes in methylation levels, 
by performing a single 9-point curve experiment. This thresh-
old establishes that in order to avoid artifactual results, the 

Table 1. raw and corrected b values, sums of squared errors of the differences between estimated and real methylation levels, and coefficients of vari-
ation between replicates are shown for each gene and methodology, expressed as average values of the 9 points of the curve and standard deviations.

Gene Experimental approach Raw b  b after correction Sum of squared error Mean CV R2

MALT1
qMAMBA 0.25 ± 0.12 1.01 ± 0.61 603.68 0.15 ± 0.16  0.9410 

pYroSEQUENCiNG 0.55 ± 0.12 0.97 ± 0.22 100.35 0.10 ± 0.15  0.9886 

MAP3K7
qMAMBA 0.48 ± 0.22 1.00 ± 0.30 224.42 0.24 ± 0.13  0.9719 

pYroSEQUENCiNG 1.71 ± 0.41 1.00 ± 0.21 78.12 0.07 ± 0.05  0.9955 

MAP3K7IP1
qMAMBA 0.42 ± 0.12 1.02 ± 0.20 26.35 0.11 ± 0.14  0.9960 

pYroSEQUENCiNG 0.78 ± 0.23 0.96 ± 0.19 44.71 0.08 ± 0.10  0.9948 

MAP3K14
qMAMBA 0.63 ± 0.25 1.17 ± 0.42 278.96 0.07 ± 0.10  0.9690 

pYroSEQUENCiNG 0.67 ± 0.19 0.96 ± 0.22 34.17 0.09 ± 0.11  0.9961 

NFKBIA
qMAMBA 0.25 ± 0.07 0.95 ± 0.32 327.06 0.08 ± 0.12  0.9654 

pYroSEQUENCiNG 0.67 ± 0.14 1.02 ± 0.14 30.96 0.03 ± 0.04  0.9964 

RELA
qMAMBA 0.18 ± 0.06 0.98 ± 0.28 196.92 0.07 ± 0.04  0.9747 

pYroSEQUENCiNG 0.62 ± 0.06 1.02 ± 0.10 18.49 0.04 ± 0.03  0.9979 

TNFAIP3
qMAMBA 0.20 ± 0.09 0.98 ± 0.27 483.03 0.10 ± 0.05  0.9555 

pYroSEQUENCiNG 0.70 ± 0.12 1.00 ± 0.10 21.94 0.04 ± 0.05  0.9975 

TRADD
qMAMBA 0.44 ± 0.12 0.95 ± 0.19 62.28 0.08 ± 0.05  0.9933 

pYroSEQUENCiNG 0.77 ± 0.11 1.01 ± 0.12 17.09 0.06 ± 0.04  0.9971 
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Figure 2. for figure legend, see page 1353.
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amplicons with differential composition of methylated and 
unmethylated DNA, was calculated for each curve point with the 
following equation: b = [y × (100 - x)]/[x × (100 - y)], where y is 
the uncorrected experimental or estimated and x is the real value. 
As described previously,13 b = 1 indicates unappreciable PCR bias, 
while preferential amplification of unmethylated alleles results in 
b < 1.

Average b values (representing an overall b value of each par-
ticular gene), sums of squared errors of the differences between 
estimated methylation values and real levels, and coefficients 
of variation between replicates and their standard deviations 
were calculated for each gene and approach using Prism v5.0 
(GraphPad Software Inc.).
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TRADD) were selected. Each of the assays covered 4–6 CpG 
islands located in the 5' non coding end and/or in the first exon 
of each target, regions known to be involved in gene expression 
regulation and thus, interesting candidates for subsequent disease 
related studies (Table 2).

Each of the pyrosequencing experiments was performed in 
duplicate, so that two sets of results were available for each target 
gene and approach. Amplifications of the loci of interest were 
performed in a C1000 Thermal Cycler (BioRad) using 1.5 μl 
of DNA in 25-μl PCR reactions with the Pyromark PCR Kit 
(Qiagen cat. no. 978703) and the forward and the biotinyl-
ated reverse specific primers provided with each Pyromark CpG 
Assay, following the manufacturer’s protocol. Thermocycling 
conditions were as follows: 15 min at 95°C for enzyme activation 
followed by 45 cycles of denaturation for 30 sec at 95°C, anneal-
ing for 30 sec at 56°C and extension for 30 sec at 72°C, with a 
final extension of 10 min at 72°C. PCR reactions were tested by 
agarose gel electrophoresis.

After PCR amplification, 20 μl of each biotinylated PCR 
product were bound to streptavidin coated sepharose beads (GE 
Healthcare cat. no. 17-5113-01) in 24-well plates. PCR prod-
ucts were denatured and non-biotinylated strands were removed 
using the Pyromark Q24 vacuum workstation. The beads were 
then resuspended in 25 μl of annealing buffer containing  
0.3 μM of the specific sequencing primer from each CpG Assay. 
Pyrosequencing with the Pyromark Q24 system was performed 
using the Pyro Gold Q24 reagents. Nucleotide, enzyme and sub-
strate dispensation order and volumes, as well as the duration of 
each step, were planned using the Pyromark Q24 software v2.0 
(all from Qiagen) based on the target sequence. Following the 
runs, raw data files were imported into the software for standard 
quality controls and preliminary analyses.

Data analysis and statistics. For each target gene and experi-
mental approach (direct pyrosequencing of genomic DNA or 
qMAMBA), results were fitted into a polynomial cubic equation 
(y = ax3 + cx2 + dx + e), with the real methylation levels plotted on 
the x axis and the observed, experimental values (extracted from 
de Pyromark Q24 software) on the y axis, using Microsoft Excel 
v.10.0. With this equation, methylation levels were estimated for 
each experimental result by solving the x with Cardano’s method, 
as previously described.15 Adjustment and accuracy of these esti-
mations with respect to the real methylation levels were measured 
by linear correlation coefficients (R2).

The value of b, a measure of amplification bias that reflects 
the efficiency of primer binding and polymerase elongation in 

Figure 2 (See opposite page). Degree of bias and correction in each experiment. in all graphs, the x axis represents the real methylation levels, while 
the experimental (black diamonds and squares) and estimated (gray triangles) values are on the y axis. the derived cubic polynomial curve is shown 
for one of the sets of experimental results (diamonds), presenting in most cases a preferential amplification of unmethylated alleles (b < 1, except for 
MAP3K7 with conventional pyrosequencing). Gray triangles plot the real values vs. the levels estimated after the cubic equation-based correction and 
are fitted to a y = x linear regression (discontinuous line). Linear correlation coefficients are shown for each experiment.

Table 2. pyromark CpG Assay list

Pyromark CpG assay target name Cat. no.

MALT1 pM00185143

MAP3K14 pM00177569

MAP3K7 pM00122850

MAP3K7IP1 pM00199521

NFKBIA pM00056287

RELA pM00048895

TNFAIP3 pM00122129

TRADD pM00061369
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