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Simple Summary: Routinely collected data on the performance of dairy cows are a valuable source
of information on the beginning, course, and completion of their productive life. As a result, when
using sufficiently accurate methods, one can analyze and optimize the milk production process at a
herd level from the breeding and economic point-of-view. In this context, it is important to have a
possibility to early predict culling reasons for cows, since, in the case of finding an effective method,
it would be possible to modify breeding actions and farm management practices without anticipating
the end of the animals’ productive lives. Therefore, the aim of the present study was to verify whether
artificial neural networks and a general discriminant analysis may be an effective tool for predicting
the culling reasons in cows based on routinely collected first-lactation data. It turned out that they
were most effective in predicting culling due to old age and reproductive problems. It is significant
because infertility is one of the conditions that are the most difficult to eliminate in dairy herds.

Abstract: The aim of the present study was to verify whether artificial neural networks (ANN)
may be an effective tool for predicting the culling reasons in cows based on routinely collected
first-lactation records. Data on Holstein-Friesian cows culled in Poland between 2017 and 2018
were used in the present study. A general discriminant analysis (GDA) was applied as a reference
method for ANN. Considering all predictive performance measures, ANN were the most effective in
predicting the culling of cows due to old age (99.76–99.88% of correctly classified cases). In addition,
a very high correct classification rate (99.24–99.98%) was obtained for culling the animals due to
reproductive problems. It is significant because infertility is one of the conditions that are the most
difficult to eliminate in dairy herds. The correct classification rate for individual culling reasons
obtained with GDA (0.00–97.63%) was, in general, lower than that for multilayer perceptrons (MLP).
The obtained results indicated that, in order to effectively predict the previously mentioned culling
reasons, the following first-lactation parameters should be used: calving age, calving difficulty, and
the characteristics of the lactation curve based on Wood’s model parameters.

Keywords: classification matrix; dairy cattle; data mining; gains chart; multilayer perceptron;
sensitivity analysis

1. Introduction

Routinely collected data on longevity and survivability of cows and their culling
reasons may be used for the analysis of dairy cattle management and milk production
profitability in individual animals, herds, or populations [1]. Therefore, these data are
more frequently monitored in real time and relationships among them are analyzed in the
context of animal performance prediction [2].
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The studies published so far have indicated multiple possibilities in this regard,
starting from a basic analysis of milk production and linear type traits using economic
techniques for decision-making [3,4], through the application of survival analysis to the
prediction of longevity breeding value in dairy bulls [5,6], the prediction of health problems
associated with metabolic diseases in cows [7,8], the analysis of the association between
the leptin gene polymorphism and functional longevity of dairy cows [9], the objective
evaluation of effective transition cow management at a herd level [10], ending up with
the prediction of the first test-day milk yield of dairy heifers [11]. The previously men-
tioned studies have mostly focused on the analysis of relatively short time periods, i.e., a
specific and important moment in cows’ life (e.g., the perinatal period), whereas research
on the effective prediction of dairy cow longevity and/or their culling reasons over a
longer time span based on routine herd data is still rather scarce. Preliminary studies
on culling reasons in cows were carried out by Lacroix et al. [12] and two decades later
by Adamczyk et al. [13], who indicated a potential relationship between certain culling
reasons and lifetime performance of dairy cows. In addition, Krug et al. [14] developed a
model to identify herds with poor welfare based on the Portuguese national cattle database,
suggesting, at the same time, the possibility of replacing the laborious and time-consuming
procedures required for the Welfare Quality® protocol.

During the cows’ life, the first lactation is one of the most crucial periods. It is associ-
ated with the beginning of animal productive life and the change in management conditions,
which constitutes a huge challenge for maintaining the optimal welfare level of cows [15–17].
This is significant since primiparous cows, as young animals, undergo growth and develop-
ment, which must be considered in the production and breeding practice [18,19].

In the context of culling decisions, economic and breeding effects of age at first calving
and the course of the first lactation are indicated [1]. This results, among others, from
an association between the performance of primiparous cows and their lifetime produc-
tion [20,21]. In this regard, the current attempts at searching for an association between
certain production traits and culling reasons in cows are promising [22,23]. However, a
qualitatively and quantitatively optimal selection of variables for prediction models and
the use of sufficiently accurate analytical methods still remain a challenge.

In the present study, lactation curve parameters estimated from Wood’s model were
used as predictors. Wood’s regression curve, as a mathematical equation describing the
relationship between milk yield and lactation duration, is frequently used in the studies on
the estimation of milk yield in cows [24,25]. This model includes parameters associated
with the course of milk yield of a cow during lactation (incline, peak, and decline after
the peak).

One of the prediction methods frequently used in animal science is an artificial neural
network (ANN). ANN is an information processing system inspired by biological structures
such as the human brain. The popularity of ANN results from their ability to reproduce
the processes occurring in the brain (incremental information processing, learning new
concepts, making decisions, and drawing conclusions based on complex, sometimes irrele-
vant, or incomplete data), to a limited extent [26]. Therefore, ANN represents a different
approach than traditional statistical methods in which it is necessary to define an algo-
rithm and record it in the form of a computer program. Instead, ANN are presented with
exemplary tasks and the connections between the network elements and their weight
coefficients are modified automatically, according to the assumed training strategy. Besides
the ability for self-programming, ANN also show reduced sensitivity to the damages of
their structural elements and capability of parallel data processing [27]. There are different
types of ANN (feedforward, recurrent, cellular, etc.) among which feedforward ANN
consisting of several neuronal layers (an input layer, one or more hidden layers, and an
output layer) are very popular. Such ANN are trained in a supervised manner, which
means that the desired responses (e.g., culling reasons) are known for each training exam-
ple (containing cow data). The more recent applications of ANN in animal science include
the prediction of milk yield [28], fertility status [29], and assisted or difficult calvings [30] in



Animals 2021, 11, 721 3 of 18

dairy cows, or the estimation of carcass weight in beef cattle [31], among others. Another,
more traditional statistical approach (also belonging to data mining methods) is a general
discriminant analysis (GDA). In this method, discriminant function analysis problems are
solved using a general multivariate linear model, in which the dependent variables are
binary vectors that reflect the class membership of each case (animal) [32,33]. GDA offers
more possibilities than traditional discriminant function analysis, based on a classification
rule, which allows for the correct classification of cows and the evaluation of classification
accuracy depending on the adopted division criteria. In animal science, GDA has been
used for dystocia detection in dairy cows [34] or the examination of factors affecting beef
tenderness [35], among others.

The following research hypothesis was adopted in the present study. ANN may
be an effective tool for predicting culling reasons in cows, based on routinely collected
first-lactation data. Moreover, the effects of the prediction made by ANN were compared
with those obtained using the GDA.

2. Materials and Methods
2.1. Animals

The analysis included data on Holstein-Friesian cows (from 466 herds) culled in
Poland between 2017 and 2018. The animals were performance recorded. The data were
obtained from the SYMLEK Polish National Milk Recording System. SYMLEK is a system
of databases (including the results of data analysis for breeding purposes) on the population
of dairy cattle under milk recording in Poland. At the breeding level, the system is managed
by the Polish Federation of Cattle Breeders and Dairy Farmers, while ZETO Software is
responsible for its technical (IT) side.

2.2. Data Splitting

Based on the whole dataset of test-day records for the first lactation, the cows were
grouped according to the culling reason and the age at first calving. The following culling
reasons (R) were analyzed: infectious diseases (R1), respiratory system diseases (R2), low
milk yield (R3), nutritive and metabolic diseases (R4), leg diseases (R5), udder diseases (R6),
infertility and reproduction problems (R7), old age (R8), accidents (R9), and others (R10).
The grouping was carried out in order to plot lactation curves through the calculation of
Wood’s model parameters within the categories of culling reasons and age at first calving.
Using test-day records, 17 cow groups were distinguished according to the age at first
calving (at one-month intervals, from 17 to 34 months of calving, whereas the cows calving
at the age of 17 and 18 months were treated as one group). A total of 164 classes (age group
× culling reason) were formed in this way. Theoretically, the number of classes should be
170 (17 age groups × 10 culling reasons), but six age groups had missing data for certain
culling reasons (Table 1).
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Table 1. The number of cows in individual classes based on the age at first calving (AFC) groups and culling reasons (R).

Age Group AFC

Culling Reason (R)

R1
(866)

R2
(2548) R3 (16,923) R4 (22,867) R5

(42,566)
R6

(57,701)
R7

(379,582)
R8

(323,523)
R9

(51,520)
R10

(49,914)
Total

(948,010)

1 17–18 0 0 4 4 7 14 38 9 10 6 92
2 19 0 0 8 4 12 17 64 14 11 18 148
3 20 0 2 16 11 23 39 163 22 33 31 340
4 21 3 4 39 55 54 104 359 77 73 68 836
5 22 4 13 95 150 208 320 985 169 227 200 2371
6 23 10 37 204 313 475 674 2046 421 573 480 5233
7 24 12 49 267 443 697 907 2956 639 742 647 7359
8 25 13 49 256 416 698 892 2945 710 772 665 7416
9 26 7 56 226 369 619 758 2529 549 600 614 6327

10 27 10 30 171 282 537 637 2128 382 495 436 5108
11 28 2 29 147 214 405 538 1658 305 401 371 4070
12 29 4 15 98 190 348 462 1345 231 314 297 3304
13 30 2 14 78 129 274 369 1025 182 249 226 2548
14 31 4 17 63 106 201 270 787 152 193 177 1970
15 32 1 11 43 84 160 205 634 103 155 139 1535
16 33 0 5 56 66 131 138 507 82 126 118 1229
17 34 5 8 26 53 104 131 432 73 88 73 993

Total - 77 339 1797 2889 4953 6475 20,601 4120 5062 4566 50,879

AFC—age at first calving, R—culling reason (R1—infectious diseases, R2—respiratory system diseases, R3—low milk yield, R4—nutritive and metabolic diseases, R5—legs diseases, R6—udder diseases,
R7—infertility and reproduction problems, R8—old age, R9—accidents, R10—other). The number of test-day records within each culling reason is given in brackets.



Animals 2021, 11, 721 5 of 18

2.3. Estimation of Wood’s Model Parameters

Based on milk yield from test-day records, the first-lactation curve parameters were
estimated separately for each group (age at first calving × culling reason). For this purpose,
the mean values of milk yield from test-day records were determined for each lactation stage.
Ten lactation stages were distinguished at 30-day intervals (the first lactation stage from 5 to
30 days of lactation, the second lactation stage from 31 to 60 days, the third lactation stage
from 61 to 90 days, the fourth lactation stage from 91 to 120 days, the fifth lactation stage from
121 to 150 days, the sixth lactation stage from 151 to 180 days, the seventh lactation stage from
181 to 210 days, the eighth lactation stage from 211 to 240 days, the ninth lactation stage from
241 to 270 days, and the 10th lactation stage from 271 to 305 days). For the description of the
lactation curve, the gamma function proposed by Wood [36] was used:

y = a · tb · e−c·t, (1)

where y is the milk production (kg) at time t (days), e is Napier’s constant, a is the initial
milk yield, b is the rate of increase until the peak is reached, and c is the rate of decline after
peak production.

The regression model parameters were estimated with the quasi-Newton method [37].
A total of 948,010 test-day records (for the first 305-day lactation) from 163,369 cows were
used for estimating Wood’s model parameters. The estimated Wood’s model parameters
(a, b, c) were used as explanatory (input) variables for further analysis.

2.4. Data Editing

When preparing the training set for classification using neural networks, only cows
with a complete set of information were used. Records with less than 1 kg of milk, incom-
plete or erroneous ones (e.g., improbable minimal and maximal values of variables) were
removed. In addition, only cows with at least nine test-day records were included in the
analysis. The final dataset contained 50,879 cows.

In this dataset, the following explanatory (input) variables were included: X1—herd-
size (from 3 to 1644 cows), X2—age at first calving (from 17 to 34 months), X3—lactation
length (in days), X4—the number of first-lactation test-day records, X5–X7—Wood’s model
parameters (a, b, c, respectively) for individual categories (age at first calving × culling
reason). Additionally, the following production traits for the first lactation were used as
predictors (minimum, maximum, mean values, and standard deviations, respectively):
X8–X11—daily milk yield (kg), X12–X15—fat content (%), X16–X19—protein content (%),
X20–X23—lactose content (%), X24–X27—dry matter content (%), X28–X31—urea content
(mg/L), and X32–X35—somatic cell count (thousand/mL). Moreover, first-lactation nominal
variables such as X36—calving difficulty (according to the scale used for performance
recording: easy, spontaneous, difficult, very difficult, abortion, and cesarean section)
and X37—calving season (spring from 21 March to 20 June, summer from 21 June to
21 September, autumn from 22 September to 22 December, and winter from 23 December
to 20 March) were included in the model.

Ultimately, the dataset was randomly divided into a training set (33,071 culling records,
65% of all observations), a validation set (used for controlling the network training process,
7632 records, 15% of all observations) and a test set (used for verifying the predictive
performance of the models, 10,176 records, and 20% of all observations). The distribution
of continuous and nominal predictors in individual sets is presented in Tables 2 and 3.
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Table 2. Mean and standard deviation (SD) of continuous predictors in individual sets.

Variable
Training Set (n = 33,071) Validation Set (n = 7632) Test Set (n = 10,176) Total (n = 50,879)

Mean SD Mean SD Mean SD Mean SD

HERD (number of animals) 192.68 290.44 195.97 295.83 191.88 265.77 193.02 291.07
TD 9.54 3.60 9.63 3.62 9.64 3.35 9.87 3.54

AFC (months) 26.28 3.09 26.26 3.06 26.24 3.32 26.27 3.09
DIM (days) 286.86 119.65 287.42 120.27 286.23 110.77 286.81 119.78

a 28.56 1.22 28.56 1.21 28.55 1.29 28.56 1.22
b 0.13 0.04 0.13 0.04 0.13 0.04 0.13 0.04
c 0.06 0.02 0.06 0.02 0.06 0.03 0.06 0.02

MILK (kg) 24.33 6.37 24.34 6.39 24.21 6.00 24.31 6.36
MILKMIN (kg) 17.76 6.63 17.64 6.65 17.65 5.96 17.72 6.61
MILKMAX (kg) 30.48 7.52 30.56 7.60 30.36 7.37 30.47 7.53

MILKSD (kg) 4.52 2.27 4.57 2.34 4.51 2.02 4.52 2.28
FAT (%) 4.12 0.59 4.12 0.59 4.12 0.54 4.12 0.58

FATMIN (%) 3.35 0.62 3.34 0.62 3.36 0.59 3.35 0.62
FATMAX (%) 5.09 1.00 5.09 0.99 5.07 0.97 5.08 0.99

FATSD (%) 0.61 0.36 0.61 0.35 0.60 0.28 0.61 0.35
PROT (%) 3.34 0.29 3.33 0.29 3.33 0.28 3.34 0.29

PROTMIN (%) 2.93 0.26 2.92 0.27 2.93 0.25 2.93 0.27
PROTMAX (%) 3.76 0.47 3.76 0.48 3.76 0.46 3.76 0.47

PROTSD (%) 0.30 0.15 0.30 0.15 0.30 0.14 0.30 0.15
LACT (%) 4.84 0.16 4.84 0.16 4.84 0.15 4.84 0.16

LACTMIN (%) 4.61 0.27 4.61 0.28 4.61 0.26 4.61 0.27
LACTMAX (%) 5.02 0.16 5.02 0.16 5.02 0.15 5.02 0.16

LACTSD (%) 0.14 0.09 0.14 0.09 0.14 0.07 0.14 0.09
UREA (mg/L) 223.64 60.62 222.63 60.79 223.66 60.81 223.49 61.39

UREAMIN (mg/L) 145.70 60.76 144.53 59.66 145.22 58.95 145.43 60.76
UREAMAX (mg/L) 312.24 89.55 310.87 94.24 313.17 90.49 312.22 91.89

UREASD (mg/L) 58.15 28.49 57.95 29.67 58.87 26.27 58.27 29.20
SCC (thousands/mL) 532.26 913.81 528.85 878.79 554.89 738.16 536.27 925.37

SCCMIN (thousands/mL) 89.94 262.47 92.64 250.65 98.53 152.69 92.06 277.86
SCCMAX (thousands/mL) 1836.30 3046.97 1824.38 2969.94 1890.08 2974.92 1845.27 3053.84

SCCSD (thousands/mL) 640.55 1161.20 632.64 1117.94 661.23 999.18 643.50 1160.49
DMSR (%) 13.01 0.73 13.00 0.74 13.00 0.71 13.01 0.73

DMMIN (%) 12.03 0.73 12.01 0.73 12.04 0.71 12.03 0.73
DMMAX (%) 14.14 1.17 14.14 1.16 14.14 1.14 14.14 1.16

DMSD (%) 0.75 0.39 0.75 0.38 0.74 0.33 0.74 0.39

SD—standard deviation, HERD—herd size, TD—number of test-day records, AFC—age at first calving, DIM—days in milk, a—initial milk yield (Wood’s model parameter), b—rate of increase until the peak is
reached (Wood’s model parameter), c—rate of decline after peak production (Wood’s model parameter), MILK—average daily milk yield, MILKMIN—minimum daily milk yield, MILKMAX—maximum
daily milk yield, MILKSD—standard deviation of daily milk yield, FAT—average fat content, FATMIN—minimum fat content, FATMAX—maximum fat content, FATSD—standard deviation of fat content,
PROT—average protein content, PROTMIN—minimum protein content, PROTMAX—maximum protein content, PROTSD—standard deviation of protein content, LACT—average lactose content, LACTMIN—
minimum lactose content, LACTMAX—maximum lactose content, LACTSD—standard deviation of lactose content, UREA—average urea content, UREAMIN—minimum urea content, UREAMAX—maximum
urea content, UREASD—standard deviation of urea content, SCC—average somatic cell count, SCCMIN—minimum somatic cell count, SCCMAX—maximum somatic cell count, SCCSD—standard deviation of
somatic cell count, DM—average dry matter content, DMMIN—minimum dry matter content, DMMAX—maximum dry matter content, and DMSD—standard deviation of dry matter content.
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Table 3. The number (n) and percentage (%) of cows for individual variants of categorical predictors and the output variable
in the training, validation, and test set.

Variant
Training Set Validation Set Test Set Total

n % n % n % n %

Calving season
Spring 8593 26.0 1947 25.5 2634 25.9 13,174 25.9

Summer 7608 23.0 1730 22.7 2285 22.5 11,623 22.8
Autumn 8008 24.2 1873 24.5 2466 24.2 12,347 24.3
Winter 8862 26.8 2082 27.3 2791 27.4 13,735 27.0

Calving difficulty
Unassisted 12,541 37.9 2885 37.8 3835 37.7 19,261 37.9

Easy 18,608 56.3 4293 56.3 5718 56.2 28,619 56.3
Moderate 1491 4.5 355 4.7 468 4.6 2314 4.6
Difficult 148 0.5 35 0.5 53 0.5 236 0.5

Abortions 251 0.8 58 0.8 87 0.9 396 0.8
Caesarean 32 0.1 6 0.1 15 0.2 53 0.1

Culling reason (output variable)
R1 51 0.2 14 0.2 12 0.1 77 0.2
R2 217 0.7 47 0.6 75 0.7 339 0.7
R3 1131 3.4 303 4.0 363 3.6 1797 3.5
R4 1861 5.6 445 5.8 583 5.7 2889 5.7
R5 3206 9.7 722 9.5 1025 10.1 4953 9.7
R6 4221 12.8 940 12.3 1314 12.9 6475 12.7
R7 13,460 40.7 3086 40.4 4055 39.9 20,601 40.5
R8 2686 8.1 604 7.9 830 8.2 4120 8.1
R9 3283 9.9 732 9.6 1047 10.3 5062 10.0

R10 2955 8.9 739 9.7 872 8.6 4566 9.0

R1—infectious diseases, R2—respiratory system diseases, R3—low milk yield, R4—nutritive and metabolic diseases, R5—leg diseases,
R6—udder diseases, R7—infertility and reproduction problems, R8—old age, R9—accidents, and R10—others.

2.5. Neural Network Analysis

Different multilayer perceptrons (MLP) with one hidden layer were analyzed. The
hidden layer consisted of 5 to 30 neurons (the number of neurons was selected empirically).
The number of neurons in the input layer was 45 and the calving season and calving
difficulty variables were coded by four and six neurons, respectively (one-of-n encod-
ing) (Figure 1). In the input layer, the min-max transformation was used for continuous
variables. In the hidden and output neurons, different types of activation functions were
verified (linear, logistic, hyperbolic tangent, and exponential). The networks were trained
with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which is a powerful second
order training algorithm with very fast convergence but high memory requirements due to
storing the Hessian matrix [38]. For each analyzed network, a given number of iterations
was carried out until reaching the minimum misclassification rate on the validation set. For
the evaluation of the network during its training, two error functions were considered, i.e.,
the sum of squares and cross-entropy. The latter is calculated as the sum of the products of
real values and error logarithms for each output neuron.
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Figure 1. The structure of the multilayer perceptron with one hidden layer and 37 input vari-
ables (MLP37).

Based on the obtained results, the classification matrix was created on the test set and
predictive performance measures were calculated (the percentage of correctly classified
cases from each category and the overall accuracy). In addition, the positive predictive
values (PPV) were calculated, which showed the reliability of predictions made by the
neural models. Finally, a sensitivity analysis was carried out for ANN, which allowed
for the ordering of predictors (input variables) according to their relative importance.
This analysis was based on two criteria: an error ratio, i.e., error when input was set to
mean divided by the error when input was used (for continuous predictors) or an average
error when input was set to all other categorical levels divided by the error when input
was used (for categorical predictors), and a rank, which ordered predictors according
to their decreasing importance from one (the most important predictor) to 37 (the least
important predictor).

2.6. Training of the Neural Model with the Most Discriminative Predictors

Based on the results of sensitivity analysis (Table 4), the set of predictors was limited to
the five most discriminative ones, adopting the value of an error ratio above 1.5. The entire
procedure was the same as for the networks with the full set of predictors (the selection of
the best network out of 10 initial networks, classification matrix, sensitivity analysis, and
gains charts). Clearly, there were differences in the number of input neurons (ten, Figure 2).
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Table 4. Sensitivity analysis for the multilayer perceptron with one hidden layer and 37 input variables (MLP37) on the
training set.

Variable a b AFC c CALV DM FAT SEASON

Ratio 188.901 113.527 45.863 34.940 8.870 1.316 1.284 1.112
Rank 1 2 3 4 5 6 7 8

Variable LACT SCCSD PROT DIM TD FATMAX LACTSD FATSD

Ratio 1.112 1.093 1.069 1.056 1.052 1.049 1.049 1.043
Rank 9 10 11 12 13 14 15 16

Variable SCC MILK UREAMAX LACTMAX PROTMAX MILKMAX DMMAX DMSD

Ratio 1.041 1.037 1.037 1.036 1.035 1.032 1.030 1.029
Rank 17 18 19 20 21 22 23 24

Variable PROTMIN FATMIN DMMIN UREAMIN UREASD MILKMIN PROTSD LACTMIN

Ratio 1.028 1.025 1.024 1.016 1.016 1.015 1.014 1.012
Rank 25 26 27 28 29 30 31 32

Variable SCCMIN MILKSD SCCMAX HERD UREA - - -

Ratio 1.012 1.009 1.008 1.008 1.005 - - -
Rank 33 34 35 36 37 - - -

Ratio—error when input is set to mean divided by error when input is used (for continuous predictors) or average error when input is set
to all other categorical levels divided by error when input is used (for categorical predictors), rank—orders predictors according to their
decreasing importance from one—the most important predictor to 37—the least important predictor, HERD—herd size, TD—number of
test-day records, AFC—age at first calving, DIM—days in milk, a—initial milk yield (Wood’s model parameter), b—rate of increase until the
peak is reached (Wood’s model parameter), c—rate of decline after peak production (Wood’s model parameter), MILK—average daily milk
yield, MILKMIN—minimum daily milk yield, MILKMAX—maximum daily milk yield, MILKSD—standard deviation of daily milk yield,
FAT—average fat content, FATMIN—minimum fat content, FATMAX—maximum fat content, FATSD—standard deviation of fat content,
PROT—average protein content, PROTMIN—minimum protein content, PROTMAX—maximum protein content, PROTSD—standard
deviation of protein content, LACT—average lactose content, LACTMIN—minimum lactose content, LACTMAX—maximum lactose
content, LACTSD—standard deviation of lactose content, UREA—average urea content, UREAMIN—minimum urea content, UREAMAX—
maximum urea content, UREASD—standard deviation of urea content, SCC—average somatic cell count, SCCMIN—minimum somatic
cell count, SCCMAX—maximum somatic cell count, SCCSD—standard deviation of somatic cell count, DM—average dry matter content,
DMMIN—minimum dry matter content, DMMAX—maximum dry matter content, DMSD—standard deviation of dry matter content,
CALV—calving difficulty, SEASON—calving season.
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2.7. Discriminant Analysis

Based on the same dataset as for ANN, the GDA was carried out and the classification
matrix was created on the test set for the models including all 37 initial or the five most
discriminative predictors. The method of the GDA model building was described in more
detail by Zaborski et al. [34]. In addition, the predictive performance measures were
calculated (the percentage of correctly classified cases from each culling category, the
overall accuracy, and PPV).

2.8. Gains Charts

In order to better illustrate the predictive abilities of the neural and GDA models,
cumulative gains charts were also plotted. These charts show the relationship between
the cumulative gains (the proportion of cases from a given culling category among all the
cases belonging to this category) and the percentage of cases predicted by the model as
belonging to this category in the whole data set [39]. A diagonal crossing the (0,0) and
(1,1) points (the baseline) indicates a random model (without any predictive capabilities).
Therefore, the curves located above the diagonal are preferred [the closer the line to the
(0,1) point, the better the model] [40].

Statistica software (v. 13.3, Tibco Inc., Tulsa, OK, USA) was used for statistical analysis.

3. Results

The most effective ANN with 37 predictors had a relatively, highly correct classification
rate on the training and validation set (86.73%–96.17% and 87.33%–95.96%, respectively)
(Table 5). From among the analyzed ANN, the MLP with one hidden layer and a 45-29-10
structure (the number of neurons in the input, hidden and output layer, respectively) was
selected (Figure 1). This perceptron (denoted as MLP37) had the highest correct classifica-
tion rate on the validation set. The applied training algorithm included 320 iterations. The
cross-entropy error function was applied together with the SoftMax activation function
in the network output layer. A hyperbolic tangent activation function was used in the
hidden layer.

Table 5. Description of the 10 best multi-layer perceptrons (MLP) with 37 and five predictors.

Ranking Number of Input
Variables

Network
Structure

Quality of the MLP [%]

Training Set Validation Set Test Set

1
37 45-29-10 96.17 95.96 95.94
5 10-19-10 83.01 83.52 82.99

2
37 45-27-10 90.42 89.70 89.74
5 10-20-10 79.07 79.42 78.46

3
37 45-29-10 88.70 88.40 88.77
5 10-6-10 75.95 76.01 75.35

4
37 45-24-10 86.96 86.87 86.56
5 10-20-10 74.39 74.38 74.14

5
37 45-22-10 86.73 87.33 86.54
5 10-12-10 71.46 71.40 70.82

The sensitivity analysis of MLP37 showed that the greatest influence on the output
variable was exerted by lactation curve parameters (a, b, c), age at first calving, and calving
difficulty. Their error ratio ranged from 8.870 (calving difficulty) to 188.901 (the a parameter).
Therefore, these variables were used as the only input variables for the network with a
reduced set of predictors. The remaining input variables for MLP37 had a much lower
error ratio, i.e., below 2 (Table 4).

In comparison with the best networks containing 37 predictors, the networks with a
lower number of predictors were characterized by the lower values of a correct classification
rate both on the training (71.46%–83.01%) and validation (71.40%–83.52%) set. Among
these networks, the MLP with one hidden layer and a 10-19-10 structure (denoted as MLP5)
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was the most effective (Figure 2). The applied training algorithm included 227 iterations.
To evaluate the network performance during its training (like for MLP37), an entropy error
function was used, which was applied together with the SoftMax activation function in the
network output layer. Similarly, a hyperbolic tangent activation function was used in the
hidden layer (Table 5).

As can be seen from Table 3, the most frequent culling reasons in the test set were:
reproductive problems (4055 records), udder diseases (1314 records), and accidents and
leg diseases (1047 and 1025 records, respectively). Nevertheless, both MLP37 and MLP5
almost always correctly classified culling records from an old age category (R8) (Table 6).
A very high correct classification rate (at least 99%) was also found for cows culled due
to reproductive problems (R7). In other cases, the percentage of correct classification was
91%–97% for MLP37 (except for low milk yield–R3, for which it was 77%) and 51%–88%
for MLP5. On the other hand, the lowest correct classification rate (77% and 55% for
MLP37 and MLP5, respectively) was observed for low milk yield (R3). The percentage of
correct classification for individual culling reasons obtained with GDA37 and GDA5 was,
in general, lower than that for MLP37 and MLP5 (Table 7).

Table 6. Confusion matrix for the best networks (multilayer perceptrons with one hidden layer and 37 or five input variables)
on the test set.

Predicted
Culling Reason

No. of Input
Variables

Observed Culling Reason

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

R1
37 11 0 0 0 0 1 0 0 0 0
5 7 0 0 0 0 0 0 0 0 0

R2
37 1 68 2 0 0 0 6 0 0 0
5 0 49 0 0 0 0 0 0 0 0

R3
37 0 0 279 11 0 0 19 0 0 1
5 0 0 198 56 0 15 0 0 0 16

R4
37 0 3 50 567 0 0 0 0 0 0
5 0 0 68 515 0 0 0 2 0 0

R5
37 0 0 1 0 977 2 2 0 18 43
5 4 15 5 0 755 5 0 0 0 145

R6
37 0 1 18 0 0 1238 0 0 66 2
5 0 0 33 0 32 996 0 0 362 0

R7
37 0 0 8 4 14 26 4024 1 0 16
5 0 11 1 0 122 73 4054 0 86 214

R8
37 0 0 0 0 0 0 0 829 0 0
5 0 0 0 12 0 2 0 828 0 0

R9
37 0 3 4 0 2 26 2 0 961 1
5 0 0 6 0 5 215 1 0 599 53

R10
37 0 0 1 1 32 21 2 0 2 809
5 1 0 52 0 111 8 0 0 0 444

R1—infectious diseases, R2—respiratory system diseases, R3—low milk yield, R4—nutritive and metabolic diseases, R5—leg diseases,
R6—udder diseases, R7—infertility and reproduction problems, R8—old age, R9—accidents, and R10—other. The numbers of correctly
classified cases are shown on the diagonal.

R1—infectious diseases, R2—respiratory system diseases, R3—low milk yield, R4—
nutritive and metabolic diseases, R5—leg diseases, R6—udder diseases, R7—infertility
and reproduction problems, R8—old age, R9—accidents, and R10—other. The numbers of
correctly classified cases are shown on the diagonal.

A significant indicator of the predictive abilities of ANN and GDA was also the
reliability of prediction. In the present study, PPV were used for this purpose (Table 7). In
general, these values were quite high for both neural models (88.31–100% for MLP37 and
68.15–100% for MLP5). For GDA, they ranged from 0% to 83.33% (GDA37) and from 0% to
100% (GDA5). In order to get an even better insight into the prediction reliability of ANN
and GDA, the cumulative gains charts were plotted and analyzed, which illustrated the
relationship between the percentage of correctly classified cases from a given category and
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the percentage of records from the dataset ordered, according to the predicted probability of
the class assignment. It should be emphasized that the gain curves for most culling reasons
predicted by ANN were located as much higher than the baseline [near the (0, 100%)
point], which indicates a high prediction reliability of the neural models (Figures 3 and 4).
However, this time, MLP37 was (like for the previously reported results) more effective than
MLP5. When interpreting gains charts for individual categories, one should also consider
the percentage of cases from a given category in the whole dataset. Consequently, the
course of the curve for udder diseases was not optimal (from the first 13% of observations
classified with the highest probability to this category by the model, which about 80%
belonged to this class). On the other hand, the curve for reproductive problems passed
much closer to the baseline, even though the prediction reliability was very high. This
resulted from the fact that the percentage of cases from this category in the whole dataset
was about 40%. The gains obtained with both MLP37 and MLP5 were the highest (besides
reproductive problems) for such culling reasons as: old age, accidents, or leg diseases. The
gains for the GDA models with 37 and five predictors were much lower (Figures 5 and 6).
In principle, the gains curves for individual categories (except for old age) were located
very close to the baseline, and some curves were even below this line, which shows the
uselessness of such models, since better results can be obtained in a purely random manner
(without any model).

Table 7. The correct classification rate for the multilayer perceptrons (MLP) with one hidden layer and the general
discriminant analysis (GDA).

Culling
Reason

n
MLP37 MLP5 GDA37 GDA5

Cor. Incor. PPV Cor. Incor. PPV Cor. Incor. PPV Cor. Incor. PPV

R1 12 91.67 8.33 91.67 58.33 41.67 100.00 0.00 100.00 0.00 0.00 100.00 0.00
R2 75 90.67 9.33 88.31 65.33 34.67 100.00 6.67 93.33 83.33 1.33 98.67 100.00
R3 363 76.86 23.14 90.00 54.55 45.45 69.47 22.87 77.13 41.91 0.83 99.17 13.04
R4 583 97.26 2.74 91.45 88.34 11.66 88.03 88.16 11.84 70.99 90.05 9.95 66.37
R5 1025 95.32 4.68 93.67 73.66 26.34 81.27 32.20 67.80 46.61 3.22 96.78 76.74
R6 1314 94.22 5.78 93.43 75.80 24.20 69.99 37.98 62.02 47.89 4.19 95.81 20.44
R7 4055 99.24 0.76 98.31 99.98 0.02 88.88 91.39 8.61 58.91 97.63 2.37 49.81
R8 830 99.88 0.12 100.00 99.76 0.24 98.34 90.36 9.64 78.13 91.32 8.68 69.73
R9 1047 91.79 8.21 96.20 57.21 42.79 68.15 2.96 97.04 40.26 0.00 100.00 0.00
R10 872 92.78 7.22 93.20 50.92 49.08 72.08 4.82 95.18 28.00 0.00 100.00 0.00

Total 10,176 95.94 4.06 - 82.99 17.01 - 58.57 41.43 - 52.41 47.59 -

n—number of records, MLP37—multilayer perceptron with one hidden layer and 37 input variables, MLP5—multilayer perceptron with
one hidden layer and five input variables, GDA37—general discriminant analysis with 37 predictors, GDA5—general discriminant analysis
with five predictors, Cor.—correct, Incor.—incorrect, PPV—positive predictive value, R1—infectious diseases, R2—respiratory system
diseases, R3—low milk yield, R4—nutritive and metabolic diseases, R5—leg diseases, R6—udder diseases, R7—infertility and reproduction
problems, R8—old age, R9—accidents, and R10—others.
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4. Discussion

In the present study, old age was the most accurately predicted culling reason by
both MLP37 and MLP5. In addition, prediction reliability for ANN was high for this
category, which indicates that almost all animals predicted by ANN to be culled due
to old age, really belonged to this category. The gains charts were also nearly optimal.
Similar values of individual performance indicators were obtained for GDA. Therefore,
in this case, it is really possible to include only lactation curve parameters (from Wood’s
model), age at first calving, and calving difficulty as the only predictors in primiparous
cows. It may be of great importance from the production practice point-of-view, since,
among all culling reasons, old age directly indicates the productive lifespan of dairy
cows, considering the longest-living animals. The possibility of an early prediction of the
maximum lifespan of cows (based on first-lactation parameters) may provide information
required for the assessment of milk production profitability [41] and the modification of
breeding programs for dairy cattle in terms of their longevity [42]. It should also be noted
that many authors [1,42–44] have indicated cow longevity as one of the most important
measures of animal welfare. It is highly significant from both a breeding and production
point-of-view and due to the increasingly higher sensitivity of dairy product consumers to
the human-animal relationship [45]. Therefore, it seems that the prediction of the maximum
length of productive life in high-yielding cows should be interesting for both breeders/milk
producers and the food industry.

On the other hand, reproductive problems, as the second culling reason (after old age),
most accurately predicted by MLP37 and MLP5, belong to the most frequent difficulties
encountered in production practice. It is estimated that they account for approximately
20%–40% of culled dairy cows [1,46]. A highly correct classification rate (at least 99%
in the case of ANN) for this category was also accompanied by high prediction reliabil-
ity and high gains (considering the fact that this category was the most frequent one).
Cows with reproductive problems were sometimes incorrectly classified to such categories
as: leg diseases, udder diseases, accidents, other reasons, and (to a lesser extent) low
yield, respiratory system diseases, metabolic diseases, and old age. It may have resulted
from the relationship between reproductive problems in cows and other culling reasons.
An association between cow fertility and respiratory system diseases [47,48], milk yield
level [49,50], metabolic diseases [51–53], leg diseases [54–56], and udder diseases [57,58]
has been shown. In the present study, ANN incorrectly classified reproductive problems
in cows in these cases. At the same time, this result supports the suggestion made by
Adamczyk et al. [59], who recommended to consider not only the ultimate culling reasons
but also the mutual relationships among individual reasons and the life-history of cows
when analyzing longevity and indicating culling reasons for these animals. Cows culled
due to reproductive problems were also accurately predicted by GDA. However, PPV and
gains were lower than those for ANN considering the proportion of this class in the whole
dataset. Similar results were obtained for GDA with a reduced set of predictors.

For the potential application of ANN in dairy production, prediction of culling reasons
in cows should be considered in a broader context, i.e., concerning the lifetime performance
of animals. In this regard, Kumar and Hooda [60] stated that artificial intelligence may
be successfully applied to the prediction of lifetime milk yield of cows based on age
at first calving, calving interval, and some parameters of the first and second lactation
(service period, lactation milk yield, lactation length, and dry period), whereas Bhosale
and Singh [61] reported that, for the effective prediction of lifetime milk yield in cross-
bred cows with a proportion of Holstein-Friesian genes, it is sufficient to include only
the first-lactation parameters in the ANN input layer (lactation length, peak yield, and
lactation total milk yield). Moreover, ANN was very effective in this case for both smaller
(fewer than 10 cows) and larger herds. Considering the results reported by Bhosale and
Singh [61], it should be noted that, in the present study, the predictive abilities of ANN
were confirmed based on the first-lactation data, including Wood’s model parameters.
Consequently, the effectiveness of ANN in predicting phenotypic milk performance traits
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is even more important due to the fact that it corresponds to the significant abilities of
ANN to predict breeding value of dairy cattle [62].

In this context, a more traditional method such as a discriminant function analysis
was much less effective when compared with ANN including 37 or five predictors. In
addition, the application of GDA is associated with certain assumptions about predictors,
especially multicollinearity, which limits its applicability [33]. Predictors should not be
correlated with each other since this causes computational problems. These assumptions,
however, are not so important for ANN.

5. Conclusions

In the present study, it was shown that artificial neural networks may be an effective
method of classifying cows culled due to old age based on routinely collected first-lactation
data. Among the remaining culling reasons, a highly correct classification rate was observed
for reproductive problems. An association between this culling reason and low milk yield,
udder diseases, metabolic diseases, leg diseases, and respiratory system diseases was
also confirmed in our study. It should be emphasized that, for the effective prediction of
culling reasons, it was sufficient to include such first-lactation traits as calving age, calving
difficulty, and the characteristics of the lactation curve (Wood’s model parameters). The
confirmed abilities of ANN may constitute a valuable source of information that can be
used for breeding programs’ modification in Holstein-Friesian cattle and economic model
optimization for dairy herds.
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